
HAL Id: hal-00151194
https://hal.science/hal-00151194

Preprint submitted on 1 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic behavior of the magnetization for the
perceptron model

David Marquez-Carreras, Carles Rovira, Samy Tindel

To cite this version:
David Marquez-Carreras, Carles Rovira, Samy Tindel. Asymptotic behavior of the magnetization for
the perceptron model. 2005. �hal-00151194�

https://hal.science/hal-00151194
https://hal.archives-ouvertes.fr


Asymptotic behavior of the magnetization
for the perceptron model
Comportement limite de la magnétisation

pour le modèle du perceptron

by

David Márquez-Carreras1, Carles Rovira2 and Samy Tindel3
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Abstract: In this paper, we show that, in case of a perceptron model for

which the number of outputs is a small proportion of the size of the system, the

limiting behavior of the magnetization of a given spin, namely the random variable

〈σk〉, can be identified. In fact, we prove a L
2 convergence for a collection of those

random variables.

Résumé: Dans cet article, nous montrons que, dans le cas d’un modèle du per-

ceptron pour lequel le nombre de sorties est une proportion suffisamment petite de

la taille du système, on peut identifier le comportement limite de la magnétisation

d’un spin quelconque, c’est-à-dire de la variable aléatoire 〈σk〉. Nous montrons en

fait une convergence dans L
2 pour une famille de telles variables.
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1 Introduction

One of the basic problems in neural computation theory is the supervised
learning for pattern recognition by a simple perceptron (we refer to [2] and
references therein for a detailed account on that theory, from a physical and
numerical point of view). This problem can be summarized in the following
way: for two given integers N, M ≥ 1 and i ∈ {1, . . . , N}, the input of the
perceptron is η = (η1, . . . , ηN) with ηi ∈ {−1, 1}, and its output is of the
form

Ok = u

(
∑

i≤N

wi,kηi

)
, k ≤ M,

for a collection of real weights {wi,k; i ≤ N, k ≤ M}, and where u : R → R

should be, for numerical purposes, a step function. Note however that, in
many case, u is taken as a regularization of the sign function, whose deriva-
tives are allowed to grow at exponential speed with N . This is assumed for
mathematical convenience, and also because it reproduces better the actual
behavior of the brain synapses, from which this kind of model is inspired.

The supervised learning procedure consists then in providing p inputs
η1, . . . , ηp, jointly with p desired output patterns ζ1, . . . , ζp (called the train-
ing set), and, if possible, try to find the weights wi,k matching the inputs and
the outputs, i.e. such that

u

(
∑

i≤N

wi,kη
l
i

)
− ζ l

k = 0, k ≤ M, l ≤ p. (1)

Before computing those weights, a natural and classical question is to get
some information about the theoretical capacity of our model, that is the
maximal number of patterns for which the problem (1) can be solved. With-
out any a priori knowledge about wi,k and ηl, the following assumptions can
be done:

1. The inputs η are uniformly distributed in ΣN = {−1, 1}N .

2. The hyperplanes defined by the weights wi,k are also taken as “uni-
formly” distributed random planes, which is equivalent to model wi,k

as an i.i.d. family of standard Gaussian random variables, normalized
by N−1/2 in order to get a term of order 1. That is, one chooses

wi,k =
gi,k

N1/2
,
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where {gi,k; i ≥ 1, k ≥ 1} is a family of independent standard Gaussian
random variables.

However, it is a hard task to solve the system (1). Thus, in that context,
one step further in the analysis is to replace it by the study of an associated
Gibbs measure, a usual trick known as the finite temperature approximation.
In our case, if one wishes to know on how many bits M the output can be
coded, a natural measure to consider is the one whose density with respect
to the uniform measure µN on ΣN is given, for a typical configuration σ =
(σ1, . . . , σN) ∈ ΣN , by Z−1

N,M exp(−HN,M(σ)), with

−HN,M(σ) =
∑

k≤M

u

(
N−1/2

∑

i≤N

gi,kσi

)
, ZN,M =

∑

σ∈ΣN

exp (−HN,M(σ)) .

(2)
Notice that, in order to get the formula (2), one has to remove all the constant
weights ζ l

k, and to include the usual inverse of the temperature parameter β

into the function u, which are also two standard tricks.
It is now easily seen that a phase diagram for the model given by (2),

known as the perceptron model, would give some essential information about
the capacity of the original model. This phase diagram is far from being com-
plete from a mathematical point of view. However, the deep study initiated
in [4, Chapter 3] (see also [3] in a slightly different context) leads to a rigorous
replica symmetric solution when M is a (small enough) proportion of N , i.e.
M = αN with α small enough. This replica symmetric solution indicates
that the system does not behave too chaotically when N → ∞, and hence
that the capacity of the perceptron is not reached yet.

Another way of looking at the regularity of the system when N → ∞ is
to investigate the asymptotic behavior of the magnetization of an arbitrary
family of spins σ1, . . . , σk for k ≥ 1, that is the limit of the laws of the random
variables

〈σ1〉 , . . . , 〈σk〉 ,

where 〈·〉 designates the average with respect to the measure defined by (2).
In fact, in most engineering applications, the classical way to illustrate the self
averaging phenomenon for this kind of model is to show that those quantities
converge to some independent and identically distributed centered random
variables that can be clearly identified, by analogy with the fact that the
magnetization vanishes for the Ising model at high temperature. Therefore,
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our aim in this paper will be to give an answer to that natural problem,
which can be summarized in the following theorem:

Theorem 1.1 Assume u satisfies the assumptions

(H1) There exist a constant D > 0 and a large enough number L such that
|u(x)| ≤ D for all x and LeLD ≤ 1.

(H2) There exists a positive constant L∗ and a small enough constant c3 such
that, for any l ≤ 12, |u(l)| ≤ L∗eL∗Dec3N .

Then, there exists a constant r ≥ 0, that will be defined at Section 2, such
that, for any fixed m ≥ 1,

∑

i≤m

E
[(
〈σi〉 − tanh

(
r1/2zi

))2
]
≤

κm

N1/2
,

where κm is a positive constant, and (z1, . . . , zm) is a family of independent
standard Gaussian random variables (which still depend, however, of the ran-
domness contained in g).

Let us give now some hints about the way one can get that result: of
course, our proof will be inspired by the methods introduced in [4], and par-
ticularly by the smart path method, which is an efficient way of interpolating
two Gaussian vectors, once the limiting local fields corresponding to (2) can
be guessed. In our case, if the natural path is quite easy to figure out (see
(8) for a heuristic justification), the computations along that path are long
and sometimes involved. In particular, the path (18), which seems to be the
obvious one at first sight, lead us to a series of technical problems. Like in [1],
we have chosen to give some details of our calculations for sake of readability,
hoping that the final aspect of our paper will not be too scary.

Notice also that the optimal expected rate of convergence in our theorem
would be in N−1. We stopped at N−1/2 and did not check the computations
allowing to get this optimal rate, but we believe that it could be reached
along the same lines we have developped in this paper. In any case, let
us recall again that our result answers a natural question for the perceptron
model, and corresponds to one of the basic facts that practitioners are looking
for, as mentioned in [2]. Observe also that our way to derive Theorem 1.1
is certainly not the only one, and we hope that, in the future, some easier
proofs can be elaborated. And it is worth pointing out that the methods

4



contained in [3] could potentially yield one of these simplifications. However,
the latter paper is based on some convexity assumptions on the function u,
and some spherical hypothesis on the spin model, which makes it hard to
adapt to our situation.

Our paper is divided as follow: in the next section, we will introduce
the basic notations concerning the perceptron model, and recall some results
taken from [4]. Section 3 is devoted to state an important intermediate result
(Proposition 3.1) on our way to the proof of Theorem 1.1, to the definition
of the Gaussian path we will use in the sequel, and to the first computa-
tions along this path. Some new Gibbs measures appear naturally in those
computations. We will introduce them at Section 4. The main step towards
Theorem 1.1 will then be achieved with an asymptotic expansion of a general
term involving the measures introduced at Section 4. This will be done at
Section 5. Then, we will apply those results in order to prove Proposition
3.1 at section 6. Theorem 1.1 will be proved at Section 7. Eventually, let us
mention that, in the remainder of the paper, κ, c, c1, . . . will stand for some
positive constants, that can change from line to line.

2 Preliminary results

As mentioned in the introduction, the state space of our model will be ΣN =
{−1, 1}N for a given N ∈ N

∗, and setting µN for the uniform measure on
ΣN , we will consider the random measure whose density with respect to µN is
given by Z−1

N,M exp(−HN,M(σ)), where ZN,M has been introduced at relation
(2), and where we recall that HN,M(σ) is defined by

−HN,M(σ) =
∑

k≤M

u

(
N−1/2

∑

i≤N

gi,kσi

)
.

In the above formula, M stands for a positive integer such that M = αN

for a given α > 0, u will be a continuous function defined on R satisfying
conditions (H1) and (H2) given in the introduction, and {gi,k; i ≥ 1, k ≥ 1}
is a family of independent standard Gaussian random variables. Note that
u and α will depend on N , though this dependence will be kept implicit for
sake of readability.

We will first give an account on the results obtained in [4] concerning the
perceptron model. Those results are based on the smart path method, that
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is a way to single out continuously the last spin σN from the other ones in
the definition of HN,M . This smart path can be described as follows: for
t ∈ [0, 1], σ ∈ ΣN , set

Sk,t(σ) =

(
1

N

)1/2 ∑

i≤N−1

gi,kσi +

(
t

N

)1/2

gN,kσN , (3)

and consider the Hamiltonian

−HN,M,t(σ) =
∑

k≤M

u (Sk,t(σ)) + σN(r(1 − t))1/2Y, (4)

where r is a positive coefficient whose exact value will be given later on,
and Y is a standard Gaussian random variable independent of all the other
randomness in HN,M . For a given function f : Σn

N → R, set now 〈f〉t for the
Gibbs mean of f with respect to the Hamiltonian HN,M,t, and

νt(f) = E [〈f〉t] .

Then, on one hand, some simplifications in the computation of νt(f) can be
done when t = 0:

Lemma 2.1 Let f− be a function defined on Σn
N−1, and I be a subset of

{1, . . . , n} of cardinality |I|. Then

ν0

(
f−

∏

l∈I

σl
N

)
= E

[
(tanh(r1/2Y ))|I|

]
ν0(f

−).

Notice that, in the previous result, σ1, ..., σn are understood as n inde-
pendent configurations under GN , usually called replicas of σ.

On the other hand, the derivative of νt(f) with respect to the parameter
t can be computed explicitely.

Proposition 2.2 Suppose that u is twice differentiable. Write w = u′′ +
(u′)2. Then, for 0 < t < 1 and f : Σn

N → R, we have

ν ′
t(f) =

3∑

j=1

Kj,
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where
K1 =

α

2

∑

l≤n

νt

(
w(Sl

M,t)f
)
−

α

2
nνt

(
w(Sn+1

M,t )f
)
,

K2 is defined by

K2 = α
∑

1≤l<l′≤n

νt

(
σl

Nσl′

Nu′(Sl
M,t)u

′(Sl′

M,t)f
)

−αn
∑

l≤n

νt

(
σl

Nσn+1
N u′(Sl

M,t)u
′(Sn+1

M,t )f
)

+α
n(n + 1)

2
νt

(
σn+1

N σn+2
N u′(Sn+1

M,t )u′(Sn+2
M,t )f

)
,

and

K3 = −r

(
∑

1≤l<l′≤n

νt

(
σl

Nσl′

Nf
)
− nνt

(
σl

Nσn+1
N f

)

+
n(n + 1)

2
νt

(
σn+1

N σn+2
N f

)
)

.

The drawback of Proposition 2.2 is that some terms involving u′ and u′′

appear in the fomula, while one would like to have only a mild control on
those quantities. However, using some integration by parts arguments, some
asymptotic results for the perceptron model are obtained in [4]: first of all,
define, for two replicas σl, σl′ of σ, the quantity

Rl,l′ =
1

N

∑

i≤N

σl
iσ

l′

i .

This quantity, called the overlap of σl and σl′ , will be, as usual in the spin
glass theory, a central object in the study of the model. It is then essential
to obtain some sharp results on the asymptotic behavior of R1,2, that we will
describe now: let q and r (notice that r has already been introduced in (4))
be the solution to the system

q = E
[
tanh2(r1/2Z)

]
, r = αE

[
Λ2(q1/2Z, (1 − q)1/2)

]
, (5)

where Λ is defined on R
2 by

Λ(x, y) :=
E [ξ exp(u(x + ξy))]

yE [exp(u(x + ξy))]
=

E [u′(x + ξy) exp(u(x + ξy))]

E [exp(u(x + ξy))]
,
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and where the second equality is obtained by a Gaussian integration by
parts. In the preceding formulae, Z and ξ stand for two independent standard
Gaussian random variables. Observe that, under hypothesis (H1), the system
(5) admits a unique solution. Then the following inequalities hold true (notice
that these inequalities are shown in [4] under sligthly weaker assumptions):

Proposition 2.3 Under hypothesis (H1) and (H2), we have, for any k ≥ 0,

ν
(
(R1,2 − q)2k

)
≤

(
Lk

N

)k

.

Furthermore, we have

|ν (R1,2 − q)| ≤
L

N
. (6)

Notice that the computations leading to this exponential self-averaging prop-
erty for the overlap also yield the replica symmetric solution for the model.
We refer to [4] for this last formula.

Let us end this section by recalling an elementary integration by parts
formula we will use throughout the paper: for p ≥ 1, let (g1, . . . , gp) be a
Gaussian vector in R

p, and F : R
p → R be a C1 function having at most

exponential growth together with its gradient. Then

E[g1F (g1, . . . , gm)] =
∑

l≤m

E[g1gl]E[∂xl
F (g1, . . . , gm)]. (7)

3 Definition of the path

A first step in order to prove Theorem 1.1 is to achieve an asymptotic de-
composition of 〈σN〉 separating, on one hand, the randomness contained
in {gN,k; k ≤ M}, and on the other hand, some terms involving {gi,k; i ≤
N − 1, k ≤ M}.

First of all let us introduce a new Hamiltonian

−HN−1,M(σ) =
∑

k≤M

u

(
N−1/2

∑

i≤N−1

gi,kσi

)
=

∑

k≤M

u (Sk,0) ,

where the quantities Sk,t have been defined at (3), and let 〈·〉− denote the
average with respect to the Gibbs measure induced by HN−1,M .
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Then, the following heuristic steps can be performed: we have

−HN,M(σ) ≃ −HN−1,M(σ) + N−1/2
∑

k≤M

u′(Sk,0)gN,k σN ,

and hence

〈σN〉 ≃

〈
sinh

(
1

N1/2

∑
k≤M gN,ku

′(Sk,0)
)〉

−〈
cosh

(
1

N1/2

∑
k≤M gN,ku′(Sk,0)

)〉
−

. (8)

We will show in the sequel that this crude estimate holds true in the limit
N → ∞, and in fact, using a direct analogy with the self averaging properties
of the SK model, we will prove the following result:

Proposition 3.1 Under hypothesis (H1) and (H2), there exists a strictly
positive constant κ such that

E




(
〈σN〉 − tanh

(
1

N1/2

∑

k≤M

gN,k 〈u
′(Sk,0)〉−

))2

 ≤

κ

N1/2
. (9)

Most of the remainder of the paper will be devoted to prove (9), and let
us begin here with some simple considerations, that is, the definition of the
Gaussian path we will use: for t ∈ [0, 1], let us consider the function

ϕ(t) = E
[
(〈σN〉t − tanhYt)

2]
,

where

Yt =

(
t

N

)1/2 ∑

k≤M

gN,k 〈u
′(Sk,0)〉− + [r(1 − t)]1/2

Y.

Notice then that ϕ(1) is the left hand side of (9), and on the other hand,
using that 〈σN〉0 = tanh(r1/2Y ), it is easy to check that ϕ(0) = 0. By means
of the elementary equation

ϕ(1) − ϕ(0) =

∫ 1

0

ϕ′(t)dt,

we can see that (9) will be achieved as soon as we can show that

|ϕ′(t)| ≤
κ

N1/2
,

9



for any t ∈ (0, 1). Hence, our first task will be to compute the derivative of
ϕ. In fact, we will start by decomposing ϕ into three terms:

ϕ(t) = ϕ1(t) + ϕ2(t) + ϕ3(t), (10)

with

ϕ1(t) = E
[
〈σN〉

2
t

]
,

ϕ2(t) = E
[
tanh2(Yt)

]
,

ϕ3(t) = −2E [〈σN〉t tanh Yt] .

Then, we will compute the derivatives of ϕ1, ϕ2 and ϕ3 separately.
Using two replicas of σ, we get ϕ1(t) = νt (σ1

Nσ2
N) . Then, as a direct

consequence of Proposition 2.2, we get the following lemma.

Lemma 3.2 For any t ∈ [0, 1], we have

ϕ′
1(t) =

∑

k≤6

A1,k(t),

with

A1,1(t) = α νt

[(
u′′ + (u′)2

)
(S1

M,t) σ1
N σ2

N

]
,

A1,2(t) = −α νt

[(
u′′ + (u′)2

)
(S3

M,t) σ1
N σ2

N

]
,

A1,3(t) = α νt

[
u′(S1

M,t) u′(S2
M,t)

]
,

A1,4(t) = −4α νt

[
u′(S1

M,t) u′(S3
M,t) σ2

N σ3
N

]
,

A1,5(t) = 3α νt

[
u′(S3

M,t) u′(S4
M,t) σ1

N σ2
N σ3

N σ4
N

]
,

A1,6(t) = −r
[
1 − 4νt

(
σ1

N σ2
N

)
+ 3νt

(
σ1

N σ2
N σ3

N σ4
N

)]
.

Differentiating the function ϕ2(t) and using the integration by parts formula
(7), we also obtain the following result.

Lemma 3.3 For any t ∈ [0, 1], we have

ϕ′
2(t) = A2,1(t) + A2,2(t),

with

A2,1(t) = αE
[(

1 − tanh2 (Yt)
) (

1 − 3 tanh2 (Yt)
)
〈u′ (SM,0)〉

2

−

]
,

A2,2(t) = −rE
[(

1 − tanh2 (Yt)
) (

1 − 3 tanh2 (Yt)
)]

.
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Now, differentiating ϕ3(t) and using again the integrate by parts formula (7)
we get the next lemma.

Lemma 3.4 For any t ∈ [0, 1], we have

ϕ′
3(t) = −2

(
∑

i≤4

A3,1,1,i(t) −
∑

i≤5

A3,1,2,i(t) + A3,2,1(t) − A3,2,2(t)

)
,

with

A3,1,1,1(t) =
α

2
E

[〈
σN

(
u(2) (SM,t) + (u′ (SM,t))

2 )〉
t
tanh Yt

]
,

A3,1,1,2(t) = −
α

2
E

[〈
σ2

Nu′
(
S1

M,t

)
u′

(
S2

M,t

)〉
t
tanh Yt

]
,

A3,1,1,3(t) =
α

2
E

[
〈u′ (SM,t)〉t 〈u

′ (SM,0)〉−
(
1 − tanh2 (Yt)

)]
,

A3,1,1,4(t) = −
r

2
E

[
1 − tanh2 (Yt)

]
,

the terms A3,1,2,i(t) being defined by

A3,1,2,1(t) =
α

2
E

[〈
σ1

N

(
u(2)

(
S2

M,t

)
+

(
u′

(
S2

M,t

))2 )〉
t
tanh Yt

]
,

A3,1,2,2(t) =
α

2
E

[〈
σ1

Nu′
(
S1

M,t

)
u′

(
S2

M,t

)〉
t
tanh Yt

]
,

A3,1,2,3(t) = −αE
[〈

σ1
Nσ2

Nσ3
Nu′

(
S1

M,t

)
u′

(
S2

M,t

)〉
t
tanh Yt

]
,

A3,1,2,4(t) =
α

2
E

[〈
σ1

Nσ2
Nu′

(
S2

M,t

)〉
t
〈u′ (SM,0)〉−

(
1 − tanh2 Yt

)]
,

A3,1,2,5(t) = −rE [〈σN〉t tanh Yt] + rE
[〈

σ1
Nσ2

Nσ3
N

〉
t
tanh Yt

]

−
r

2
E

[〈
σ1

Nσ2
N

〉
t

(
1 − tanh2 Yt

)]
.

The terms A3,2,1(t) and A3,2,2(t) are respectively obtained by

A3,2,1(t) =
α

2
E

[
〈u′ (SM,t)〉t 〈u

′ (SM,0)〉−
(
1 − tanh2 (Yt)

)]

−
α

2
E

[〈
σ1

Nσ2
Nu′

(
S1

M,t

)〉
t
〈u′ (SM,0)〉−

(
1 − tanh2 (Yt)

)]

−αE
[
〈σN〉t 〈u

′ (SM,0)〉
2

− tanh Yt

(
1 − tanh2 (Yt)

)]
,

and

A3,2,2(t) =
r

2
E

[(
1 − tanh2 (Yt)

)]
−

r

2
E

[〈
σ1

Nσ2
N

〉
t

(
1 − tanh2 (Yt)

)]

−rE
[
〈σN〉t tanh Yt

(
1 − tanh2 (Yt)

)]
.
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4 Introducing a new measure

All the preceding considerations show that, in order to prove relation (9), we
should be able to expand and control any term of the form

〈
f(σ1, ..., σn1)U1

(
S1

M,t, ..., S
n1

M,t

)〉
t

〈
U2

(
S1

M,0, ..., S
n2

M,0

)〉
−

, (11)

for n1, n2 ∈ N, U1 : R
n1 → R, U2 : R

n2 → R and t ∈ (0, 1]. In this section,
we will begin to develop some new tools that should allow us to handle those
terms. More precisely, we will introduce some new Gibbs measures in the
following way: first of all, for t ∈ [0, 1], σ ∈ ΣN , set

−H∗
N,M,t(σ) =

∑

k≤M

u(Sk,t(σ)) + σNb∗t ,

where we recall that Y is a standard Gaussian random variable independent
of the remaining randomness contained in H∗

N,M,t, and

bt = (r(1 − t))1/2
Y, b∗t = bt1(0,1](t). (12)

Write then G∗
t for the Gibbs measure related to this Hamiltonian, and notice

that
HN−1,M(σ) = −

∑

k≤M

u(Sk,0(σ)) = H∗
N,M,0(σ).

For a fixed (t1, ..., tn) ∈ [0, 1]n, let us consider now a new Gibbs measure
G∗

t1,...,tn on Σn
N , defined by its average on functions f : ΣN → R:

〈f〉(t1,...,tn) :=

∑
σ1,...,σn f exp

(∑
l≤n

(∑
k≤M−1 u(Sl

k,tl
) + σl

Nb∗tl

))
∑

σ1,...,σn exp
(∑

l≤n

(∑
k≤M−1 u(Sl

k,tl
) + σl

Nb∗tl
)) ,

where f = f(σ1, ..., σn).
Now, the terms of the form (11) can be expressed using a Gibbs measure

of the form G∗: let us consider the notation n := n1 + n2, as well as

U1 := U1

(
S1

M,t, ..., S
n1

M,t

)
, U2 := U2

(
S1

M,0, ..., S
n2

M,0

)

and f = f(σ1, ..., σn1), Ũ2 := U2

(
Sn1+1

M,0 , ..., Sn
M,0

)
. Then, for t ∈ [0, 1],

〈fU1〉t 〈U2〉−

=

∑
σ1,...,σn1

fU1 exp
(∑

l≤n1

[∑
k≤M u(Sl

k,t) + σl
N(r(1 − t))1/2Y

])
∑

σ1,...,σn1
exp

(∑
l≤n1

[∑
k≤M u(Sl

k,t) + σl
N(r(1 − t))1/2Y

])

×

∑
σ1,...,σn2

U2 exp
(∑

l≤n2

[∑
k≤M u(Sl

k,0)
])

∑
σ1,...,σn2

exp
(∑

l≤n2

[∑
k≤M u(Sl

k,0)
]) ,
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and using the relation

−H∗
N,M,t(σ) = −H∗

N,M−1,t(σ
l) + u(SM,t),

we get, for t ∈ [0, 1],

〈fU1〉t 〈U2〉−

=

∑
σ1,...,σn fU1Ũ2 exp

(
−

∑
l≤n1

H∗
N,M,t(σ

l) −
∑

n1<l≤n H∗
N,M,0(σ

l)
)

∑
σ1,...,σn exp

(
−

∑
l≤n1

H∗
N,M,t(σ

l) −
∑

n1<l≤n H∗
N,M,0(σ

l)
)

=

〈
fU1Ũ2 exp

(∑
l≤n1

u(Sl
M,t) +

∑
n1<l≤n u(Sl

M,0)
)〉

(t,...,t,0,...,0)〈
exp

(∑
l≤n1

u(Sl
M,t) +

∑
n1<l≤n u(Sl

M,0)
)〉

(t,...,t,0,...,0)

(13)

where in (t, ..., t, 0, ..., 0) we have n1 times t and n2 times 0.
On the other hand, the measures G∗

t1,...,tn share some of the good proper-
ties of the original Gibbs measure, starting from the one concerning widely
spread sequences of Gaussian random variables, a crucial notion that we recall
briefly here (see however [4] for a detailed account on that topic).

Definition 4.1 For n ≥ 1, a centered Gaussian family (X1, . . . , Xn) is said
to be widely spread if for each l ≤ n we can write

Xl = X̂l +
∑

k 6=l

cl,kXk,

where the cl,k are some real coefficients, X̂l is independent of the random
variables Xk for k 6= l, and

E
[
(X̂l)

2
]
≥ κ1,

for a fixed positive constant κ1.

Then, as in Lemma 3.3.3 of [4] we can prove that the measures G∗
t1,...,tn satisfy:

Lemma 4.2 Assume u satisfies (H1) and (H2), fix (t1, ..., tn) ∈ [0, 1]n, and
set, for any t ∈ [0, 1] and σ ∈ ΣN ,

gt(σ) =
1

N1/2

∑

i≤N−1

giσi +

(
t

N

)1/2

gNσN ,

13



where {gi; i ≤ N} is a sequence of independent standard Gaussian random
variables, also independent from the randomness contained in G∗

t1,...,tn. Then,
there exists some constants κ, c1 > 0 such that

G∗
t1,...,tn

(
(σ1, ..., σn) ∈ Σn

N ; gt1(σ
1), ..., gtn(σn) is not widely spread

)

≤ κn exp (−c1N) .

Let us recall that the constant q ∈ [0, 1] has been introduced in (5) and
define, for l ≤ n, the quantity

θl = q1/2W + (1 − q)1/2ξl, (14)

where W and {ξl; l ≥ 1} are independent standard Gaussian random vari-
ables. For a fixed t ∈ [0, 1], consider also the variables

gl
v,t = v1/2Sl

M,t + (1 − v)1/2θl, (15)

for any v ∈ [0, 1]. In the sequel, we will denote by Eξ the partial expectation
with respect to the randomness contained in {ξl; l ≥ 1}. With Lemma 4.2 in
mind, one can get the following proposition

Proposition 4.3 Assume u satisfies (H1) and (H2), and fix (t1, ..., tn) ∈
[0, 1]n. Then we have

1. The overlap R1,2 self-averages into q:

E
[〈

(R1,2 − q)2〉
(t1,t2)

]
≤

κ

N
. (16)

2. Consider some integers n ≥ 1, s1, . . . , sn and r1, . . . , rn ∈ {0, 1} such
that, setting s =

∑
j≤n sj and r =

∑
j≤n rj, we have s, r ≤ 6. Set

V (x1, . . . , xn) = exp

(
∑

l≤n

u(xl)

)
,

U(x1, . . . , xn) = ∂s
s1,...,sn

V (x1, . . . , xn)

P (x1, . . . , xn) =
∏

j≤n

(u′(xl))
rj .
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Then, for f : Σn
N → R such that |f | ≤ 1, we have, for any v ∈ [0, 1],

∣∣∣∣∣

〈
fEξ

[
U

(
g1

v,t1
, . . . , gn

v,tn

)]
P

(
S1

M−1,t1
, . . . , Sn

M−1,tn

)〉
(t1,...,tn)〈

Eξ

[
V

(
g1

v,t1 , . . . , g
n
v,tn

)]〉
(t1,...,tn)

∣∣∣∣∣

≤ κ
(
e2nD 〈|f |〉 + e−c2N

)
, (17)

for some positve constants κ, c2.

Proof: This proof is a long and easy elaboration of the computations per-
formed at [4, Sections 3.3 and 3.4], that we won’t include here. However,
notice that we have to assume here that the derivatives of u are (midely)
bounded up to order 12. This is due to the presence of both U(g1

v,t1
, . . . , gn

v,tn)

and P̂ (S1
M−1,t1

, . . . , Sn
M−1,tn

) in the left hand side of (17). In order to treat
those terms, we will separate them using Schwarz’s inequality, that will bring
out up to 12 derivatives of u.

�

5 An asymptotic expansion

In this section, we will develop the tools that we will need in order to get an
expansion of the terms of the form (11), which is a key step in the proof of
Theorem 1.1. In fact, once the averages 〈f〉(t1,...,tn) are defined, we will try,
for a fixed (t1, . . . , tn), to find a natural path that will allow us to expand
any term of the form (11), asymptotically in N .

Recall first that Sk,t is defined by (3), gv,t by (15), θl by (14), bt and b∗t
by (12). Observe that, using the notation introdued at Section 4, we have

Yt =

(
t

N

)1/2 ∑

k≤M

gN,k

〈u′(Sk,0) exp u(SM,0)〉(0)
〈exp u(SM,0)〉(0)

+ bt.

We can turn now to the definition of the path we will use in order to get
our expansion: for v ∈ [0, 1], set

Ȳv =

(
t

N

)1/2 ∑

k≤M−1

gN,k

Eξ〈u
′(Sk,0) exp u(gv,0)〉(0)
Eξ〈exp u(gv,0)〉(0)

+ bt. (18)

15



In particular it is easy to check that

Ȳ0 =

(
t

N

)1/2 ∑

k≤M−1

gN,k〈u
′(Sk,0)〉(0) + bt,

Ȳ1 = Yt −

(
t

N

)1/2

gN,M

〈u′(SM,0) exp u(SM,0)〉(0)
〈exp u(SM,0)〉(0)

. (19)

Using this auxiliary path, we will get the announced expansion as follows:

Proposition 5.1 Let u be a function satisfying (H1) and (H2). Consider
an integer m, nonnegative integers s1, . . . , sm with s =

∑
l≤m sl ≤ 2. Set also

V (x1, . . . , xm) = exp
∑

l≤m

u(xl),

U(x1, . . . , xm) =
∂sV

∂xs1

1 · · · ∂xsm
m

.

Let f be a function on Σm
N such that |f | ≤ 1 and Ψ a bounded function with

bounded derivatives of any order. Then, if we define, for tl ∈ {0, t}, l ≤ m,

Q = E

[
〈fU(S1

M,t1
, . . . , Sm

M,tm
)〉(t1,...,tm)

〈V (S1
M,t1

, . . . , Sm
M,tm

)〉(t1,...,tm)

Ψ(Yt)

]
,

we have

Q = E
[
〈f〉(t1,...,tm) Ψ(Ȳ0)

]
E

[
U(θ1, . . . , θm)

EξV (θ1, . . . , θm)

]
+ O

(
N−1/2

)
.

In particular, we have

E
[
〈f〉(t1,...,tm) Ψ(Yt)

]
= E

[
〈f〉(t1,...,tm) Ψ(Ȳ0)

]
+ O

(
N−1/2

)
.

The proof of this proposition will we based on a technical lemma that we
will present now. First of all, let us label some basic but useful results that
we will use further on: for l, l′ ≥ 1, t ∈ [0, 1], we have

E
[
(Sl

M,t)
2
]

= 1 +
t − 1

N
, (20)

E
[
Sl

M,t Sl′

M,t′

]
:= ∆t,t′

l,l′ = Rl,l′ +
tt′ − 1

N
σl

Nσl′

N . (21)
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Lemma 5.2 Let u be a function satisfying (H1) and (H2). Consider integers
n, s1, . . . , sn with s =

∑
l≤n sl ≤ 6. Consider also the functions Û and V̂

defined by

Û(x1, . . . , xn) =
∂sV̂

∂xs1

1 · · · ∂xsn
n

,

V̂ (x1, . . . , xn) = exp
∑

l≤n

u(xl).

Let f be a function on Σn
N such that |f | ≤ 1 and Φ a bounded function with

bounded derivatives of any order. Then, for tl ∈ {0, t}, l ≤ n, v ∈ [0, 1], we
have

Ξ := E




Eξ

〈
fP̂ Û(g1

v,t1
, . . . , gn

v,tn) ∂vg
1
v,t1

〉
(t1,...,tn)

Eξ

〈
V̂ (g1

v,t1 , . . . , g
n
v,tn)

〉
(t1,...,tn)

Φ(Ȳv)


 = O

(
N−1/2

)
,

(22)
where, P̂ = 1 or

P̂ = u′(Si
M−1,tl

)u′(Sj
M−1,tl′

), with l, l′, i, j ∈ {1, . . . , n}, i 6= j.

Proof of Lemma 5.2: In the sequel, we will write Û and V̂ instead of
Û(g1

v,t1
, . . . , gn

v,tn) and V̂ (g1
v,t1

, . . . , gn
v,tn), respectively. We will also denote

u′(x)eu(x) by U1(x). By means of (14) and (15) we can write

Ξ = Ξ1 − Ξ2 − Ξ3, (23)

where

Ξ1 =
1

2v1/2
E

[
Eξ〈fP̂ Û S1

M,t1
〉(t1,...,tn)

Eξ〈V̂ 〉(t1,...,tn)

Φ(Ȳv)

]
,

Ξ2 =
1

2(1 − v)1/2
E

[
Eξ〈fP̂ Û q1/2 W 〉(t1,...,tn)

Eξ〈V̂ 〉(t1,...,tn)

Φ(Ȳv)

]
,

Ξ3 =
1

2(1 − v)1/2
E

[
Eξ〈fP̂ Û (1 − q)1/2 ξ1〉(t1,...,tn)

Eξ〈V̂ 〉(t1,...,tn)

Φ(Ȳv)

]
.

We will now give a sketch of our computations: according to (20) and
(21), an integration by parts argument with respect to S1

M,t1
or W or ξ1, and
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a little algebra bring out some terms of the form

Ξ̂1 ≡
t1 − 1

2N
E

[
Eξ〈fP̂ ∂x1

Û 〉(t1,...,tn)

Eξ〈V̂ 〉(t1,...,tn)

Φ(Ȳv)

]
,

which can be handled quite easily: by Schwarz’s inequality, we have

E

[
Eξ〈fP̂ ∂x1

Û 〉(t1,...,tn)

Eξ〈V̂ 〉(t1,...,tn)

Φ(Ȳv)

]

≤ ‖Φ‖∞E1/2

[
Eξ〈ff∗P̂ P̂ ∗ ∂x1

Û∂x1
Û∗ 〉(t1,...,tn,t1,...,tn)

Eξ〈V̂ V̂ ∗〉(t1,...,tn,t1,...,tn)

]
,

where
f ∗ = f(σn+1, . . . , σn+p), Û∗ = Û(gn+1

v,t1
, . . . , g2n

v,tn),

and P̂ ∗, V̂ ∗ are defined in a similar manner. Hence, using inequality (17), we
get

Ξ̂1 = O
(
N−1

)
.

The second kind of term we have to deal with is of the type

Ξ̂2 =
1

2

n∑

l=2

E

[
Eξ〈fP̂ ∂xl

Û
(
∆t1,tl

1,l − q
)
〉(t1,...,tn)

Eξ〈V̂ 〉(t1,...,tn)

Φ(Ȳv)

]
,

and here again, (17) and Schwarz’s inequality allow us to bound Ξ̂2 by sum
of terms of the type

κ

(
E1/2

〈
|f 2|

∣∣∆t1,t2
1,2 − q

∣∣2
〉

(t1,...,tn̄)
+ e−cN

)
,

for some integer n̄ and some positive constants κ, c. Then, recalling definition
(21), using the fact that |f | ≤ 1, and invoking inequality (16), we get Ξ̂2 =
O(N−1/2), which ends the proof.

�

Let us go back now to the main point of this section.
Proof of Proposition 5.1: Define the function

τ(v) = E

[
Eξ〈fU(g1

v,t1
, . . . , gm

v,tm)〉(t1,...,tm)

Eξ〈V (g1
v,t1 , . . . , g

m
v,tm)〉(t1,...,tm)

Ψ(Ȳv)

]
.
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We have

τ(1) = E

[
〈fU(S1

M,t1
, . . . , Sm

M,tm
)〉(t1,...,tm)

〈V (S1
M,t1

, . . . , Sm
M,tm

)〉(t1,...,tm)

Ψ(Ȳ1)

]
,

τ(0) = E
[
〈f〉(t1,...,tm) Ψ(Ȳ0)

]
E

[
U(θ1, . . . , θm)

EξV (θ1, . . . , θm)

]
.

Then, the proof of this proposition simply consists in checking that

|Q − τ(0)| ≤
κ

N1/2
.

Notice first that

|Q − τ(1)| =

∣∣∣∣∣E
[
〈fU(S1

M,t1
, . . . , Sm

M,tm
)〉(t1,...,tm)

〈V (S1
M,t1

, . . . , Sm
M,tm

)〉(t1,...,tm)

(Ψ(Yt) − Ψ
(
Ȳ1)

)
]∣∣∣∣∣ .

Thus, using Schwarz’s inequality, the bound (17), the fact that Ψ has boun-
ded derivatives, and the relation (19) between Ȳ1 and Yt, we get

|Q − τ(1)| ≤
κ

N1/2
.

So, the proof of our proposition will easily follow from the inequality:
∣∣∣∣
∫ 1

0

τ ′(v)

∣∣∣∣ ≤
C

N1/2
, (24)

that we will show now. In the sequel of the proof, we will write, for notational
convenience, U = U(g1

v,t1
, . . . , gm

v,tm) and V = V (g1
v,t1

, . . . , gm
v,tm), and recall

that we have also set U1(x) = u′(x)eu(x). Then, we can write

τ ′(v) = ζ1(v) − ζ2(v) +
( t

N

)1/2 ∑

k≤M−1

(
ζk
3 (v) − ζk

4 (v)
)
,

where

ζ1(v) =
∑

l≤m

E

[
Eξ〈f ∂vg

l
v,tl

∂xl
U 〉(t1,...,tm)

Eξ〈V 〉(t1,...,tm)

Ψ(Ȳv)

]
,

ζ2(v) =
∑

l≤m

E

[
Eξ〈f ∂vg

m+1
v,tl

U U1(g
m+1
v,tl

)〉(t1,...,tm,tl)

Eξ〈V e
u(gm+1

v,tl
)〉(t1,...,tm,tl)

Ψ(Ȳv)

]
,
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and

ζk
3 (v) = E

[
gN,k

Eξ〈f∂vg
m+1
v,0 u′(Sm+1

k,0 ) U U1(g
m+1
v,0 )〉(t1,...,tm,0)

Eξ〈V eu(gm+1

v,0 )〉(t1,...,tm,0)

Ψ′(Ȳv)

]
,

ζk
4 (v) = E

[
gN,k

Eξ〈f∂vg
m+2
v,0 u′(Sm+1

k,0 )eu(gm+1

v,0 )UU1(g
m+2
v,0 )〉(t1,...,tm,0,0)

Eξ〈V eu(gm+1

v,0 )+u(gm+2

v,0 )〉(t1,...,tm,0,0)

Ψ′(Ȳv)

]
.

The first two terms are of the type (22) in Lemma 5.2, and hence applying
this lemma we get that

ζ1(v) − ζ2(v) = O
(
N−1/2

)
.

To study the last two terms we have to integrate by parts again. For instance,
by symmetry and integrating by parts with respect to gN,M−1, we obtain that
ζk
3 (v) can be expressed as a function of terms of type (22). Then, applying

Lemma 5.2 we can easily finish the proof of (24). �

6 Proof of Proposition 3.1

In this section, we will see that the proof of Proposition 3.1 can easily be
deduced from some nice cancellations, that we will obtain by an extensive
use of Proposition 5.1.

Let us first introduce some new notation that we will use throughout this
section:

Vk(x1, . . . , xk) = exp
( k∑

i=1

u(xi)
)
, U

i,j
k (x1, . . . , xk) = ∂2

xi,xj
Vk(x1, . . . , xk).

(25)
Recall also that definition (5) implies

E

[
U

1,2
2 (θ1, θ2)

Eξ (V2(θ1, θ2))

]
= E




∣∣∣∣∣
u′(θ1)eu(θ1)

Eξ (eu(θ1))

∣∣∣∣∣

2

 =

r

α
.

Using the same arguments, we can also get that for k = 3, 4,

E

[
U

1,2
k (θ1, . . . , θk)

Eξ (Vk(θ1, . . . , θk))

]
= E

[
u′ (θ1)u′(θ2) eu(θ1)+u(θ2)

Eξ (eu(θ1)+u(θ2))

]
=

r

α
.
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On the other hand, we will set (recall that w = u′′ + (u′)2)

E

[
U

1,1
1 (θ)

Eξ (V1 (θ))

]
= E

[
w(θ1)eu(θ1)

Eξ (eu(θ1))

]
:= δ,

and observe that, for k = 2, 3,

E

[
U

1,1
k (θ1, . . . , θk)

Eξ (Vk(θ1, . . . , θk))

]
= E


w(θ1)e

∑k
i=1

u(θi)

Eξ

(
e
∑k

i=1
u(θi)

)


 = δ.

Using the notation introduced in Section 3 and applying Proposition 5.1, we
are now able to bound all the terms appearing in the derivative of ϕ.
Upper bound on ϕ′

1: We will show now how the terms appearing in
Lemma 3.2 will give raise to some nice cancellations, by a direct application
of (13) and Proposition 5.1. Indeed, we have for instance

A1,1(t) = α E

[〈
σ1

Nσ2
NU

1,1
2 (S1

M,t, S
2
M,t)

〉
(t,t)〈

V2(S1
M,t, S

2
M,t)

〉
(t,t)

]

= α E

[
U

1,1
2 (θ1, θ2)

Eξ (V2(θ1, θ2))

]
E

[〈
σ1

Nσ2
N

〉
(t,t)

]
+ O

(
N−1/2

)

= α δE
[〈

σ1
Nσ2

N

〉
(t,t)

]
+ O

(
N−1/2

)
.

Along the same lines, it can also be shown that A1,2(t) yields a contribution
of

−α δE
[〈

σ1
Nσ2

N

〉
(t,t)

]
+ O

(
N−1/2

)
,

which can be simplified with the one of A1,1(t). It is easily checked that the
other terms defining ϕ′

1(t) cancel out in the same way, which gives ϕ′
1(t) =

O
(
N−1/2

)
.

Upper bound on ϕ′
2: Let Ψ1 (y) =

(
1 − tanh2 (y)

) (
1 − 3 tanh2 (y)

)
. Ap-

plying again Proposition 5.1, we get

A2,1(t) = αE

[
U

1,2
2 (θ1, θ2)

Eξ (V2(θ1, θ2))

]
E

[
Ψ1

(
Ȳ0

)]
+ O

(
N−1/2

)

= rE
[
Ψ1

(
Ȳ0

)]
+ O

(
N−1/2

)
,

A2,2(t) = −rE
[
Ψ1

(
Ȳ0

)]
+ O

(
N−1/2

)
.

21



Hence, ϕ′
2(t) = O

(
N−1/2

)
.

Upper bound on ϕ′
3: Set Ψ2 (y) = tanh2 (y) Here again,we will expand

the terms appearing in Lemma 3.4, thanks to Porposition 5.1, and look for
some cancellations. An example of computation is

A3,1,1,1(t) =
α

2
E

[〈
σNU

1,1
1 (SM,t)

〉
(t)

〈V1(SM,t)〉(t)
Ψ2 (Yt)

]

=
α

2
E

[
U

1,1
1 (θ)

Eξ (V1 (θ))

]
E

[
〈σN〉(t) Ψ2

(
Ȳ0

)]
+ O

(
N−1/2

)

=
α

2
δE

[
〈σN〉(t) Ψ2

(
Ȳ0

)]
+ O

(
N−1/2

)
,

and following these steps, we obtain

4∑

i=1

A3,1,1,i(t) =
α

2
δE

[
〈σN〉(t) Ψ2

(
Ȳ0

)]
−

r

2
E

[
〈σN〉(t) Ψ2

(
Ȳ0

)]
+ O

(
N−1/2

)
.

(26)
The same kind of expansions also yield

5∑

i=1

A3,1,2,i(t) =
α

2
δE

[
〈σN〉(t) Ψ2 (Y0)

]
−

r

2
E

[
〈σN〉(t) Ψ2 (Y0)

]
+ O

(
N−1/2

)
,

(27)
which cancels out with the contribution of

∑4
i=1 A3,1,1,i(t). Finally, a similar

kind of argument shows that

A3,2,1(t) − A3,2,2(t) = O
(
N−1/2

)
. (28)

Then, from (26), (27) and (28) we get that ϕ′
3(t) = O

(
N−1/2

)
, which ends

the proof of Proposition 3.1.

7 Proof of Theorem 1.1

Once Proposition 3.1 is proved, our main theorem will be shown along some
more or less classical lines. However, we still have to prove here a technical
lemma:
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Lemma 7.1 Let 〈·〉− be the Gibbs average introduced at Proposition 3.1.
Then, there exists a constant κ > 0 such that

E
[(
〈σ1〉 − 〈σ1〉−

)2
]
≤

κ

N1/2
.

Proof: For the proof of this lemma, we will need to consider again a slight
variation of the Gibbs measures defined up to now: recall that bt has been
introduced by equation (12). Then, for n ≥ 1, a test function f : Σn

N → R

and (t1, . . . , tn) ∈ [0, 1]n, set

〈f〉◦(t1,...,tn) :=

∑
σ1,...,σn f exp

(∑
l≤n HN,M,tl(σ

l)
)

∑
σ1,...,σn exp

(∑
l≤n HN,M,tl(σ

l)
)

=

∑
σ1,...,σn f exp

(∑
l≤n

(∑
k≤M u(Sl

k,tl
) + σl

Nbtl

))

∑
σ1,...,σn exp

[∑
l≤n

(∑
k≤M u(Sl

k,tl
) + σl

Nbtl

)] .

Notice that 〈f〉◦(t,...,t) = 〈f〉t, but in general, 〈f〉◦(0) and 〈f〉− do not coincide,
because of the presence of the term bt in the first one. However, observe also
that if f− : Σn

N → R does not depend on the last coordinates {σl
N ; l ≤ n},

then 〈
f−

〉◦
(0,...,0)

=
〈
f−

〉
−

.

In particular,

E
[(
〈σ1〉 − 〈σ1〉−

)2
]

= E

[(
〈σ1〉

◦
(1) − 〈σ1〉

◦
(0)

)2
]

.

For t ∈ [0, 1], set now

ψ(t) = E

[(
〈σ1〉

◦
(t) − 〈σ1〉

◦
(0)

)2
]

= ψ1(t) − 2ψ2(t) + ψ3,

with

ψ1(t) = E
[〈

σ1
1σ

2
1

〉◦
(t,t)

]
, ψ2(t) = E

[〈
σ1

1σ
2
1

〉◦
(t,0)

]
, ψ3 = E

[〈
σ1

1σ
2
1

〉◦
(0,0)

]
.

Obviously, ψ(0) = 0. Then in order to finish our proof it suffices to show that
ψ′

1(t) and ψ′
2(t) are of order N−1/2. Indeed, ψ′

1(t) can be computed through
Proposition 2.2. Then, along the same lines as in [4, Chapter 3], one can
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show that ψ′
1(t) is of order N−1/2 for any t ∈ [0, 1]. The term ψ′

2(t) can be
treated by the same kind of argument: in fact, it can be computed like in
Proposition 2.2, except that we will differentiate only with respect to the
first replica. We obtain

ψ′
2(t) = L1(t) + L2(t) + L3(t),

with

L1(t) =
α

2
E

[〈
σ1

1σ
2
1w(S1

M,t)
〉◦

(t,0)

]
−

α

2
E

[〈
σ1

1σ
2
1w(S3

M,t)
〉◦
(t,0,t)

]
,

where w(x) = u(2)(x) + (u′(x))2,

L2(t) = αE
[〈

σ1
1σ

2
1σ

3
Nσ4

Nu′(S3
M,t)u

′(S4
M,t)

〉◦
(t,0,t,t)

]

− αE
[〈

σ1
1σ

2
1σ

1
Nσ3

Nu′(S1
M,t)u

′(S3
M,t)

〉◦
(t,0,t)

]
,

and

L3(t) = −r
(
E

[〈
σ1

1σ
2
1σ

3
Nσ4

N

〉◦
(t,0,t,t)

]
− E

[〈
σ1

1σ
2
1σ

1
Nσ3

N

〉◦
(t,0,t)

])
.

Then, ψ′
2(t) can be bounded by κN−1/2 using again the same kind of argu-

ments as in [4, Chapter 3].
�

Let us turn now to the main aim of this section.

Proof of Theorem 1.1: This proof is now a slight variation of [4, Section
2.4], and we sketch it here for sake of completeness.

Step 1:
Since α > 0, r is bounded from below by a constant r0 > 0 (see relation

(5)). Set

z =

∑
k≤M gN,k 〈u

′(Sk,0)〉−
s

,

with
s2 =

∑

k≤M

〈u′(Sk,0)〉
2

− .

Then it can be shown, as in [4, Section 2.4], that z is a standard Gaussian
random variable independent of the random variables {gi,k; i ≤ N − 1, k ≤

24



M}. Furthermore, following again the steps of [4, Lemma 2.4.14], it can be
shown that

E
[(
〈σN〉 − tanh

(
r1/2z

))2
]
≤

κ

N1/2
. (29)

Indeed, using Proposition 3.1, the Lipschitz property of the function x 7→
tanh(x) and some easy algebraic manipulations, we obtain for some positive
constant κ,

E
[(
〈σN〉 − tanh

(
r1/2z

))2
]

≤ κE

[( ∑

k≤M

( 1

N1/2
−

r1/2

s

)
gN,k 〈u

′(Sk,0)〉−

)2
]

+ O
(
N−1/2

)

= κE

[( 1

N1/2
−

r1/2

s

)2 ∑

k≤M

〈u′(Sk,0)〉
2

−

]
+ O

(
N−1/2

)

≤
κ

r
E

[(s2

N
− r

)2
]

+ O
(
N−1/2

)
.

Then notice that, using again the symmetry among the Sk,t, we can write

E

[(s2

N
− r

)2
]

= E

[(s2

N
− r

)(
α

〈
u′(S1

M,0)u
′(S2

M,0)
〉
−
− r

)]

= T1 + T2 + T3 + r2,

where

T1 := α
M − 1

N
E

[〈
u′(S1

M,0)u
′(S2

M,0)
〉
−

〈
u′(S1

M−1,0)u
′(S2

M−1,0)
〉
−

]
,

T2 :=
α

N
E

[〈
u′(S1

M,0)u
′(S2

M,0)
〉
−

〈
u′(S1

M,0)u
′(S2

M,0)
〉
−

]
,

T3 := −2αrE
[〈

u′(S1
M,0)u

′(S2
M,0)

〉
−

]
.

Clearly, T2 = O
(
N−1/2

)
. On the other hand, using Proposition 5.1 we have

T3 = −2αrE

[
U

1,2
2 (θ1, θ2)

Eξ (V2(θ1, θ2))

]
= −2r2.

So, in order to finish the proof of (29) it is enough to check that T1 = r2 +
O

(
N−1/2

)
. Althougth this result cannot be obtained as a direct consequence
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of our Proposition 5.1, it can be proved following exactly the same ideas and
steps as in the proofs of this Proposition and Lemma 5.2. For the sake of
simplicity we will not repeat here such proof.

Step 2: Along the same lines as in [4, Theorem 2.4.12], the proof can be
done by induction over m on the system of N − 1 spins. Our hypothesis of
induction yields that

∑

i≤m

E

[(
〈σi〉− − tanh

(
r
1/2
− zi

))2
]
≤

κ

N1/2
, (30)

where {zi; i ≤ m} is a collection of independent standard Gaussian random
variables depending only on the variables {gi,j}i≤N−1, and r− is the solution
to (5) when α is replaced by α− = M

N−1
. Notice that it is easily seen that

|r − r−| ≤
κ

N1/2
. (31)

Then the random variable zm+1 = z defined in the first step of the proof, is
independent of the random variables {zi, i ≤ m}. The desired conclusion is
then obtained by (30), (31) and Lemma 7.1.

�
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