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Université Pierre-et-Marie Curie

adelapradelle@free.fr

Gabriel Mokobodzki

Laboratoire d’Analyse Fonctionnelle, Université Paris VI
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Abstract A non-commutative version of the sewing lemma [1] is proved, with
some applications.

Introduction

In a preceding paper [1] we proved a sewing lemma which was a key result for the
study of Hölder continuous functions. In this paper we give a non-commutative
version of this lemma.

In the first section we recall the commutative version, and give some applications
(Young integral and stochastic integral).

In the second section we prove the non-commutative version. This last result has
interesting applications : an extension of the so-called integral product, a simple
case of the semigroup Trotter type formula, and a sharpening of the Lyons theorem
about multiplicative functionals [3,4,5].

Note that we replaced the Hölder modulus of continuity tα by a more general
modulus V (t).

This paper was elaborated with the regretted G. Mokobodzki. The writing has
only been done after his death.

I. The additive sewing lemma

1



1 Definition : We say that a function V (t) defined on [0, T [ is a control function
if it is non decreasing, V (0) = 0 and

∑

n≥1 V (1/n) < ∞.

As easily seen, this is equivalent to the property

V (t) =
∑

n≥0

2nV (t.2−n) < ∞

for every t ≥ 0. For example, tα and t/(log t−1)α with α > 1 are control functions.

Observe that we have

V (t) = V (t) + · · ·+ 2nV (t.2−n) + 2n+1V (t.2−n−1)

from which follows that Lim
t→0

V (t)/t = 0.

2 Theorem : Consider a continuous function µ(a, b) defined for 0 ≤ a ≤ b < T
satisfying the relation

|µ(a, b) − µ(a, c) − µ(c, b)| ≤ V (b − a)

for every c ∈ [a, b], where V is a control function. Then there exists a unique
function ϕ(t) on [0, T [, up to an additive constant, such that

|ϕ(b) − ϕ(a) − µ(a, b)| ≤ V (b − a)

Proof : Put µ′(a, b) = µ(a, c) + µ(c, b) for c = (a + b)/2, and µ(n+1) = µ(n)′. We
easily get for n ≥ 0

|µ(n)(a, b)− µ(n+1)(a, b)| ≤ 2nV (2−n|b − a|)

so that the series
∑

n≥0 |µ
(n)(a, b) − µ(n+1)(a, b)| ≤ V (b − a) converges, and

the sequence µ(n)(a, b) converges to a limit u(a, b). For c = (a + b)/2 we have
µ(n+1)(a, b) = µ(n)(a, c) + µ(n)(c, b) which implies

u(a, b) = u(a, c) + u(c, b)

We say that u is midpoint-additive.

Now, we prove that u is the unique midpoint-additive function with the inequality
|u(a, b)− µ(a, b)| ≤ CstV (b − a). Indeed if we have another one v, we get

|v(a, b)− u(a, b)| ≤ K.V (b − a)

and by induction |v(a, b)−u(a, b)| ≤ 2nK.V [2−n(b−a)] which vanishes as n → ∞
as mentioned above. Let k be an integer k ≥ 3, and take the function

w(a, b) =

k−1
∑

i=0

u(ti, ti+1)
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with ti = a + i.(b− a)/k. It follows that w also is midpoint-additive, and satisfies

|w(a, b)− µ(a, b)| ≤ Cstk V (b − a)

hence we have w = u, that is u is in fact rationally-additive. As µ is continuous,
then so also is u, as the defining series converges uniformly for 0 ≤ a ≤ b < T .
Then u is additive, and it suffices to put ϕ(t) = u(0, t).

3 Proposition : (Riemann sums) Let σ = {ti} some finite subdivision of [a, b].
Put δ = Supi |ti+1 − ti|. Then

Lim
δ→0

∑

i

µ(ti, ti+1) = ϕ(b) − ϕ(a)

Proof : We have

ϕ(b) − ϕ(a) −
∑

i

µ(ti, ti+1) =
∑

i

[ϕ(ti+1) − ϕ(ti) − µ(ti, ti+1)]

∣

∣

∣

∣

∣

ϕ(b) − ϕ(a) −
∑

i

µ(ti, ti+1)

∣

∣

∣

∣

∣

≤
∑

i

V (ti+1 − ti)) ≤ ε
∑

i

(ti+1 − ti) = (b − a)ε

since V (δ)/δ ≤ ε as δ → 0.

4 Remarks : a) In fact the result holds even in the case of discontinuous µ, as
proved in the appendix.

b) The result obviously extends to Banach spaces valued functions µ.

In the case V (t) = tα with α > 1, we get V (t) =
2α tα

2α − 2
.

5 Example : The Young integral

Take V (t) = t2α with α > 1/2. If x and y are two α-Hölder continuous functions
on [0, 1], put

µ(a, b) = xa(yb − ya)

We get
µ(a, b) − µ(a, c) − µ(c, b) = −(xc − xa)(yb − yc)

so that
|µ(a, b)− µ(a, c) − µ(c, b)| ≤ ‖x‖α‖y‖α|b − a|2α

where ‖x‖α is the norm in the space Cα. Let ϕ be the function of theorem 2, put

∫ b

a

xt dyt = ϕ(b) − ϕ(a)
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This is a Young integral (cf. also [7]).

6 Remark : We could take x ∈ Cα, y ∈ Cβ with α + β > 1.

7 Example : The stochastic integral

Let Xt be the standard IRm-valued Brownian motion. As is well known, t → Xt

is C1/2 with values in L2. Let f be a tensor-valued C2-function with bounded
derivatives on IRm. Put

µ(a, b) = f(Xa) ⊗ (Xb − Xa) + ∇f(Xa) ⊗

∫ b

a

(Xt − Xa) ⊗ dXt

where the last integral is taken in the Ito or in the Stratonovitch sense. By
straightforward computations, we get

N2[µ(a, b)− µ(a, c) − µ(c, b)] ≤ K.‖∇f‖C1 |b − a|3/2

By the additive sewing lemma, there exists a unique L2-valued function ϕ(t) such
that N2[ϕ(b)−ϕ(a)−µ(a, b)] ≤ Cst .|b−a|3/2 (the control function is V (t) = t3/2).
It is easily seen that

ϕ(b) − ϕ(a) =

∫ b

a

f(Xt) ⊗ dXt

in the Ito or in the Stratonovitch sense.

Observe that as the stochastic integral

∫ b

a

Xt ⊗ dXt has Cα-trajectories almost

surely for 1/3 < α < 1/2, analoguous computations as above yield Cα-trajectories

for

∫ b

a

f(Xt) ⊗ dXt on the same set of paths as

∫ b

a

Xt ⊗ dXt.

8 Remark : For the FBM with α > 1/4, the reader is referred to our previous
paper [1].

II. The multiplicative sewing lemma

Here we need a strong notion of control function

9 Definition : We say that a function V (t) defined on [0, T [ is a strong control
function if it is a control function and there exists a θ > 2 such that for every t

V (t) =
∑

n≥0

θnV (t.2−n) < ∞

We consider an associative monoide M with a unit element I, and we assume that
M is complete under a distance d satisfying

d(xz, yz) ≤ |z|d(x, y), d(zx, zy) ≤ |z|d(x, y)

4



for every x, y, z ∈ M, where z → |z| is a Lipschitz function on M with |I| = 1.

Let µ(a, b) be an M-valued function defined for 0 ≤ a ≤ b < T . We assume that
µ is continuous, that µ(a, a) = I for every a, and that for every a ≤ c ≤ b we have

(1) d(µ(a, b), µ(a, c)µ(c, b)) ≤ V (b − a)

We say that an M-valued u(a, b) is multiplicative if u(a, b) = u(a, c)u(c, b) for
every a ≤ c ≤ b.

10 Theorem : There exists a unique multiplicative function u such that
d(µ(a, b), u(a, b)) ≤ Cst V (b − a) for every a ≤ b.

Proof : Put µ0 = µ and by induction

µn+1(a, b) = µn(a, c)µn(c, b) where c = (a + b)/2

hn(t) = Sup
b−a≤t

|µn(a, b)|, Un(t) = Sup
b−a≤t

d(µn+1(a, b), µn(a, b))

The functions hn and Un continuous non decreasing with hn(0) = 1 and Un(0) = 0.
Let κ be the Lipschitz constant of z → |z|. One has

hn+1(t) ≤ hn(t) + κUn(t) ≤ h0(t) + κU0(t) + · · ·+ κUn(t)

(2) Un+1(t) ≤ 2hn+1(t/2)Un(t/2)

Let τ > 0 be such that h0(τ) + κV (τ) ≤ θ/2. Assume that Ui(t) ≤ θiV (t/2i) for
t ≤ τ and i ≤ n. One has hn+1(t) ≤ θ/2, then

Un+1(t) ≤ θUn(t/2) ≤ θn+1V (t/2n+1)

for t ≤ τ and every n by induction.

Hence for t ≤ τ the series Un(t) converges, so that the sequence hn(τ) is bounded.
By inequality (2) the series Un(2τ) converges, and the sequence hn(2τ) is bounded.
From one step to the other we see that the sequence hn is locally bounded,
and that the series Un converges locally uniformly on [0, T [. It follows that the
sequence µn(a, b) converges locally uniformly to a continuous function u(a, b) which
is midpoint-multiplicative, that is u(a, b) = u(a, c)u(c, b) for c = (a + b)/2. One
has d(u, µ) ≤ CstV .

Next we prove the unicity of u. Let v be a function with the same properties
as u. Put K(t) = Sup

b−a≤t
[u(a, b), v(a, b)]. Let τ1 > 0 be such that K(τ1) ≤

θ/2. One has d(u(a, b), v(a, b)) ≤ kV (b − a) with some constant k, then
d(u(a, b), v(a, b)) ≤ 2K(t/2)kV (t/2) ≤ kθV (t/2) for b − a ≤ t ≤ τ1, and by
induction d(u(a, b), v(a, b)) ≤ kθnV (t/2n). It follows that u(a, b) = v(a, b) for
b − a ≤ τ1. This equality extends to every b − a by midpoint-multiplicativity.
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Finally we prove that u is multiplicative. We argue as in the additive case, and
we put for an integer m

w(a, b) =
m−1
∏

i=0

u(ti, ti+1)

where ti = a + i.(b − a)/m. For simplicity we limit ourselves to the case m = 3,
that is

w(a, b) = u(a, c′)u(c′, c′′)u(c′′, b)

with c′ = a+(b−a)/3, c′′ = a+2(b−a)/3. Observe that w is obviously midpoint-
multiplicative. Take a ≤ b ≤ T0 < T , we get successively with a constant k which
can be changed from line to line

d(w(a, b), µ(a, b)) ≤kV (b − a) + d(w(a, b), µ(a, c′)µ(c′, b))

≤ kV (b − a) + d(u(a, c′)u(c′, c′′)u(c′′, b), u(a, c′)µ(c′, b))

+ d(µ(u(a, c′)µ(c′, b), µ(a, c′)µ(c′, b))

≤ kV (b − a) + kd(u(c′, c′′)u(c′′, b), µ(c′, b)) + kd(µ(a, c′), µ(a, c′))

≤ kV (b − a) + kd(u(c′, c′′)u(c′′, b), µ(c′, b))

≤ kV (b − a) + kd(u(c′, c′′)u(c′′, b), u(c′, c′′)µ(c′′, b))

+ kd(u(c′, c′′)µ(c′′, b), µ(c′, c′′)µ(c′′, b))

≤ kV (b − a) + kd(u(c′′, b), µ(c′′, b)) + kd(u(c′, c′′), µ(c′, c′′))

≤ kV (b − a)

By the second step of the proof, we get w = u. The same proof extends to every m,
so that u is in fact rationally multiplicative. As u is continuous, it is multiplicative.

11 Example : The integral product

Let t → At a Cα function with values in a Banach algebra A with a unit I. Put
Aab = Ab − Aa and

µ(a, b) = I + Aab

We get
µ(a, b) − µ(a, c)µ(c, b) = −AacAcb

Suppose that α > 1/2, then the multiplicative sewing lemma applies with the
obvious distance, and there exists a unique multiplicative function u(a, b) with
values in A such that

|u(a, b)− µ(a, b)| ≤ Cst |b − a|2α

We get the same u(a, b) by taking µ(a, b) = eAab . A good notation for u(a, b) is

u(a, b) =

b
∏

a

(I + dAt) =

b
∏

a

edAt

6



12 Theorem : Put Ht = u(0, t). Then this is the solution of the EDO

Ht = I +

∫ t

0

Hs dAs

Proof : We have only to verify that |u(0, b)− u(0, a)− u(0, a)Aab| ≤ Cst |b − a|2α.
The first member is worth

u(0, a)[u(a, b)− I − Aab] = u(0, a)[u(a, b)− µ(a, b)]

so that we are done.

13 Example : A Trotter type formula

Let t → At and t → Bt as in the previous paragraph, and put

µ(a, b) = [I + Aab][I + Bab]

It is straightforward to verify the good inequality

|µ(a, b)− µ(a, c)µ(c, b)| ≤ Cst |b − a|2α

so that we get a multiplicative u(a, b) such that |u(a, b) − µ(a, b)| ≤ Cst |b − a|2α

or equivalently
|u(a, b)− I − Aab − Bab| ≤ Cst |b − a|2α

u(a, b) =

b
∏

a

(I + dAt + dBt) =

b
∏

a

edAt edBt

We then have

eAab+Bab = Lim
n→∞

n
∏

i=1

eAtiti+1 eBtiti+1

for ti+1 − ti = (b − a)/2n.

Particularly we can take At = tA and Bt = tB with α = 1, this yields

eA+B = Lim
n→∞

n
∏

i=1

eA/2n

eB/2n

14 Example : Extending the Lyons theorem

Let A be a Banach algebra with a unit I. Take µ(a, b) of the form

µ(a, b) =
n

∑

k=0

λkA
(k)
ab

7



where A
(k)
ab ∈ A, λ is a real parameter. We have

µ(a, c)µ(c, b) =

n
∑

k=0

λkB
(k)
acb +

2n
∑

k=n+1

λkC
(k)
acb

Following [5], we suppose the algebraic hypothesis for k ≤ n

(3) A
(k)
ab =

k
∑

i=0

A(i)
ac A

(k−i)
cb

that is

µ(a, c)µ(c, b) = µ(a, b) +

2n
∑

k=n+1

λkC
(k)
acb

15 Theorem : Under the condition (3) and the inequality

|A
(k)
ab | ≤ M |b − a|kα

for every k ≤ n, where α > 1/(n+1), there exists a unique multiplicative function
u(a, b) such that

|u(a, b)− µ(a, b)| ≤ Cst |b − a|(n+1)α

Moreover we have

(4) u(a, b) =
n

∑

k=0

λkA
(k)
ab +

∞
∑

n+1

λkB
(k)
ab

where the series is normally convergent for every λ.

Proof : The only problem is to prove formula (4), that is to prove that u is the
sum of its Taylor expansion with respect to λ. In the case where A is a complex
Banach algebra, the proof of the multiplicative sewing lemma yields a sequence
of holomorphic functions which converges uniformly with respect to λ in every
compact set of |C. Hence u(a, b) in holomorphic in λ ∈ |C. If A is only a real
Banach algebra, we get a sequence of holomorphic functions with values in the
complexified Banach space of A, and the result follows. It remains to observe that
the n + 1 first terms of the Taylor expansion are the same for every function of
the sequence converging to u.

Application to the Lyons theorem : Let E be a Banach space. Denote

En = E⊗n. For every k ≤ n, let (a, b) → X
(k)
ab an Ek-valued function such that

X
(k)
ab =

k
∑

i=0

X(i)
ac ⊗ X

(k−i)
cb

8



for a ≤ c ≤ b. Suppose that every En has a cross-norm such that

‖u ⊗ v‖n+m ≤ ‖u‖n‖v‖m

for every u ∈ En, v ∈ Em. Suppose that α > 1/(n + 1), and that we have for
k ≤ n

‖X
(k)
ab ‖k ≤ M.|b − a|kα

Let A be the completed tensor algebra under the norm

‖t‖ =
∑

n≥0

‖tn‖n

This is a Banach algebra. The previous theorem applies, so that there exists a

unique (a, b) → Y
(k)
ab for every k such that Y (k) = X(k) for k ≤ n,

Y
(k)
ab =

k
∑

i=0

Y (i)
ac ⊗ Y

(k−i)
cb

for every k and every a ≤ c ≤ b, and

∑

k≥n+1

‖Y
(k)
ab ‖k ≤ Cst |b − a|(n+1)α

16 Remark : This theorem sharpens the theorem 3.2.1 of [5].

Some estimations

We return to formula (4) of theorem 9

u(a, b) =

N
∑

k=0

λkA
(k)
ab +

∞
∑

N+1

λkB
(k)
ab

for N = Ent(1/α), and we put B
(k)
ab = A

(k)
ab for simplification, so that we have

u(a, b) =

∞
∑

k=0

λkA
(k)
ab

There exist best constants Kn such that |A
(n)
ab | ≤ Kn|b − a|nα. We have

A
(n+1)
ab = A(n+1)

ac + A
(n+1)
cb +

n
∑

k=1

A(k)
ac A

(n−k+1)
cb

9



By taking c = (a + b)/2 we get

|A
(n+1)
ab | ≤ 2−(n+1)α

[

2Kn+1 +
n

∑

k=1

KkKn−k+1

]

|b − a|(n+1)α

and then

(2(n+1)α − 2)Kn+1 ≤

n
∑

k=1

KkKn−k+1

Let 0 < β < α, and introduce the entire function

e(x) = eβ(x) =
∑

n≥0

xn

n!β
⇒ e(x)2 =

∑

n≥0

En,β
xn

n!β

where

En,β =

n
∑

k=0

[

Ck
n

]β
≤ 2nβ(n + 1)

There exist c ≥ 0 and x > 0 such that for 1 ≤ m ≤ N

(5) Km ≤ c.xm/m!β

Hence we have for n ≥ N

(2(n+1)α − 2)Kn+1 ≤ c2xn+1
n

∑

k=1

(k!)−β(n − k + 1)−β ≤ c2xn+1[(n + 1)!]−βAn+1,β

In order that (5) holds for every n, it suffices that

1

c
≥ Sup

n>N

An+1,β

2(n+1)α − 2

which is possible since the fraction in the second hand member shrinks to 0 as
n → ∞.

17 Corollary : Put c′ = Max(c, 1), we have

|u(a, b)| ≤ c′ eβ(|λ|x|b − a|α)

18 Remarks : a) Note that for α = 1 one can take β = α = 1 so that we recover
the classical inequality.

b) For β < 1, the function eβ(x) increases faster than the exponential function (cf.
Schwartz [6] for β = 1/2).

c) there are some analoguous computations in Gubinelli [2].
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Appendix : the discontinuous case

As announced in Remark 4a), we extend the additive sewing lemma in the case
where µ is discontinuous. We go back to the proof of the lemma : we get a unique
function u(a, b) which is rationally additive and such that |u(a, b) − µ(a, b)| ≤
Cst V (b − a). Put

vn(a, b) = u(an, bn) − u(an, a) + u(bn, b)

where an ≤ a and bn ≤ b are the classical dyadic approximations of a and b. It is
straightforward to verify that vn is additive for every a ≤ c ≤ b. Besides, we have

|vn(a, b)− u(a, b)| ≤ 2V (b − a) + 2V (bn − an) + V (a − an) + V (b − bn)

so that the sequence vn(a, b)−u(a, b) is bounded. Let v(a, b) be the limit of vn(a, b)
according to an ultrafilter U → ∞. We first have v(a, b) = v(a, c)+v(c, b) for every
a ≤ c ≤ b. Then we get

|v(a, b)− µ(a, b)| ≤ 3V (b − a) + 2 Lim
U

V (bn − an) ≤ 5V (2(b − a))

As V (2t) is also a control function for µ, v is the unique additive function such that
|v(a, b)−µ(a, b)| ≤ 5V (2(b− a)), which implies that v = u. Hence u is completely
additive.

Here we point out the important fact that the result also holds if µ takes values in
a Banach space B. Indeed, the proof is exactly the same, the last limit according
to U must be taken in the bidual B′′ with the topology σ(B′′, B′).
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