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A CLT FOR INFORMATION-THEORETIC STATISTICS OF GRAM RANDOM MATRICES WITH A GIVEN VARIANCE PROFILE

W. HACHEM, P. LOUBATON AND J. NAJIM Abstract. Consider a N × n random matrix Yn = (Y n ij ) where the entries are given by

Y n ij = σ ij (n) √ n X n ij ,
the X n ij being centered, independent and identically distributed random variables with unit variance and (σ ij (n); 1 ≤ i ≤ N, 1 ≤ j ≤ n) being an array of numbers we shall refer to as a variance profile. We study in this article the fluctuations of the random variable log det (YnY * n + ρI N ) where Y * is the Hermitian adjoint of Y and ρ > 0 is an additional parameter. We prove that when centered and properly rescaled, this random variable satisfies a Central Limit Theorem (CLT) and has a Gaussian limit whose parameters are identified. A complete description of the scaling parameter is given; in particular it is shown that an additional term appears in this parameter in the case where the 4 th moment of the X ij 's differs from the 4 th moment of a Gaussian random variable. Such a CLT is of interest in the field of wireless communications.

Introduction

The model and the statistics. Consider a N × n random matrix Y n = (Y n ij ) whose entries are given by

Y n ij = σ ij (n) √ n X n ij , (1.1) 
where (σ ij (n), 1 ≤ i ≤ N, 1 ≤ j ≤ n) is a uniformly bounded sequence of real numbers, and the random variables X n ij are complex, centered, independent and identically distributed (i.i.d.) with unit variance and finite 8 th moment. Consider the following linear statistics of the eigenvalues:

I n (ρ) = 1 N log det (Y n Y * n + ρI N ) = 1 N N i=1 log(λ i + ρ)
where I N is the N × N identity matrix, ρ > 0 is a given parameter and the λ i 's are the eigenvalues of matrix Y n Y * n . This functional known as the mutual information for multiple antenna radio channels is very popular in wireless communication. Understanding its fluctuations and in particular being able to approximate its standard deviation is of major interest for various purposes such as for instance the computation of the so-called outage probability. Presentation of the results. The purpose of this article is to establish a Central Limit Theorem (CLT) for I n (ρ) whenever n → ∞ and N n → c ∈ (0, ∞).

The centering procedure. It has been proved in Hachem et al. [START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF] that there exists a sequence of deterministic probability measures (π n ) such that the mathematical expectation EI n (ρ) satisfies:

EI n (ρ)log(λ + ρ)π n ( dλ) ----→ n→∞ 0 .

Moreover, log(λ + ρ)π n ( dλ) has a closed form formula (see Section 2.3) and is easier to compute 1 than EI n (whose evaluation would rely on massive Monte-Carlo simulations). For these reasons, we study in this article the fluctuations of

1 N log det(Y n Y * n + ρI N ) -log(ρ + t)π n ( dt) ,
and prove that this quantity properly rescaled converges in distribution toward a Gaussian random variable. Although phrased differently, such a centering procedure relying on a deterministic equivalent is used in [START_REF] Anderson | A CLT for a band matrix model[END_REF] and [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF].

In order to prove the CLT, we study separately the quantity N (I n (ρ) -EI n (ρ)) from which the fluctuations arise and the quantity N (EI n (ρ)log(λ + ρ)π n ( dλ)) which yields a bias.

The fluctuations. We shall prove in this paper that the variance Θ 2 n of N (I n (ρ) -EI n (ρ)) takes a remarkably simple closed-form expression. In fact, there exists a n × n deterministic matrix A n (described in Theorem 3.1) whose entries depend on the variance profile (σ ij ) such that the variance takes the form: In the case where κ = 0 (which happens if X ij is a complex gaussian random variable for instance), the variance has the log-form Θ 2 n = log det(I n -A n ). This has already been noticed for different models in the engineering literature by Moustakas et al. [START_REF] Moustakas | MIMO capacity through correlated channels in the presence of correlated interferers and noise: a (not so) large N analysis[END_REF], Taricco [START_REF] Taricco | On the capacity of separately-correlated MIMO Rician fading channels[END_REF]. See also Hachem et al. in [START_REF] Hachem | A new approach for capacity analysis of large dimensional multi-antenna channels[END_REF].

The bias. It is proved in this paper that there exists a deterministic quantity B n (ρ) (described in Theorem 3.3) such that:

N EI n (ρ) -log(λ + ρ)π n ( dλ) -B n (ρ) ----→ n→∞ 0 .
If κ = 0, then B n (ρ) = 0 and there is no bias in the CLT. 1 especially in the important case where the variance profile is separable, i.e., where σ 2 ij (n) is written as

σ 2 ij (n) = d i (n) dj (n).
About the literature. Central limit theorems have been widely studied for various models of random matrices and for various classes of linear statistics of the eigenvalues in the physics, engineering and mathematical literature.

In the mathematical literature, CLTs for Wigner matrices can be traced back to Girko [START_REF] Girko | Sluchainye matritsy (Russian) [Random Matrices[END_REF] (see also [START_REF] Girko | Thirty years of the central resolvent law and three laws on the 1/n expansion for resolvent of random matrices[END_REF]). Results for this class of matrices have also been obtained by Khorunzhy et al. [START_REF] Khorunzhy | Asymptotic properties of large random matrices with independent entries[END_REF], Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF], Sinai and Sochnikov [START_REF] Ya | Central limit theorem for traces of large random symmetric matrices with independent matrix elements[END_REF], Soshnikov [START_REF] Soshnikov | The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities[END_REF], Cabanal-Duvillard [START_REF] Cabanal-Duvillard | Fluctuations de la loi empirique de grandes matrices aléatoires[END_REF]. For band matrices, let us mention the paper by Khorunzhy et al. [START_REF] Khorunzhy | Asymptotic properties of large random matrices with independent entries[END_REF], Boutet de Monvel and Khorunzhy [START_REF] Boutet De Monvel | Limit theorems for random matrices[END_REF], Guionnet [START_REF] Guionnet | Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices[END_REF], Anderson and Zeitouni [START_REF] Anderson | A CLT for a band matrix model[END_REF]. The case of Gram matrices has been studied in Jonsson [START_REF] Jonsson | Some limit theorems for the eigenvalues of a sample covariance matrix[END_REF] and Bai and Silverstein [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF]. For a more detailed overview, the reader is referred to the introduction in [START_REF] Anderson | A CLT for a band matrix model[END_REF]. In the physics literature, so-called replica methods as well as saddle-point methods have long been a popular tool to compute the moments of the limiting distributions related to the fluctuations of the statistics of the eigenvalues.

Previous results and methods have recently been exploited in the engineering literature, with the growing interest in random matrix models for wireless communications (see the seminal paper by Telatar [START_REF] Telatar | Capacity of multi-antenna gaussian channel[END_REF] and the subsequent papers of Tse and co-workers [START_REF] Tse | Linear multiuser receivers in random environments[END_REF], [START_REF] Tse | Linear multiuser receivers: effective interference, effective bandwidth and user capacity[END_REF]; see also the monograph by Tulino and Verdu [START_REF] Tulino | Random matrix theory and wireless communications[END_REF] and the references therein). One main interest lies in the study of the convergence and the fluctuations of the mutual information 1 N log det (Y n Y * n + ρI N ) for various models of matrices Y n . General convergence results have been established by the authors in [START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF][START_REF] Hachem | The empirical eigenvalue distribution of a gram matrix: From independence to stationarity[END_REF][START_REF] Hachem | The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile[END_REF] while fluctuation results based on Bai and Silverstein [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF] have been developed in Debbah and Müller [START_REF] Debbah | On the limiting behavior of directional mimo models[END_REF] and Tulino and Verdu [START_REF] Tulino | Asymptotic outage capacity of multiantenna channels[END_REF]. Other fluctuation results either based on the replica method or on saddle-point analysis have been developed by Moustakas, Sengupta and coauthors [START_REF] Moustakas | MIMO capacity through correlated channels in the presence of correlated interferers and noise: a (not so) large N analysis[END_REF][START_REF] Sengupta | Capacity of multivariate channels with multiplicative noise: I. random matrix techniques and large-n expansions for full transfer matrices[END_REF], Taricco [START_REF] Taricco | On the capacity of separately-correlated MIMO Rician fading channels[END_REF]. In a different fashion and extensively based on the Gaussianity of the entries, a CLT has been proved in Hachem et al. [START_REF] Hachem | A new approach for capacity analysis of large dimensional multi-antenna channels[END_REF].

Comparison with existing work. There are many overlaps between this work and other works in the literature, in particular with the paper by Bai and Silverstein [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF] and the paper by Anderson and Zeitouni [START_REF] Anderson | A CLT for a band matrix model[END_REF] (although this last paper is primarily devoted to band matrix models, i.e. symmetric matrices with a symmetric variance profile). The computation of the variance and the obtention of a closed-form formula significantly extend the results obtained in [START_REF] Hachem | A new approach for capacity analysis of large dimensional multi-antenna channels[END_REF].

In this paper, we deal with complex variables which are more relevant for wireless communication applications. The case of real random variables would have led to very similar computation, the cumulant κ = E|X| 4 -2 being replaced by κ = EX 4 -3. Due to the complex nature of the variables, the CLT in [START_REF] Anderson | A CLT for a band matrix model[END_REF] does not apply directly. Moreover, we substantially relax the moment assumptions concerning the entries with respect to [START_REF] Anderson | A CLT for a band matrix model[END_REF] where the existence of moments of all order is required. In fact, we shall only assume the finiteness of the 8 th moment. Bai and Silverstein [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF] consider the model

T 1 2 n X n X * n T 1 2
n where the entries of X n are i.i.d. and have gaussian fourth moment. This assumption can be skipped in our framework, where a good understanding of the behaviour of the diagonal individual entries of the resolvent (-zI n + Y n Y * n ) -1 enables us to deal with non-gaussian entries. On the other hand, it must be noticed that we establish the CLT for the single functional log det(Y n Y * n + ρI N ) and do not provide results for a general class of functionals as in [START_REF] Anderson | A CLT for a band matrix model[END_REF] and [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF]. We do believe however that all the computations performed in this article are a good starting point to address this issue.

Outline of the article.

Non-asymptotic vs asymptotic results. As one may check in Theorems 3.1, 3.2 and 3.3, we have deliberately chosen to provide non-asymptotic (i.e. depending on n) deterministic formulas for the variance and the bias that appear in the fluctuations of I n (ρ). This approach has at least two virtues: Non-asymptotic formulas exist for very general variance profiles (σ ij (n)) and provide a natural discretization which can easily be implemented. In the case where the variance profile is the sampling of some continuous function , i.e. σ ij (n) = σ(i/N, j/n) (we shall refer to this as the existence of a limiting variance profile), the deterministic formulas converge as n goes to infinity (see Section 4) and one has to consider Fredholm determinants in order to express the results.

The general approach. The approach developed in this article is conceptually simple. The quantity I n (ρ) -EI n (ρ) is decomposed into a sum of martingale differences; we then systematically approximate random quantities such as quadratic forms x T Ax where x is some random vector and A is some deterministic matrix, by their deterministic counterparts 1 n Trace A (in the case where the entries of x are i.i.d. with variance 1 n ) as the size of the vectors and the matrices goes to infinity. A careful study of the deterministic quantities that arise, mainly based on (deterministic) matrix analysis is carried out and yields the closed-form variance formula. The martingale method which is used to establish the fluctuations of I n (ρ) can be traced back to Girko's REFORM (REsolvent, FORmula and Martingale) method (see [START_REF] Girko | Sluchainye matritsy (Russian) [Random Matrices[END_REF][START_REF] Girko | Thirty years of the central resolvent law and three laws on the 1/n expansion for resolvent of random matrices[END_REF]) and is close to the one developed in [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF].

Contents. In Section 2, we introduce the main notations, we provide the main assumptions and we recall all the first order results (deterministic approximation of EI n (ρ)) needed in the expression of the CLT. In Section 3, we state the main results of the paper: Definition of the variance Θ 2 n (Theorem 3.1), asymptotic behaviour (fluctuations) of N (I n (ρ) -EI n (ρ)) (Theorem 3.2), asymptotic behaviour (bias) of N EI n (ρ)log(ρ + t)π n (dt) (Theorem 3.3). Section 5 is devoted to the proof of Theorem 3.1, Section 6, to the proof of Theorem 3.2 and Section 7, to the proof of Theorem 3.3.
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Notations, assumptions and first order results

Notations and assumptions

. Let N = N (n) be a sequence of integers such that lim n→∞ N (n) n = c ∈ (0, ∞) .
In the sequel, we shall consider a N × n random matrix Y n with individual entries:

Y n ij = σ ij (n) √ n X n ij ,
where X n ij are complex centered i.i.d random variables with unit variance and (σ ij (n); 1 ≤ i ≤ N, 1 ≤ j ≤ n) is a triangular array of real numbers. Denote by var(Z) the variance of the random variable Z. Since var(Y n ij ) = σ 2 ij (n)/n, the family (σ ij (n)) will be referred to as a variance profile.

The main assumptions.

Assumption A-1. The random variables (X n ij ; 1 ≤ i ≤ N, 1 ≤ j ≤ n , n ≥ 1) are complex, independent and identically distributed. They satisfy

EX n ij = E(X n ij ) 2 = 0, E|X n ij | 2 = 1 and E|X n ij | 8 < ∞ . Assumption A-2.
There exists a finite positive real number σ max such that the family of real numbers

(σ ij (n), 1 ≤ i ≤ N, 1 ≤ j ≤ n, n ≥ 1) satisfies: sup n≥1 max 1≤i≤N 1≤j≤n |σ ij (n)| ≤ σ max .
Assumption A-3. There exists a real number σ 2 min > 0 such that

lim inf n≥1 min 1≤j≤n 1 n N i=1 σ 2 ij (n) ≥ σ 2 min .
Sometimes we shall assume that the variance profile is obtained by sampling a function on the unit square of R 2 . This helps to get limiting expressions and limiting behaviours (cf. Theorem 2.5):

Assumption A-4. There exists a continuous function

σ 2 : [0, 1] × [0, 1] → (0, ∞) such that σ 2 ij (n) = σ 2 (i/N, j/n).
Remarks related to the assumptions.

(1) Using truncation arguments à la Bai and Silverstein [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices[END_REF][START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices[END_REF][START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large-dimensional random matrices[END_REF], one may lower the moment assumption related to the X ij 's in A-1.

(2) Obviously, assumption A-3 holds if σ 2 ij is uniformly lower bounded by some nonnegative quantity.

(3) Obviously, assumption A-4 implies both A-2 and A-3. When A-4 holds, we shall say that there exists a limiting variance profile. (4) If necessary, assumption A-3 can be slightly improved by stating:

max   lim inf n≥1 min 1≤j≤n 1 n N i=1 σ 2 ij (n) , lim inf n≥1 min 1≤i≤N 1 n n j=1 σ 2 ij (n)   > 0 .
In the case where the first liminf is zero, one may notice that log det(

Y n Y * n + ρI N ) = log det(Y * n Y n + ρI n ) + (n -N ) log ρ and consider Y * n Y n instead.
Notations. The indicator function of the set A will be denoted by 1 A (x), its cardinality by #A. As usual,

R + = {x ∈ R : x ≥ 0} and C + = {z ∈ C : Im(z) > 0}.
We denote by P -→ the convergence in probability of random variables and by D -→ the convergence in distribution of probability measures. Denote by diag(a i ; 1 ≤ i ≤ k) the k × k diagonal matrix whose diagonal entries are the a i 's. Element (i, j) of matrix M will be either denoted m ij or [M ] ij depending on the notational context. Denote by M T the matrix transpose of M , by M * its Hermitian adjoint, by Tr(M ) its trace and det(M ) its determinant (if M is square), and by F M M * , the empirical distribution function of the eigenvalues of M M * , i.e.

F M M * (x) = 1 N #{i : λ i ≤ x} ,
where M M * has dimensions N × N and the λ i 's are the eigenvalues of M M * .

When dealing with vectors, • will refer to the Euclidean norm, and • ∞ , to the max (or ℓ ∞ ) norm. In the case of matrices, • will refer to the spectral norm and |||•||| ∞ to the maximum row sum norm (referred to as the max-row norm), i.e.,

|||M ||| ∞ = max 1≤i≤N N j=1 |[M ] ij | when M is a N × N matrix.
We shall denote by r(M ) the spectral radius of matrix M .

When no confusion can occur, we shall often drop subscripts and superscripts n for readability.

Stieltjes Transforms and Resolvents.

In this paper, Stieltjes transforms of probability measures play a fundamental role. Let ν be a bounded non-negative measure over R. Its Stieltjes transform f is defined as:

f (z) = R ν(dλ) λ -z , z ∈ C \ supp(ν) ,
where supp(ν) is the support of the measure ν. We shall denote by S(R + ) the set of Stieltjes transforms of probability measures with support in R + .

We list in the following proposition the main properties of the Stieltjes transforms that will be needed in the paper: Proposition 2.1. The following properties hold true.

(1) Let f be the Stieltjes transform of a probability measure ν on R, then:

-The function f is analytic over C \ supp(ν).

-

If f (z) ∈ S(R + ), then |f (z)| ≤ (d(z, R + )) -1
where d(z, R + ) denotes the distance from z to R + .

(2) Let P n and P be probability measures over R and denote by f n and f their Stieltjes transforms. Then

∀z ∈ C + , f n (z) ----→ n→∞ f (z) ⇒ P n D ----→ n→∞ P.
There are very close ties between the Stieltjes transform of the empirical distribution of the eigenvalues of a matrix and the resolvent of this matrix. Let M be a N × n matrix. The resolvent of M M * is defined as:

Q(z) = (M M * -z I N ) -1 = (q ij (z)) 1≤i,j,≤N , z ∈ C -R + .
The following properties are straightforward. Proposition 2.2. Let Q(z) be the resolvent of M M * , then:

(1) The function h n (z) = 1 N Tr Q(z)
is the Stieltjes transform of the empirical distribution of the eigenvalues of M M * . Since the eigenvalues of this matrix are nonnegative, h n (z) ∈ S(R + ).

(2) For every z

∈ C -R + , Q(z) ≤ (d(z, R + )) -1 . In particular, if ρ > 0, Q(-ρ) ≤ ρ -1 .
2.3. First Order Results: A primer. Recall that I n (ρ) = 1 N log det(Y n Y * n + ρI) and let ρ > 0. We remind below some results related to the asymptotic behaviour of EI n (ρ). As

I n (ρ) = 1 N N i=1 log (λ i + ρ) = ∞ 0 log(λ + ρ) dF YnY * n (λ) ,
where the λ i 's are the eigenvalues of Y Y * , the approximation of EI n (ρ) is closely related to the "first order" approximation of F YnY * n as n → ∞ and N/n → c > 0.

The following theorem summarizes the first order results needed in the sequel. It is a direct consequence of [17, Sections 2 and 4] (see also [START_REF] Girko | Theory of stochastic canonical equations[END_REF]): [START_REF] Girko | Theory of stochastic canonical equations[END_REF]). Consider the family of random matrices (Y n Y * n ) and assume that A-1 and A-2 hold. Then, the following hold true:

Theorem 2.3 ([17],
(1) The system of N functional equations:

t i (z) = 1 -z + 1 n n j=1 σ 2 ij (n) 1+ 1 n N ℓ=1 σ 2 ℓj (n)t ℓ (z) (2.1)
admits a unique solution (t 1 (z), • • • , t N (z)) in S(R + ) N . In particular, m n (z) = 1 N N i=1 t i (z) belongs to S(R +
) and there exists a probability measure π n on R + such that:

m n (z) = ∞ 0 π n (dλ) λ -z .
(2) For every continuous and bounded function g on R + ,

R + g(λ) dF YnY * n (λ) - R + g(λ) π n (dλ) ----→ n→∞ 0 a.e.
(3) The function V n (ρ) = R + log(λ + ρ)π n (dλ) is finite for every ρ > 0 and

EI n (ρ) -V n (ρ) ----→ n→∞ 0 where I n (ρ) = 1 N log det (Y n Y * n + ρI N )
. Moreover, V n (ρ) admits the following closed form formula:

V n (ρ) = - 1 N N i=1 log t i (-ρ) + 1 N n j=1 log 1 + 1 n N ℓ=1 σ 2 ℓj (n)t ℓ (-ρ) - 1 N n i=1:N,j=1:n σ 2 ij (n)t i (-ρ) 1 + 1 n N ℓ=1 σ 2 ℓj (n)t ℓ (-ρ)
.

where the t i 's are defined above.

Theorem 2.3 partly follows from the following lemma which will be often invoked later on and whose statement emphasizes the symmetry between the study of

Y n Y * n and Y * n Y n . Denote by Q n (z) and Qn (z) the resolvents of Y n Y * n and Y * n Y n , i.e. Q n (z) = (Y n Y * n -zI N ) -1 = (q ij (z)) 1≤i,j≤N , z ∈ C -R + Qn (z) = (Y * n Y n -zI n ) -1 = (q ij (z)) 1≤i,j≤n , z ∈ C -R + .
Lemma 2.4. Consider the family of random matrices (Y n Y * n ) and assume that A-1 and A-2 hold. Consider the following system of N + n equations:

t i,n (z) = -1 z(1+ 1 n Tr Di,n Tn(z)) for 1 ≤ i ≤ N tj,n (z) = -1 z(1+ 1 n TrDj,nTn(z))
for 1 ≤ j ≤ n where

T n (z) = diag(t i,n (z), 1 ≤ i ≤ N ), Tn (z) = diag( tj,n (z), 1 ≤ j ≤ n) , D j,n = diag(σ 2 ij (n), 1 ≤ i ≤ N ), Di,n = diag(σ 2 ij (n), 1 ≤ j ≤ n) .
Then the following holds true:

(a) [START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF]Theorem 2.4] This system admits a unique solution 

(t 1,n , • • • , t N,n , t1,n , • • • tn,n ) ∈ S(R + ) N +n (b) [
lim n→∞,N/n→c 1 N Tr (U n (Q n (z) -T n (z))) = 0 ∀z ∈ C -R + , lim n→∞,N/n→c 1 n Tr Ũn Qn (z) -Tn (z) = 0 ∀z ∈ C -R + .
In the case where there exists a limiting variance profile, the results can be expressed in the following manner: Theorem 2.5 ([6], [START_REF] Girko | of Mathematics and its Applications[END_REF], [START_REF] Hachem | The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile[END_REF] ). Consider the family of random matrices (Y n Y * n ) and assume that A-1 and A-4 hold. Then:

(1) The functional equation

τ (u, z) = -z + 1 0 σ 2 (u, v) 1 + c 1 0 σ 2 (x, v)τ (x, z) dx dv -1 (2.2)
admits a unique solution among the class of functions Φ :

[0, 1] × C \ R → C such that u → Φ(u, z) is continuous over [0, 1] and z → Φ(u, z) belongs to S(R + ).
(2) The function f (z) = 1 0 τ (u, z) du where τ (u, z) is defined above is the Stieltjes transform of a probability measure P. Moreover, we have

F YnY * n D ----→ n→∞ P a.s.
Remark 2.1. If one is interested in the Stieltjes function related to the limit of F Y * n Yn , then one must introduce the following function τ , which is the counterpart of τ :

τ (v, z) = -z + c 1 0 σ 2 (t, v) 1 + 1 0 σ 2 (t, s)τ (s, z) ds dt -1 .
Functions τ and τ are related via the following equations: 

τ (u, z) = -1 z 1 + 1 0 σ 2 (u, v)τ (v, z) dv and τ (v, z) = -1 z 1 + c 1 0 σ 2 (t, v)τ (t, z) dt . ( 2 
T (z) = diag(t i (z), 1 ≤ i ≤ N ) and D j = diag(σ 2 ij , 1 ≤ i ≤ N ) .
We shall first define in Theorem 3.1 a non-negative real number that will play the role of the variance in the CLT. We then state the CLT in Theorem 3.2. Theorem 3.3 deals with the bias term N (EI -V ).

Theorem 3.1 (Definition of the variance). Consider a variance profile (σ ij ) which fulfills assumptions A-2 and A-3 and the related t i 's defined in Theorem 2.3-(1). Let ρ > 0.

(1) Let A n = (a ℓ,m ) be the matrix defined by:

a ℓ,m = 1 n 1 n TrD ℓ D m T (-ρ) 2 1 + 1 n TrD ℓ T (-ρ) 2 , 1 ≤ ℓ, m ≤ n ,
then the quantity V n =log det(I n -A n ) is well-defined.

(2) Denote by W n = TrA n and let κ be a real number2 satisfying κ ≥ -1. The sequence

(V n + κW n ) satisfies 0 < lim inf n (V n + κW n ) ≤ lim sup n (V n + κW n ) < ∞
as n → ∞ and N/n → c > 0. We shall denote by:

Θ 2 n △ = -log det(I -A n ) + κTrA n .
Proof of Theorem 3.1 is postponed to Section 5.

In the sequel and for obvious reasons, we shall refer to matrix A n as the variance matrix. In order to study the CLT for N (I n (ρ) -V n (ρ)), we decompose it into a random term from which the fluctuations arise:

N (I n (ρ) -EI n (ρ)) = log det(Y n Y * n + ρI N ) -E log det(Y n Y * n + ρI N ) ,
and into a deterministic one which yields to a bias in the CLT:

N (EI n (ρ) -V n (ρ)) = E log det(Y n Y * n + ρI N ) -N log(λ + ρ)π n ( dλ) .
We can now state the CLT. n be given by Theorem 3.1. Then

Θ -1 n log det(Y n Y * n + ρI N ) -E log det(Y n Y * n + ρI N ) D --------→ n→∞, N n →c N (0, 1) .
Proof of Theorem 3.2 is postponed to Section 6.

Remark 3.1. In the case where the entries X ij are complex Gaussian (i.e. with independent normal real and imaginary parts, each of them centered with variance 2 -1 ) then κ = 0 and Θ 2 n reduces to the term V n .

The asymptotic bias is described in the following theorem:

Theorem 3.3 (The bias). Assume that the setting of Theorem 3.2 holds true. Then

(1) For every ω ∈ [ρ, +∞), the system of n linear equations with unknown parameters

(w ℓ,n (ω); 1 ≤ ℓ ≤ n): w ℓ,n (ω) = 1 n n m=1 1 n TrD ℓ D m T (-ω) 2 (1 + 1 n TrD ℓ T (-ω)) 2 w m,n (ω) + p ℓ,n (ω), 1 ≤ ℓ ≤ n (3.1) with p ℓ,n (ω) = κ ω 2 tℓ (-ω) 2 ω n N i=1 σ 2 iℓ t i (-ω) 3 n Tr D2 i T (-ω) 2 - tℓ (-ω) n TrD 2 ℓ T (-ω) 2 (3.
2) admits a unique solution for n large enough. In particular if κ = 0, then p ℓ,n = 0 and w ℓ,n = 0.

(2) Let

β n (ω) = 1 n n ℓ=1 w ℓ,n (ω) . (3.3) Then B n (ρ) △ = ∞ ρ β n (ω) dω is well-defined, moreover, lim sup n ∞ ρ |β n (ω)| dω < ∞. (3.4) Furthermore, N (EI n (ρ) -V n (ρ)) -B n (ρ) --------→ n→∞, N n →c 0 . (3.5)
Proof of Theorem 3.3 is postponed to Section 7.

The CLT for a limiting variance profile

In this section, we shall assume that Assumption A-4 holds, i.e. σ 2 ij (n) = σ 2 (i/N, j/n) for some continuous nonnegative function σ 2 (x, y). Recall the definitions (2.2) of function τ and of the t i 's (defined in Theorem 2.3-( 1)). In the sequel, we take ρ > 0, z = -ρ and denote τ (t) △ = τ (t, -ρ). We first gather convergence results relating the t i 's and τ . Lemma 4.1. Consider a variance profile (σ ij ) which fulfills assumption A-4. Recall the definitions of the t i 's and τ . Let ρ > 0 and let z = -ρ be fixed. Then, the following convergences hold true:

(1) 1 N N i=1 t i δ i N w ----→ n→∞ τ (u) du , where w -→ stands for the weak convergence of measures. (2) sup i≤N |t i -τ (i/N )| ----→ n→∞ 0 . (3) 1 N N i=1 t 2 i δ i N w ----→ n→∞ τ 2 (u) du ,
Proof. The first item of the lemma follows from Lemma 2.4-(b) together with Theorem 2.3-(3) in [START_REF] Hachem | The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile[END_REF].

In order to prove item (2), one has to compute

t i -τ (i/N ) =   ρ + 1 n n j=1 σ 2 (i/N, j/n) 1 + 1 n N ℓ=1 σ 2 (ℓ/N, j/n)t ℓ   -1 -ρ + 1 0 σ 2 (u, v) 1 + c 1 0 σ 2 (x, v)τ (x) dx dv -1
and use the convergence proved in the first part of the lemma. In order to prove the uniformity over i ≤ N , one may recall that

C[0, 1] 2 = C[0, 1] ⊗ C[0, 1]
which in particular implies that ∀ε > 0, there exist g ℓ and h ℓ such that sup x,y |σ 2 (x, y) -L ℓ=1 g ℓ (x)h ℓ (y)| ≤ ε. Details are left to the reader.

The convergence stated in item (3) is a direct consequence of item (2).

4.1.

A continuous kernel and its Fredholm determinant. Let K : [0, 1] 2 → R be some non-negative continuous function we shall refer to as a kernel. Consider the associated operator (similarly denoted with a slight abuse of notations):

K : C[0, 1] → C[0, 1] f → Kf (x) = [0,1] K(x, y)f (y) dy .
Then one can define (see for instance [START_REF] Smithies | Integral equations[END_REF]Theorem 5.3.1]) the Fredholm determinant det(1 + λK), where 1 : f → f is the identity operator, as

det(1 -λK) = ∞ k=0 (-1) k λ k k! [0,1] k K x 1 • • • x k x 1 • • • x k ⊗ k i=1 d x i (4.1)
where

K x 1 • • • x k y 1 • • • y k = det(K(x i , y j ), 1 ≤ i, j ≤ n) ,
for every λ ∈ C. One can define the trace of the iterated kernel as:

TrK k = [0,1] k K(x 1 , x 2 ) • • • K(x k-1 , x k )K(x k , x 1 )dx 1 • • • dx k
In the sequel, we shall focus on the following kernel:

K ∞ (x, y) = c [0,1] σ 2 (u, x)σ 2 (u, y)τ 2 (u) du 1 + c [0,1] σ 2 (u, x)τ (u) du 2 . (4.2)
Theorem 4.2 (The variance). Assume that assumptions A-1 and A-4 hold. Let ρ > 0 and recall the definition of matrix A n :

a ℓ,m = 1 n 1 n N i=1 σ 2 i N , ℓ n σ 2 i N , m n t 2 i 1 + 1 n N i=1 σ 2 i N , ℓ n t i 2 , 1 ≤ ℓ, m ≤ n .
Then:

(1) TrA n ----→ n→∞ TrK ∞ . (2) det(I n -A n ) ----→ n→∞ det(1 -K ∞ ) and det(1 -K ∞ ) = 0. ( 3 
) Let κ = E|X 11 | 4 -2, then 0 < -log det(1 -K ∞ ) + κTrK ∞ < ∞ .
Proof. The convergence of TrA n toward TrK ∞ follows from Lemma 4.1-( 1), [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF]. Details of the proof are left to the reader.

Let us introduce the following kernel:

K n (x, y) = 1 n N i=1 σ 2 ( i N , x)σ 2 ( i N , y)t 2 i 1 + 1 n N i=1 σ 2 ( i N , x)t i 2 .
One may notice in particular that a ℓ,m = 1 n K n ( ℓ n , m n ). Denote by • ∞ the supremum norm for a function over [0, 1] 2 and by σ 2 max = σ 2 ∞ , then:

K n ∞ ≤ N n σ 4 max ρ 2 and K ∞ ∞ ≤ c σ 4 max ρ 2 . ( 4.3) 
The following facts (whose proof is omitted) can be established:

(1) The family (K n ) n≥1 is uniformly equicontinuous, ( 2 
) For every (x, y), K n (x, y) → K ∞ (x, y) as n → ∞.
In particular, Ascoli's theorem implies the uniform convergence of K n toward K ∞ . It is now a matter of routine to extend these results and to get the following convergence:

K n x 1 • • • x k y 1 • • • y k ----→ n→∞ K ∞ x 1 • • • x k y 1 • • • y k (4.4)
uniformly over [0, 1] 2k . Using the uniform convergence (4.4) and a dominated convergence argument, we obtain:

1 n k 1≤i1,••• ,i k ≤n K n i 1 /n • • • i k /n i 1 /n • • • i k /n ----→ n→∞ [0,1] k K ∞ x 1 • • • x k x 1 • • • x k ⊗ k i=1 d x i .
Now, writing the determinant det(I n + λA n ) explicitely and expanding it as a polynomial in λ, we obtain:

det(I n -λA n ) = n k=0 (-1) k λ k k!   1 n k 1≤i1,••• ,i k ≤n K n i 1 /n • • • i k /n i 1 /n • • • i k /n   .
Applying Hadamard's inequality ([27, Theorem 5.2.1]) to the determinants K n (•) and K ∞ (•) yields:

1 n k 1≤i1,••• ,i k ≤n K n i 1 /n • • • i k /n i 1 /n • • • i k /n ≤ k k 2 K n k ∞ (a) ≤ k k 2 M k ,
where (a) follows from (4.3). Similarly,

[0,1] k K ∞ x 1 • • • x k x 1 • • • x k ⊗ k i=1 d x i ≤ k k 2 M k . Since the series k M k k k 2 k! |λ| k converges, a dominated convergence argument yields the con- vergence det(I n + λA n ) ----→ n→∞ det(1 + λK ∞ ) ,
and item (2) of the theorem is proved. Item (3) follows from Theorem 3.1-(2) and the proof of the theorem is completed.

4.2.

The CLT: Fluctuations and bias. Corollary 4.3 (Fluctuations). Assume that (A-1) and (A-4) hold. Denote by

Θ 2 ∞ = -log det(1 -K ∞ ) + κTrK ∞ , then N Θ ∞ (I n (ρ) -EI n (ρ)) = Θ -1 ∞ (log det (Y n Y * n + ρI N ) -E log det (Y n Y * n + ρI N )) L ----→ n→∞ N (0, 1) .
Proof. follows easily from Theorem 3.2 and Theorem 4.2.

Recall the definition of τ (cf. Remark 2.1).

Theorem 4.4 (The bias). Assume that the setting of Corollary 4.3 holds true. Let ω ∈ [ρ, ∞) and denote by p : [0, 1] → R the quantity:

p(x, ω) = κω 2 τ 2 (x, -ω) × ωc 1 0 σ 2 (u, x)τ 3 (u) 1 0 σ 2 (s, u)τ 2 (s) ds du -τ (x)c 1 0 σ 2 (u, x)τ 2 (u) du .
The following functional equation admits a unique solution:

w(x, ω) = 1 0 c 1 0 σ 2 (u, x)σ 2 (u, y)τ 2 (u) du 1 + c 1 0 σ 2 (u, x)τ (u) du 2 w(y, ω) dy + p(x, ω) . Let β ∞ (ω) = 1 0 w(x, ω) dx . Then ∞ ρ |β ∞ (ω)| dω < ∞. Moreover, N (EI n (ρ) -V n (ρ)) --------→ n→∞, N n →c B ∞ (ρ) △ = ∞ ρ β ∞ (ω)dω . (4.5)
Proof of Theorem 4.4, although technical, follows closely the classical Fredholm theory as presented for instance in [START_REF] Smithies | Integral equations[END_REF]Chapter 5]. We sketch it below.

Sketch of proof. The existence and unicity of the functional equation follows from the fact that the Fredholm determinant det(1 -K ∞ ) differs from zero. In order to prove the convergence (4.5), one may prove the convergence

∞ ρ β n → ∞ ρ β ∞ (
where β n is defined in Theorem 3.3) by using an explicit representation for β ∞ relying on the explicit representation of the solution w via the resolvent kernel associated to K ∞ (see for instance [START_REF] Smithies | Integral equations[END_REF]Section 5.4]) and then approximate the resolvent kernel as done in the proof of Theorem 4.2.

4.3.

The case of a separable variance profile. We now state a consequence of Corollary 4.3 in the case where the variance profile is separable. Recall the definitions of τ and τ given in (2.3).

Corollary 4.5 (Separable variance profile).

Assume that A-1 and A-4 hold. Assume moreover that ρ > 0 and that σ 2 is separable, i.e. that

σ 2 (x, y) = d(x) d(y) ,
where both d : [0, 1] → (0, ∞) and d : [0, 1] → (0, ∞) are continuous functions. Denote by

γ = c 1 0 d 2 (t)τ 2 (t) dt and γ = 1 0 d2 (t)τ 2 (t) dt . Then Θ 2 ∞ = -log 1 -ρ 2 γγ + κρ 2 γγ . (4.6)
Remark 4.1. In the case where the random variables X ij are standard complex circular gaussian (i.e. X ij = U ij + iV ij with U ij and V ij independent real centered gaussian random variables with variance 2 -1 ) and where the variance profile is separable, then

N (I n (ρ) -V n (ρ)) L ----→ n→∞ N 0, -log 1 -ρ 2 γγ .
This result is in accordance with those in [START_REF] Moustakas | MIMO capacity through correlated channels in the presence of correlated interferers and noise: a (not so) large N analysis[END_REF] and in [START_REF] Hachem | A new approach for capacity analysis of large dimensional multi-antenna channels[END_REF].

Proof. Recall the definitions of τ and τ given in (2.3). In the case where the variance profile is separable, the kernel K ∞ writes:

K ∞ (x, y) = c d(x) d(y) [0,1] d 2 (u)τ 2 (u) du 1 + c d(x) [0,1] d(u)τ (u) du 2 = ρ 2 γ d(x) d(y)τ 2 (x) .
In particular, one can readily prove that TrK ∞ = ρ 2 γγ. Since the kernel K ∞ (x, y) is itself a product of a function depending on x times a function depending on y, the determinant

K ∞ x 1 • • • x k y 1 • • • y k
is equal to zero for k ≥ 2 and the Fredholm determinant writes det(1 -

K ∞ ) = 1 -[0,1] K ∞ (x, x)dx = 1 -ρ 2 γγ . This yields -log det(1 -A ∞ ) + κTrK ∞ = -log(1 -ρ 2 γγ) + κρ 2 γγ ,
which ends the proof.

Proof of Theorem 3.1

Recall the definition of the n × n variance matrix A n :

a ℓ,m = 1 n 2 TrD ℓ D m T (-ρ) 2 1 + 1 n TrD ℓ T (-ρ) 2 , 1 ≤ ℓ, m ≤ n.
In the course of the proof of the CLT (Theorem 3.2), the quantity that will naturally pop up as a variance will turn out to be:

Θ2 n = Ṽn + κW n (5.1) 
(recall that W n = TrA n ) where Ṽn is introduced in the following lemma:

Lemma 5.1. Consider a variance profile (σ ij ) which fulfills assumptions A-2 and A-3 and the related t i 's defined in Theorem 2.3-(1). Let ρ > 0 and consider the matrix A n as defined above.

(1) For 1 ≤ j ≤ n, the system of (nj + 1) linear equations with unknown parameters (y

(j) ℓ,n , j ≤ ℓ ≤ n): y (j) ℓ,n = n m=j+1 a ℓ,m y (j) m,n + a ℓ,j (5.2) 
admits a unique solution for n large enough.

Denote by Ṽn the sum of the first components of vectors (y

(j) ℓ,n , j ≤ ℓ ≤ n), i.e.: Ṽn = n j=1 y (j) j,n .
2. Let κ be a real number satisfying κ ≥ -1. The sequence Ṽn + κW n satisfies

0 < lim inf n Ṽn + κW n ≤ lim sup n Ṽn + κW n < ∞
as n → ∞ and N/n → c > 0.

3. The following holds true:

Ṽn + log det(I n -A n ) ----→ n→∞ 0.
Obviously, Theorem 3.1 is a by-product of Lemma 5.1. The remainder of the section is devoted to the proof of this lemma.

We cast the linear system (5.2) into a matrix framework and we denote by

A (j) n the (n -j + 1) × (n -j + 1) submatrix A (j) n = (a ℓ,m ) n ℓ,m=j , by A 0,(j) n the (n -j + 1) × (n -j + 1) matrix A (j)
n where the first column is replaced by zeros. Denote by d (j) n the (nj + 1) × 1 vector :

d (j) n = 1 n 1 n TrD ℓ D j T (-ρ) 2 1 + 1 n TrD ℓ T (-ρ) 2 n ℓ=j .
These notations being introduced, the system can be rewritten as:

y (j) n = A 0,(j) n y (j) n + d (j) n ⇔ (I -A 0,(j) n )y (j) n = d (j) n .
(5.

3)

The key issue that appears is to study the invertibility of matrix (I -A 0,(j) n

) and to get some bounds on its inverse.

5.1.

Results related to matrices with nonnegative entries. The purpose of the next lemma is to state some of the properties of matrices with non-negative entriess that will appear to be satisfied by matrices A 0,(j) n . We shall use the following notations. Assume that M is a real matrix. By M ≻ 0 (resp. M 0) we mean that

m ij > 0 (resp. m ij ≥ 0) for every element m ij of M . We shall write M ≻ M ′ (resp. M M ′ ) if M -M ′ ≻ 0 (resp. M -M ′ 0). If
x and y are vectors, we denote similarly x ≻ 0, x 0 and x y.

Lemma 5.2. Let A = (a ℓ,m ) n ℓ,m=1 be a n × n real matrix and u = (u ℓ , 1 ≤ ℓ ≤ n), v = (v ℓ , 1 ≤ ℓ ≤ n) be two real n × 1 vectors. Assume that A
0, u ≻ 0, and v ≻ 0. Assume furthermore that equation u = Au + v is satisfied. Then:

(1) The spectral radius r(A) of A satisfies r(A) ≤ 1 -min(v ℓ ) max(u ℓ ) < 1. (2) Matrix I n -A is invertible and its inverse (I n -A)

-1 satisfies:

(I n -A) -1 0 and (I n -A) -1 ℓℓ ≥ 1
for every 1 ≤ ℓ ≤ n.

(3) The max-row norm of the inverse is bounded:

(I n -A) -1 ∞ ≤ max ℓ (u ℓ ) min ℓ (v ℓ ) . (4) Consider the (n -j + 1) × (n -j + 1) submatrix A (j) = (a ℓm ) n
ℓ,m=j and denote by A 0,(j) matrix A (j) whenever the first column is replaced by zeros. Then properties (1) and ( 2) are valid for A 0,(j) and

I (n-j+1) -A (j) -1 ∞ ≤ max 1≤ℓ≤n (u ℓ ) min 1≤ℓ≤n (v ℓ ) . Proof. Let α = 1-min(v ℓ ) max(u ℓ )
. Since u ≻ 0 and v ≻ 0, α readily satisfies α < 1 and αu u-v = Au which in turn implies that r(A) ≤ α < 1 [18, Corollary 8.1.29] and (1) is proved. In order to prove (2), first note that ∀m ≥ 1, A m 0. As r(A) < 1, the series m≥0 A m converges, matrix I n -A is invertible and (I n -A) -1 = m≥0 A m I n 0. This in particular implies that [(I n -A)

-1 ] ℓℓ ≥ 1 for every 1 ≤ ℓ ≤ n and ( 2) is proved. Now u = (I n -A) -1 v implies that for every 1 ≤ k ≤ n,

u k = n ℓ=1 (I n -A) -1 kℓ v ℓ ≥ min(v ℓ ) n ℓ=1 (I n -A) -1 kℓ , hence (3) 
.

We shall first prove (4) for matrix A (j) , then show how A 0,(j) inherits from A (j) 's properties. In [START_REF] Horn | Topics in matrix analysis[END_REF], matrix A (j) is called a principal submatrix of A. In particular, r(A (j) ) ≤ r(A) by [START_REF] Horn | Topics in matrix analysis[END_REF]Corollary 8.1.20]. As A 0, one readily has A (j) 0 which in turn implies property (2) for A (j) . Let Ã(j) be the matrix A (j) augmented with zeros to reach the size of A. The inverse (I n-j+1 -A (j) ) -1 is a principal submatrix of (I n -Ã(j) ) -1 0. Therefore,

I (n-j+1) -A (j) -1 ∞ ≤ I n -Ã(j) -1 ∞ . Since A m ( Ã(j) ) m for every m, one has m≥0 A m m≥0 ( Ã(j) ) m ; equivalently (I -A) -1 (I -Ã(j) ) -1 which yields I -Ã(j) -1 ∞ ≤ (I -A) -1 ∞
. Finally ( 4) is proved for matrix A (j) .

We now prove (4) for A 0, (j) . By [18, Corollary 8.1.18], r(A 0,(j) ) ≤ r(A (j) ) < 1 as A (j) A 0,(j) . Therefore, (I -A 0,(j) ) is invertible and

(I -A 0,(j) ) -1 = ∞ k=0 [A 0,(j) ] k .
This in particular yields (I -A 0,(j) ) -1 0 and (I -A 0,(j) ) -1 kk ≥ 1. Finally, as A (j) A 0,(j) , one has

I -Ã0,(j) -1 ∞ ≤ I -Ã(j) -1 ∞ .
Item (4) is proved and so is Lemma 5.2.

5.2.

Proof of Lemma 5.1: Some preparation. The following bounds will be needed:

Proposition 5.3. Let ρ > 0, consider a variance profile (σ ij ) which fulfills assumption A-2 and consider the related t i 's defined in Theorem 2.3-(1). The following holds true:

1 ρ ≥ t ℓ (-ρ) ≥ 1 ρ + σ 2 max . Proof. Recall that t ℓ (z) ∈ S(R + ) by Theorem 2.3. In particular, t ℓ (-ρ) = R + µ ℓ (dλ)
λ+ρ for some probability measure µ ℓ . This yields the upper bound t ℓ (-ρ) ≤ ρ -1 and the fact that t ℓ (-ρ) ≥ 0. Now the lower bound readily follows from Eq. (2.1). Proposition 5.4. Let ρ > 0. Consider a variance profile (σ ij ) which fulfills assumptions A-2 and A-3; consider the related t i 's defined in Theorem 2.3-(1). Then:

lim inf n≥1 min 1≤j≤n 1 n TrD j T n (-ρ) 2 > 0 and lim inf n≥1 min 1≤j≤n 1 n TrD 2 j T n (-ρ) 2 > 0 .
Proof. Applying Proposition 5.3 yields:

1 N TrD j T (-ρ) 2 = 1 N N i=1 σ 2 ij t 2 i (-ρ) ≥ 1 (ρ + σ 2 max ) 2 1 N N i=1 σ 2 ij , (5.4) 
which is bounded away from zero by Assumption A-3. Similarly,

1 N TrD 2 j T (-ρ) 2 ≥ 1 (ρ + σ 2 max ) 2 1 N N i=1 σ 4 ij (a) ≥ 1 (ρ + σ 2 max ) 2 1 N N i=1 σ 2 ij 2 ,
which remains bounded away from zero for the same reasons (notice that (a) follows from the elementary inequality (n -

1 x i ) 2 ≤ n -1 x 2 i ).
We are now in position to study matrix

A n = A (1) 
n .

Proposition 5.5. Let ρ > 0. Consider a variance profile (σ ij ) which fulfills assumptions A-2 and A-3; consider the related t i 's defined in Theorem 2.3-(1) and let A n be the variance matrix. Then there exist two n × 1 real vectors u n = (u ℓn ) ≻ 0 and v n = (v ℓn ) ≻ 0 such that Proof. Let z = -ρ + δi with δ ∈ R -{0}. An equation involving matrix A n will show up by developing the expression of Im(T (z)) = (T (z) -T * (z)) /2i and by using the expression of the t i (z)'s given by Theorem 2.3-(1). We first rewrite the system (2.1) as:

u n = A n u n + v n . Moreover,
T (z) = -zI N + 1 n n m=1 D m 1 + 1 n TrD m T -1
.

We then have

Im(T ) = 1 2i (T -T * ) = 1 2i T T * T * -1 -T -1 , = 1 n n m=1 D m T T * 1 + 1 n TrD m T 2 Im 1 n TrD m T + δT T * .
This yields in particular, for any 1 ≤ ℓ ≤ n:

1 δ Im 1 n TrD ℓ T = 1 n 2 n m=1 TrD ℓ D m T T * 1 + 1 n TrD m T 2 1 δ Im 1 n TrD m T + 1 n TrD ℓ T T * . (5.5) 
Recall that for every 1 ≤ i ≤ N , t i (z) ∈ S(R + ). Denote by µ i the probability measure associated with

t i i.e. t i (z) = R + µi(dλ) λ-z . Then 1 δ Im 1 n TrD ℓ T = 1 n N i=1 σ 2 iℓ ∞ 0 µ i (dλ) |λ -z| 2 ---→ δ→0 1 n N i=1 σ 2 iℓ ∞ 0 µ i (dλ) (λ + ρ) 2 .
Denote by ũℓn the right handside of the previous limit and let

u ℓn = ũℓn (1+ 1 n TrD ℓ T (-ρ)) 2 .
Plugging this expression into (5.5) and letting δ → 0, we end up with equation:

u n = A n u n + v n A n 0 is given in the statement of the lemma, u n = (u ℓ,n ; 1 ≤ ℓ ≤ n) and v n = (v ℓn ; 1 ≤ ℓ ≤ n) are the n × 1 vectors with elements u ℓ,n = 1 n N i=1 σ 2 iℓ ∞ 0 µi(dλ) (λ+ρ) 2 1 + 1 n TrD ℓ T (-ρ) 2 and v ℓ,n = 1 n TrD ℓ T 2 (-ρ) 1 + 1 n TrD ℓ T (-ρ) 2 .
(5.6)

It remains to notice that u n ≻ 0 and v n ≻ 0 for n large enough due to A-3, that the numerator of u ℓ,n is lower than (N σ 2 max )/(nρ 2 ) and that its denominator is bounded away from zero (uniformly in n) by Propositions 5.3 and 5.4. Similar arguments hold to get a uniform upper bound for v ℓ,n . This concludes the proof of Proposition 5.5.

Proof of Lemma 5.1: End of proof.

Proof of Lemma 5.1-(1). Proposition 5.5 together with Lemma 5.2-(4) yield that I -A 0,(j) is invertible, therefore the system 5.3 admits a unique solution given by: 

y (j) n = (I -A 0,(j) n ) -1 d (j) n ,
(I -A 0,(j) ) -1 ∞ ≤ lim sup n≥1 max 1≤ℓ≤n (u ℓn ) min 1≤ℓ≤n (v ℓn ) < ∞ . Each component of vector d (j) n satisfies d (j) ℓ,n ≤ N σ 4 max n 2 ρ 2 i.e. sup 1≤j≤n d (j) n ∞ < K n .
Therefore, vector y (j) n satisfies:

sup j y (j) n ∞ ≤ sup j |||(I -A 0,(j) n ) -1 ||| ∞ d (j) n ∞ < K n .
Consequently,

0 ≤ Vn = n j=1 y(j) j,n ≤ n j=1 y(j) n ∞ satisfies lim sup n Vn < ∞. Moreover, Proposition 5.3 yields W n ≤ n -2 n j=1 TrD 2 j T 2 ≤ σ 4 max N (ρ 2 n) -1 .
In particular, W n is also bounded and lim sup n ( Vn

+ κW n ) ≤ lim sup n ( Vn + |κ|W n ) < ∞.
We now prove the lower bound.

Vn + κW n = n j=1 y (j) j,n + κd (j) j,n ≥ n j=1 y (j) j,n -d (j) j,n .
Recall that y (j) n = (I -A 0,(j) ) -1 d (j) n . We therefore have:

y (j) j,n -d (j) j,n = y (j) n -d (j) n 1 = (I -A 0,(j) n ) -1 -I d (j) n 1 = (I -A 0,(j) n ) -1 A 0,(j) n d (j) n 1
.

As (I -A 0,(j) n

) -1 I, we have:

y (j) j,n -d (j) j,n ≥ A 0,(j) n d (j) n 1 = n ℓ=j+1 1 n 2 1 n TrD ℓ D j T 2 (-ρ) 2 1 + 1 n TrD j T (-ρ) 4 (a) ≥ K n ℓ=j+1 1 n 2 1 n TrD ℓ D j 2 ,
where (a) follows from Proposition 5.3, which is used both to get a lower bound for the numerator and an upper bound for the denominator: 4 . Some computations remain to be done in order to take advantage of A-3 to get the lower bound. Recall that

(1+ 1 n TrD j T ) 4 ≤ (1+N n -1 σ 2 max ρ -1 )
1 m m k=1 x 2 k ≥ 1 m m k=1 x k 2 .
We have:

n j=1 y (j) j,n -d (j) j,n ≥ n j=1 n ℓ=j+1 1 n 2 1 n TrD ℓ D j 2 = 1 n 2 × n(n -1) 2 × 2 n(n -1) j<ℓ 1 n TrD ℓ D j 2 (a) ≥ 1 3   2 n(n -1) j<ℓ 1 n TrD ℓ D j   2 (b) = 1 3   1 n(n -1) 1≤j,ℓ≤n 1 n TrD ℓ D j   2 + o(1) ≥ 1 3    1 n 3 N i=1   n j=1 σ 2 ij   2    2 + o(1) ≥ 1 3    N n 3   1 N N i=1 n j=1 σ 2 ij   2    2 + o(1) ≥ 1 3    N n 3   n j=1 1 N N i=1 σ 2 ij   2    2 + o(1)
where (a) follows from the bound n(n-1)

2n 2
≥ 1 3 valid for n large enough. The term o(1) at step (b) goes to zero as n → ∞ and takes into account the diagonal terms in the formula 2 j<ℓ α jℓ + j α jj = j,ℓ α jℓ . It remains now to take the lim inf to obtain:

lim inf n→∞   n j=1 y (j) j,n + κd (j) j,n   ≥ c 2 σ 8 min 3 .
Item (2) is proved.

Proof of Lemma 5.1-(3). We first introduce the following block-matrix notations:

A (j) n = d (j) j,n ā(j) n d(j) n A (j+1) n and A 0,(j) n = 0 ā(j) n 0 A (j+1) n
.

We can now express the following inverse:

(I -A 0,(j) n ) = 1 -ā (j) n 0 (I -A (j+1) n ) as (I -A 0,(j) n ) -1 = 1 ā(j) n (I -A (j+1) n ) -1 0 (I -A (j+1) n ) -1 .
This in turn yields y

(j) j,n = d (j) j,n + ā(j) n (I -A (J+1) n ) -1 d(j)
n and one can easily check that y (j) j,n ≤ K n , where K does not depend on j and n, as

|y (j) j,n | ≤ |d (j) j,n | + n ā(j) n ∞ (I -A 0,(j) n ) -1 ∞ d(j) n ∞ .
Remark that log det(I -

A (j) n ) -log det(I -A (j+1) n ) = log det 1 -d (j) j,n -ā (j) n -d(j) n I -A (j+1) n 1 0 0 (I -A (j+1) n ) -1 = log det 1 -d (j) j,n -ā (j) n (I -A (j+1) n ) -1 -d(j) n I = log 1 -d (j) j,n -ā(j) n (I -A (j+1) n ) -1 d(j)
n and write log det(I -A n ) as:

log det(I -A n ) = n-1 j=1 log det(I -A (j) n ) -log det(I -A (j+1) n ) + log(1 -a nn ) = n-1 j=1 log 1 -d (j) j,n -ā(j) n (I -A (j+1) n ) -1 d(j) n + log(1 -a nn ) = - n-1 j=1 d (j) j,n + ā(j) n (I -A (j+1) n ) -1 d(j) n + o (1) = - n-1 j=1 y (j) j,n + o (1) = - n j=1 y (j) j,n + o (1) = -Vn + o(1) .
This concludes the proof of Lemma 5.1.

6. Proof of Theorem 3.2 6.1. More notations; outline of the proof; key lemmas.

More notations. Recall that

Y n = (Y n ij ) is a N × n matrix where Y n ij = σij √ n X ij and that Q n (z) = (q ij (z) ) = (Y n Y * n -zI N ) -1 . We denote (1) by Qn (z) = (q ij (z) ) = (Y * n Y n -zI n ) -1 , ( 2 
) by y j the column number j of Y n , (3) by Y j n the N × (n -1) matrix that remains after deleting column number j from Y n , (4) by Q j,n (z) (or Q j (z) for short when there is no confusion with

Q n (z)) the N × N matrix Q j (z) = (Y j Y j * -zI N ) -1 , (5) 
by ξ i the row number i of Y n , (6) by Y i,n (or Y i for short when there is no confusion with Y n ) the (N -1) × n matrix that remains after deleting row i from Y , (7) by Qi,n (z) (or Qi (z)) the n × n matrix

Qi (z) = (Y * i Y i -zI n ) -1 .
Recall that we use both notations q ij or [Q] ij for the individual element of Q(z) depending on the context (same for other matrices). The following formulas are well-known (see for instance Sections 0.7.3 and 0.7.4 in [START_REF] Horn | Topics in matrix analysis[END_REF]):

Q = Q j - Q j y j y * j Q j 1 + y * j Q j y j , Q = Qi - Qi ξ * i ξ i Qi 1 + ξ i Qi ξ * i (6.1) q ii (z) = -1 z(1 + ξ i Qi (z)ξ * i ) , qjj (z) = -1 z(1 + y * j Q j (z)y j ) . (6.2) 
For 1 ≤ j ≤ n, denote by F j the σ-field F j = σ(y j , • • • , y n ) generated by the random vectors (y j , • • • , y n ). Denote by E j the conditional expectation with respect to F j , i.e.

E j = E(• | F j ). By convention, F n+1 is the trivial σ-field; in particular, E n+1 = E.
Outline of the proof. In order to prove the convergence of Θ

-1 n (log det(Y n Y * n + ρI N ) - E log det(Y n Y * n + ρI N )
) toward the standard gaussian law N (0, 1), we shall rely on the following CLT for martingales: Theorem 6.1 (CLT for martingales, Th. 35.12 in [START_REF] Billingsley | Probability and measure[END_REF]). Let γ

(n) n , γ (n) n-1 , . . . , γ (n) 1
be a martingale difference sequence with respect to the increasing filtration

F (n) n , . . . , F (n) 1 .
Assume that there exists a sequence of real positive numbers

Θ 2 n such that 1 Θ 2 n n j=1 E j+1 γ (n) j 2 P ----→ n→∞ 1 . (6.3) 
Assume further that the Lindeberg condition holds:

∀ǫ > 0, 1 Θ 2 n n j=1 E γ (n) j 2 1 γ (n) j ≥ǫΘn ----→ n→∞ 0 . Then Θ -1 n n j=1 γ (n) j
converges in distribution to N (0, 1).

Remark 6.1. The following condition:

∃δ > 0, 1 Θ 2(1+δ) n n j=1 E γ (n) j 2+δ ----→ n→∞ 0 , (6.4) 
known as Lyapounov's condition implies Lindeberg's condition and is easier to establish (see for instance [START_REF] Billingsley | Probability and measure[END_REF], Section 27, page 362).

The proof of the CLT will be carried out following three steps:

(1) We first show that log det(

Y n Y * n + ρI) -E log det(Y n Y * n + ρI) can be written as log det(Y n Y * n + ρI) -E log det(Y n Y * n + ρI) = n j=1 γ j ,
where (γ j ) is a martingale difference sequence. (2) We then prove that (γ j ) satisfies Lyapounov's condition (6.4) where Θ 2 n is given by Theorem 3.1.

(3) We finally prove (6.3) which implies the CLT.

Key Lemmas. The two lemmas stated below will be of constant use in the sequel. The first lemma describes the asymptotic behaviour of quadratic forms related to random matrices. Lemma 6.2. Let x = (x 1 , • • • , x n ) be a n × 1 vector where the x i are centered i.i.d. complex random variables with unit variance. Let M be a n × n deterministic complex matrix.

(1) (Bai and Silverstein, Lemma 2.7 in [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices[END_REF]) Then, for any p ≥ 2, there exists a constant K p for which

E|x * M x -TrM | p ≤ K p E|x 1 | 4 TrM M * p/2 + E|x 1 | 2p Tr(M M * ) p/2 .
(2) (see also Eq. (1.15) in [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF]) Assume moreover that E x 2 1 = 0 and that M is real, then

E (x * M x -TrM ) 2 = TrM 2 + κ n i=1 m 2 ii , where κ = E|x 1 | 4 -2.
As a consequence of the first part of this lemma, there exists a constant K independent of j and n for which

E y * j Q j (-ρ)y j - 1 n TrD j Q j (-ρ) p ≤ Kn -p/2 (6.5)
for p ≤ 4.

We introduce here various intermediate quantities:

c i (z) = -1 z 1 + 1 n Tr Di E Q(z) , 1 ≤ i ≤ N ; C(z) = diag(c i (z); 1 ≤ i ≤ N ) , cj (z) = -1 z 1 + 1 n TrD j EQ(z) , 1 ≤ j ≤ n; C(z) = diag(c j (z); 1 ≤ j ≤ n) , b i (z) = -1 z 1 + 1 n Tr Di C(z) , 1 ≤ i ≤ N ; B(z) = diag(b i (z); 1 ≤ i ≤ N ) bj (z) = -1 z 1 + 1 n TrD j C(z) , 1 ≤ j ≤ n; B(z) = diag( bj (z); 1 ≤ j ≤ n) . (6.6)
The following lemma provides various bounds and approximation results. (2) Let U n and Ũn be two sequences of real diagonal deterministic N × N and n × n matrices. Assume that sup n≥1 max U n , Ũn < ∞ , then the following hold true:

(a) 1 n TrU (EQ -T ) ----→ n→∞ 0 and 1 n Tr Ũ (E Q -T ) ----→ n→∞ 0 , (b) 1 n TrU (B -T ) ----→ n→∞ 0 , (c) sup n E (TrU (Q -EQ)) 2 < ∞, (d) sup n 1 n 2 E (TrU (Q -EQ)) 4 < ∞, (3) 
[Rank-one perturbation inequality] The resolvent

Q j satisfies |TrM (Q -Q j )| ≤ M ρ
for any N × N matrix M (see Lemma 2.6 in [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large-dimensional random matrices[END_REF]).

Proof of Lemma 6.3 is postponed to Appendix A.

Finally, we shall frequently use the following identities which are obtained from the definitions of c i and cj together with Equations (6.2):

[Q(z)] ii = c i + zc i [Q] ii ξ i Qi ξ * i - 1 n Tr Di E Q (6.7) [ Q(z)] jj = cj + zc j [ Q] jj y * j Q j y j - 1 n
TrD j EQ (6.8)

Proof of Step 1:

The sum of a martingale difference sequence. Recall that E j = E(• | F j ) where F j = σ(y ℓ , j ≤ ℓ ≤ n). We have:

log det(Y Y * + ρI N ) -E log det(Y Y * + ρI N ) = n j=1 (E j -E j+1 ) log det(Y Y * + ρI N ) (a) = - n j=1 (E j -E j+1 ) log det Y j Y j * + ρI N det (Y Y * + ρI N ) , (b) = - n j=1 (E j -E j+1 ) log det Y j * Y j + ρI n-1 det (Y * Y + ρI n ) (c) = - n j=1 (E j -E j+1 ) log Q (-ρ) jj , (d) = n j=1 (E j -E j+1 ) log 1 + y * j Q j (-ρ) y j
where (a) follows from the fact that Y j does not depend upon y j , in particular E j log det Y j Y j * + ρI N = E j+1 log det Y j Y j * + ρI N ; (b) follows from the fact that det(Y j * Y j +ρI n-1 ) = det(Y j Y j * + ρI N ) × ρ n-1-N (and a similar expression for det(Y * Y + ρI n )); (c) follows from the equality

[ Q(-ρ)] jj = det(Y j * Y j + ρI n-1 ) det(Y * Y + ρI n )
which is a consequence of the general inverse formula A -1 = 1 det(A) adj(A) where adj(A) is the transposed matrix of cofactors of A (see Section 0.8.2 in [START_REF] Horn | Topics in matrix analysis[END_REF]); and (d) follows from (6.2). We therefore have

log det(Y Y * + ρI N ) -E log det(Y Y * + ρI N ) = n j=1 (E j -E j+1 ) log 1 + y * j Q j (-ρ) y j △ = n j=1 γ j .
As the following identity holds true,

E j log 1 + 1 n TrD j Q j = E j+1 log 1 + 1 n TrD j Q j ,
one can express γ j as:

γ j = (E j -E j+1 ) log 1 + y * j Q j y j -1 n TrD j Q j 1 + 1 n TrD j Q j = (E j -E j+1 ) log (1 + Γ j ) where Γ j = y * j Q j y j -1 n TrD j Q j 1 + 1 n TrD j Q j . (6.9) 
The sequence γ n , . . . , γ 1 is a martingale difference sequence with respect to the increasing filtration F n , . . . , F 1 and Step 1 is established.

Proof of

Step 2: Validation of Lyapounov's condition (6.4). In the remainder of this section, z = -ρ. Let δ > 0 be a fixed positive number that will be specified below.

As lim inf Θ 2 n > 0 by Theorem 3.1, we only need to prove that n j=1 E|γ j | 2+δ → n 0. We have E|γ j | 2+δ = E |(E j -E j+1 ) log(1 + Γ j )| 2+δ ; Minkowski and Jensen inequalities yield:

E|γ j | 2+δ 1 2+δ ≤ E |E j log(1 + Γ j )| 2+δ 1 2+δ + E |E j+1 log(1 + Γ j )| 2+δ 1 2+δ ≤ 2 E |log(1 + Γ j )| 2+δ 1 2+δ .
Otherwise stated,

E|γ j | 2+δ ≤ K 0 E |log(1 + Γ j )| 2+δ (6.10)
where K 0 = 2 2+δ . Since y * j Q j y j ≥ 0, Γ j (defined in (6.9)) is lower bounded:

Γ j ≥ -1 n TrD j Q j 1 + 1 n TrD j Q j . Now, since 0 ≤ 1 n TrD j Q j (-ρ) ≤ D j n Tr Q j (-ρ) ≤ K 1 △ = σ 2 max ρ sup n N n
and since x → x 1+x is non-decreasing, we have:

1 n TrD j Q j 1 + 1 n TrD j Q j ≤ K 2 △ = K 1 1 + K 1 < 1. (6.11) In particular, Γ j ≥ -K 2 > -1. The function (-1, ∞) ∋ x → log(1+x)
x is non-negative, non-increasing. Therefore, log(1+x)

x ≤ log(1-K2) K2 for x ∈ [-K 2 , ∞).
Plugging this into (6.10) yields

E|γ j | 2+δ ≤ K 0 K 2+δ 2 E|Γ j | 2+δ △ = K 3 E|Γ j | 2+δ ≤ K 3 E y * j Q j y j - 1 n TrD j Q j 2+δ
.

By lemma 6.2-( 1), the right hand side of the last inequality is lower than K 4 n -(1+δ/2) as soon as E|X 11 | 2+δ < ∞. This is ensured by A-1 for δ ≤ 6. Therefore, Lyapounov's condition (6.4) holds and Step 2 is proved.

Proof of

Step 3: Convergence of the normalized sum of conditional variances. This section, by far the most involved in this article, is devoted to establish the convergence (6.3), hence the CLT. In an attempt to guide the reader, we divide it into five stages. Recall that z = -ρ and

γ j = (E j -E j+1 ) log (1 + Γ j ) where Γ j = y * j Q j y j -1 n TrD j Q j 1 + 1 n TrD j Q j .
In order to apply Theorem 6.1, we shall prove that Θ -2

n n j=1 E j+1 γ 2 j P
-→ 1 where Θ 2 n is given by Theorem 3.1. Since lim inf Θ 2 n > 0, it is sufficient to establish the following convergence:

n j=1 E j+1 γ 2 j -Θ 2 n P ----→ n→∞ 0 . (6.12)
Instead of working with Θ n , we shall work with Θn (introduced in Section 5, see Eq. (5.1)) and prove:

n j=1 E j+1 γ 2 j -Θ2 n P ----→ n→∞ 0 . (6.13)
In the sequel, K will denote a constant whose value may change from line to line but which will neither depend on n nor on j ≤ n.

Here are the main steps of the proof:

(1) The following convergence holds true:

n j=1 E j+1 γ 2 j - n j=1 E j+1 (E j Γ j ) 2 P ----→ n→∞ 0 . (6.14)
This convergence roughly follows from a first order approximation, as we informally discuss: Recall that γ i = (E j -E j+1 ) log(1 + Γ j ) and that Γ j → 0 by Lemma 6.2-(1). A first order approximation of log

(1 + x) yields γ j ≈ (E j -E j+1 )Γ j . As E j+1 (y * j Q j y j ) = 1 n TrD j E j+1 Q j ,
one has E j+1 Γ j = 0, hence γ j ≈ E j Γ j and one may expect E j+1 γ 2 j ≈ E j+1 (E j Γ j ) 2 and even (6.14) as we shall demonstrate.

(2) Recall that κ = E|X 11 | 4 -2. The following equality holds true

E j+1 (E j Γ j ) 2 = 1 n 2 1 + 1 n TrD j EQ 2 TrD j (E j+1 Q j ) D j (E j+1 Q j ) + κ N i=1 σ 4 ij (E j+1 [Q j ] ii ) 2 + ε 2,j (6.15)
where max j≤n E|ε 2,j | ≤ K n 3/2 for some given K.

A closer look to the right hand side of (6.15) yields the following comments: By Lemma 6.3-(2a), the denominator (1 + 1 n TrD j EQ) 2 can be approximated by (1 + 1 n TrD j T ) 2 ; moreover, it is possible to prove that [Q j ] ii ≈ [T ] ii (some details are given in the course of the proof of step (5) below). Hence,

κ n N i=1 σ 4 ij (E j+1 [Q j ] ii ) 2 ≈ κ n TrD 2 j T 2 .
Therefore it remains to study the asymptotic behaviour of the term 1 n TrD j (E j+1 Q j )D j (E j+1 Q j ) in order to understand (6.15). This is the purpose of step (3) below.

(3) In order to evaluate 1 n TrD j (E j+1 Q j )D j (E j+1 Q j ) for large n, we introduce the random variables

χ (j) ℓ,n = 1 n TrD ℓ (E j+1 Q)D j Q, j ≤ ℓ ≤ n. (6.16) 
Note that, up to rank-one perturbations, E j χ (j) j,n is very close to the term of interest. We prove here that χ (j) ℓ,n satisfies the following equation:

χ (j) ℓ,n = 1 n n m=j+1 1 n Tr(D ℓ BD m EQ) 1 + 1 n TrD m EQ 2 χ (j) m,n + 1 n
TrD ℓ BD j EQ + ε 3,ℓj , j ≤ ℓ ≤ n , (6.17

)
where B is defined in Section 6.1 and where max ℓ,j≤n

E|ε 3,ℓj | ≤ K √ n .
(4) Recall that we have proved in Section 5 (Lemma 5.1) that the following (deterministic) system:

y (j) ℓ,n = n m=j+1 a ℓ,m y (j) m,n + a ℓ,j for j ≤ ℓ ≤ n , where a ℓ,m = 1 n 2 TrD ℓ DmT 2 (1+ 1 n TrD ℓ T )
2 admits a unique solution. Denote by x

(j) ℓ,n = n 1 + 1 n TrD ℓ T 2 y (j) ℓ,n , then (x (j)
ℓ,n , j ≤ ℓ ≤ n) readily satisfies the following system:

x (j) ℓ,n = 1 n n m=j+1 1 n TrD ℓ D m T 2 1 + 1 n TrD m T 2 x (j) m,n + 1 n TrD ℓ D j T 2 , j ≤ ℓ ≤ n .
As one may notice, (6.17) is a perturbated version of the system above and we shall indeed prove that: the sequence (δ n ) being deterministic with δ n → 0 as n → ∞.

χ (j) j,n = x (j) j,
(5) Combining the previous results, we finally prove that

n j=1 E j+1 (E j Γ j ) 2 -Θ2 n P ----→ n→∞ 0 . (6.19)
This, together with (6.14), yields convergence (6.13) and (6.12) which in turn proves (6.3), ending the proof of Theorem 3.2.

Proof of (6.14). Recall that (6.11). In particular, Γ j ≥ -K 2 > -1. We first prove that

1 n TrDj Qj 1+ 1 n TrDj Qj ≤ K 2 < 1 by
E j log(1 + Γ j ) = E j Γ j + ε 11,j + ε 12,j
where

ε 11,j = E j log(1 + Γ j )1 |Γj |≤K2 -E j Γ j ε 12,j = E j log(1 + Γ j )1 (K2,∞) (Γ j ) and max j≤n E ε 11,j 2 ≤ K n 2 max j≤n E ε 12,j 2 ≤ K n 2 . (6.20)
In the sequel, we shall often omit subscript j while dealing with the ε's. As 0 < K 2 < 1, we have:

|ε 11 | = E j ∞ k=1 (-1) k-1 k Γ k j 1 |Γj|≤K2 -Γ j , ≤ E j Γ j 1 Γj >K2 + ∞ k=2 E j |Γ j | k 1 |Γj|≤K2 ≤ E j Γ j 1 Γj >K2 + E j Γ 2 j 1 |Γj |≤K2 1 -K 2 .
Therefore,

E ε 11 2 (a) ≤ 2 EΓ 2 j 1 Γj >K2 + EΓ 4 j 1 |Γj |≤K2 (1 -K 2 ) 2 (b) ≤ 2EΓ 4 j K 2 2 + 2EΓ 4 j (1 -K 2 ) 2 (c) ≤ 2 K 2 2 + 2 (1 -K 2 ) 2 E y * j Q j y j - 1 n TrD j Q j 4 (d) ≤ K n 2
where (a) follows from (a+b

) 2 ≤ 2(a 2 +b 2 ), (b) from the inequality Γ 2 j 1 Γj >K2 ≤ Γ 2 j Γj K2 2 
1 Γj >K2 , (c) from the fact that the denominator of Γ j is larger than one, and (d) from Lemma 6.2-(1) as X 11 has a finite 8 th moment by A-1.

Now, 0 ≤ ε 12 ≤ E j Γ j 1 Γj >K2 . Thus, Eε 12 2 ≤ EΓ 2 j 1 Γj >K2 ≤ K -2 2 EΓ 4 j 1 Γj >K2 . Lemma 6.2-(1) yields again: E ε 12 2 ≤ K n 2
and (6.20) is proved. Similarly, we can prove

E j+1 log(1 + Γ j ) = E j+1 Γ j + ε 13,j with max j≤n E ε 13,j 2 ≤ K n 2 .
Note that since y j and F j+1 are independent, we have E j+1 (y * j Q j y j ) = 1 n TrD j E j+1 Q j which yields E j+1 Γ j = 0. Gathering all the previous estimates, we obtain:

γ j = E j Γ j + ε 11,j + ε 12,j -ε 13,j △ = E j Γ j + ε 14,j ,
where max j≤n E ε 14,j 2 ≤ K n -2 by Minkowski's inequality. We therefore have

E j+1 (γ j ) 2 = E j+1 (E j Γ j + ε 14,j ) 2 . Let ε 1,j △ = E j+1 (γ j ) 2 -E j+1 (E j Γ j ) 2 = E j+1 ε 14,j 2 + 2E j+1 (ε 14,j E j Γ j ).
Then

E|ε 1,j | ≤ Eε 14,j 2 + 2E|ε 14,j E j Γ j | , (a) 
≤ Eε 14,j 2 + 2(Eε 14,j

2 ) 1/2 (EΓ 2 j ) 1/2 (b) ≤ K n 3/2 ,
where (a) follows from Cauchy-Schwarz inequality and (E j Γ j ) 2 ≤ E j Γ 2 j , and (b) follows from Lemma 6.2-(1) which yields EΓ 2 j ≤ Kn -1 . Finally, we have

n j=1 E|E j+1 (γ j ) 2 - E j+1 (E j Γ j ) 2 | ≤ Kn -1
2 which implies (6.14).

Proof of (6.15). We have:

E j Γ j = E j y * j Q j y j -1 n TrD j Q j 1 + 1 n TrD j Q j , = 1 1 + 1 n TrD j EQ E j y * j Q j y j - 1 n TrD j Q j -E j y * j Q j y j -1 n TrD j Q j 1 + 1 n TrD j Q j 1 n TrD j Q j - 1 n TrD j EQ .
Hence,

E j+1 (E j Γ j ) 2 = 1 (1 + 1 n TrD j EQ) 2 E j+1 y * j (E j Q j )y j - 1 n TrD j E j Q j 2 + ε 21,j + ε 22,j = 1 (1 + 1 n TrD j EQ) 2 E j+1 y * j (E j Q j )y j - 1 n TrD j E j Q j 2 + ε 2,j (6.21) 
where

ε 21,j = E j y * j Q j y j -1 n TrD j Q j 1 + 1 n TrD j Q j 1 n TrD j Q j - 1 n TrD j EQ 2 , ε 22,j = -2 E j y * j Q j y j - 1 n TrD j Q j × E j y * j Q j y j -1 n TrD j Q j 1 + 1 n TrD j Q j 1 n TrD j Q j - 1 n TrD j EQ , ε 2,j = E j+1 (ε 21,j + ε 22,j ) (1 + 1 n TrD j EQ) 2 .
As 1 n TrD j Q j ≥ 0, standard inequalities yield:

Eε 21,j ≤ E y * j Q j y j - 1 n TrD j Q j 4 1 2 E 1 n TrD j Q j - 1 n TrD j EQ 4 1 2
.

By Lemma 6.2-(1), E y * j Q j y j -1 n TrD j Q j 4 ≤ Kn -2 . Due to the convex inequality (a + b) 4 ≤ 2 3 (a 4 + b 4
), we obtain:

E 1 n TrD j (Q j -EQ) 4 = E 1 n TrD j (Q j -EQ j ) + 1 n TrD j (EQ j -EQ) 4 ≤ K E 1 n TrD j (Q j -EQ j ) 4 + E 1 n TrD j (EQ j -EQ) 4 ,
where the first term of the right hand side is bounded by Kn -2 by (2d) in Lemma 6.3 and the second one is bounded by Kn -4 due to the rank-one perturbation inequality [Lemma 6.3-(3)]. Therefore Eε 21,j ≤ Kn -2 and similar derivations yield E|ε 22,j | ≤ Kn -3 2 . Gathering these two results yields the bound E|ε 2,j | ≤ Kn -3 2 . Let us now expand the term E j+1 y * j E j Q j y j -1 n TrD j E j Q j 2 in the right hand side of (6.21).

Recall that

E j Q j = E j+1 Q j and that y j = D 1 2 j X1j √ n , • • • , XNj √ n T . Note also that E j+1 y * j E j Q j y j = 1 n TrD j E j+1 Q j .
Then Lemma 6.2-(2) immediatly yields:

E j+1 y * j E j Q j y j - 1 n TrD j E j Q j 2 = 1 n 2 TrD j (E j+1 Q j ) D j (E j+1 Q j ) + κ N ℓ=1 σ 4 ℓj (E j+1 [Q j ] ℓℓ ) 2 .
Equation (6.15) is proved.

Proof of (6.17). Recall that χ

(j) ℓ,n = 1 n TrD ℓ (E j+1 Q)D j Q.
The outline of the proof of (6.17) is given by the following set of equations, the χ's and ε's being introduced as and when required.

χ (j) ℓ,n =χ 1 +χ 2 -χ 3 (6.22) χ 3 = χ ′ 3 +ε 3 (6.23) χ ′ 3 = χ 4 + χ 5 +ε ′ 3 (6.24) χ 5 =χ 6 -χ 7 + ε 6 -ε 7 (6.25)
Gathering the previous equations, we will end up with

χ (j) ℓ,n = χ 1 + χ 2 -χ 4 -χ 6 + χ 7 + ε where ε = -ε 3 + ε ′ 3 -ε 6 + ε 7 . (6.26) 
Let us first give decomposition (6.22) and introduce χ 1 , χ 2 and χ 3 . Recall that B (defined

in Section 6.1) is the N × N diagonal matrix B = diag(b i ) where b i = ρ(1 + 1 n Tr Di C) -1
. The following identity yields:

Q = B + B(B -1 -Q -1 )Q = B + B ρ diag 1 n Tr Di C -Y Y * Q.
Therefore,

χ (j) ℓ,n = 1 n TrD ℓ (E j+1 Q)D j Q = 1 n TrD ℓ BD j Q + ρ n TrD ℓ Bdiag 1 n Tr Di C (E j+1 Q) D j Q - 1 n TrD ℓ B n m=1 E j+1 y m y * m Q D j Q △ = χ 1 + χ 2 -χ 3 ,
and (6.22) is established. We now turn to decomposition (6.23). Identities (6.1) and (6.2) yield:

y * m Q = y * m Q m -y * m Q m y m y * m Q m 1 + y * m Q m y m = y * m Q m 1 + y * m Q m y m = ρ[ Q] mm y * m Q m .
Using this equation, we have

χ 3 = 1 n TrD ℓ B n m=1 E j+1 y m y * m Q D j Q = ρ n TrD ℓ B n m=1 E j+1 [ Q] mm y m y * m Q m D j Q (a) = ρ n TrD ℓ B n m=1 cm E j+1 (y m y * m Q m ) D j Q - ρ 2 n TrD ℓ B n m=1 cm E j+1 [ Q] mm y * m Q m y m - 1 n TrD m EQ y m y * m Q m D j Q △ = χ ′ 3 + ε 3 ,
where (a) follows directly from (6.8). We are now in position to prove that : max ℓ,j≤n

E|ε 3 | ≤ K √ n . (6.27) 
Using the fact that |TrAyy * B| = |y * BAy| ≤ AB y 2 together with the norm inequality AB ≤ A B , we obtain:

|ε 3 | ≤ ρ 2 n n m=1 D j QD ℓ B cm E j+1 [ Q] mm y * m Q m y m - 1 n TrD m EQ y m 2 Q m , (a) 
≤ σ 4 max ρ 3 1 n n m=1 E j+1 y * m Q m y m - 1 n TrD m EQ y m 2 ,
where (a) follows from the fact that

D j QD ℓ B cm ≤ σ 4 max ρ -3 and [ Q] mm Q m ≤ ρ -2 . Writing 1 n TrD m EQ = 1 n TrD m Q + 1 n TrD m (EQ -Q)
and replacing in the previous inequality, we obtain:

E y * m Q m y m - 1 n TrD m EQ y m 2 ≤   E y * m Q m y m - 1 n TrD m Q 2 1 2 + E 1 n TrD m (Q -EQ) 2 1 2   E y m 4 1 2
,

where E y * m Q m y m -1 n TrD m Q 2 1 2 ≤ Kn -1 2 by Lemma 6.2-(1) combined with Lemma 6.3- (3), E 1 n TrD m (Q -EQ) 2 1 2 ≤ Kn -1 by Lemma 6.3-(2c) and E y m 4 ≤ σ 4 max E|X 11 | 4 (N n -1
) 2 . This in particular yields max ℓ,j≤n E|ε 3 | ≤ Kn -1 2 and proves (6.27).

Recall that if m ≤ j, then

E j+1 (y m y * m Q m ) = E j+1 (y m y * m )E j+1 (Q m ) = D m n E j+1 (Q m ).
We now turn to Equation (6.24) and introduce χ 4 , χ 5 and ε ′ 3 .

χ ′ 3 = ρ n TrD ℓ B n m=1 cm E j+1 (y m y * m Q m ) D j Q , = ρ n 2 TrD ℓ B j m=1 cm D m E j+1 Q m D j Q + ρ n TrD ℓ B   n m=j+1 cm E j+1 (y m y * m Q m )   D j Q , = ρ n 2 TrD ℓ B j m=1 cm D m E j+1 Q D j Q + ρ n TrD ℓ B   n m=j+1 cm E j+1 (y m y * m Q m )   D j Q , + ρ n 2 TrD ℓ B j m=1 cm D m E j+1 (Q m -Q) D j Q △ = χ 4 + χ 5 + ε ′ 3 ,
and decomposition (6.24) is introduced. In order to estimate ε ′ 3 , recall that given two square matrices R and S, one has |TrRS| ≤ R TrS for S non-negative and Hermitian. As matrix Q m -Q is non-negative and hermitian by (6.1), we obtain:

|ε ′ 3 | ≤ 1 n 2 D ℓ BD j Q j m=1 E (TrD m (Q m -Q)) ≤ σ 6 max nρ 3 (6.28) 
by .

We now turn to χ 5 and provide decomposition (6.25). Recall that TrAyy * B = y * BAy. Combining (6.1) and (6.2), we get

Q = Q m -ρ[ Q] mm Q m y m y * m Q m .
Plugging this expression into the definition χ 5 and using the fact that y m is measurable with respect to F j+1 (since m ≥ j + 1), we obtain:

χ 5 = ρ n TrD ℓ B   n m=j+1 cm E j+1 (y m y * m Q m )   D j Q = ρ n n m=j+1 cm y * m (E j+1 Q m ) D j Q m D ℓ By m - ρ 2 n n m=j+1 cm [ Q] mm y * m (E j+1 Q m ) D j Q m y m y * m Q m D ℓ By m .
In order to understand the forthcoming decomposition, recall that asymptotically y * m A m y m ∼ 1 n TrD m A m as long as y m and A m are independent, and that

1 n TrD m A m ∼ 1 n TrD m A if A m
is a rank-one perturbation of A. We can now introduce χ 6 and χ 7 :

χ 5 = ρ n n m=j+1 cm n TrD ℓ BD m (E j+1 Q) D j Q - ρ 2 n n m=j+1 c2 m n TrD m (E j+1 Q) D j Q × 1 n Tr(D m QD ℓ B) + ε 6 -ε 7 △ = χ 6 -χ 7 + ε 6 -ε 7 ,
where

ε 6 = ρ n n m=j+1 cm y * m (E j+1 Q m ) D j Q m D ℓ By m - ρ n n m=j+1 cm n TrD ℓ BD m (E j+1 Q) D j Q ε 7 = ρ 2 n n m=j+1 cm [ Q] mm y * m (E j+1 Q m ) D j Q m y m y * m Q m D ℓ By m - ρ 2 n n m=j+1 c2 m n TrD m (E j+1 Q) D j Q × 1 n Tr(D m QD ℓ B) .
It is now a matter of routine to check that:

E|ε 6 | ≤ K √ n and E|ε 7 | ≤ K √ n . (6.29) 
Let us provide some details.

Recall that y m is independent from E j+1 (Q m ). To obtain the bound on E|ε 6 |, we use the facts that

E(y * m (E j+1 Q m ) D j Q m D ℓ By m -1 n TrD ℓ BD m (E j+1 Q m ) D j Q m ) 2 ≤ Kn -1 by Lemma 6.2-(1), | 1 n TrD ℓ BD m (E j+1 Q m ) D j (Q m -Q)| ≤ Kn -1 by Lemma 6.3- (3) 
, etc. In order to prove that E|ε 7 | ≤ Kn -1 2 , we use similar arguments but we also need two additional estimates. The control [ Q] mmcm which has already been done while estimating ε 3 relies on (6.8). The bounded character of E(y * m A m y m ) 2 where A m is independent of y m and of finite spectral norm. This is a by-product of Lemma 6.2-(1).

We now put the pieces together and provide Eq. (6.26) satisfied by χ ℓj . Recall that 

χ 1 = 1 n TrD ℓ BD j Q χ 2 = ρ n TrD ℓ B diag 1 n Tr Di C (E j+1 Q) D j Q χ 4 = ρ n 2 TrD ℓ B   m≤j cm D m   (E j+1 Q)D j Q χ 6 = ρ n 2 TrD ℓ B   n m=j+1 cm D m   (E j+1 Q)D j Q χ 7 = ρ 2 n n m=j+1 c2 m n TrD m (E j+1 Q) D j Q × 1 n Tr(D m QD ℓ B) = 1 n n m=j+1 1 n Tr(D ℓ BD m Q) (1 + 1 n TrD m EQ) 2 χ m,j .
χ (j) ℓ,n = 1 n TrD ℓ BD j Q + 1 n n m=j+1 1 n Tr(D ℓ BD m Q) (1 + 1 n TrD m EQ) 2 χ (j) m,n + ε ,
where E|ε| ≤ Kn -1 2 thanks to Inequalities (6.27), (6.28), and (6.29). Small adjustments need to be done in order to obtain (6.17). Now replace 1 n TrD ℓ BD p Q by 1 n TrD ℓ BD p EQ (use Lemma 6.3-(2c)). The new error term ε 3,ℓj still satisfies max ℓ,j≤n E|ε 3,ℓ,j | ≤ Kn -1 2 . Eq. (6.17) is proved.

Proof of (6.18). Recall that χ ℓ,j and ε 3,ℓj have been introduced above.

Following the matrix framework introduced to express the system satisfied by the y's (matrices A n , A n by its first column, equal to zero. Denoting by δ (j) n = 1 n TrD ℓ D j T 2 ; j ≤ ℓ ≤ n , we have:

x (j) n = G 0,(j) n x (j) n + δ (j) n .
Define here the (nj + 1) × 1 vector ε (j) 3 = (ε 3,ℓj ; j ≤ ℓ ≤ n) and the (nj + 1) × 1 vectors:

χ (j) = (χ (j) ℓ,n ; j ≤ ℓ ≤ n) , δ(j) = 1 n TrD ℓ BD j EQ; j ≤ ℓ ≤ n .
Define now the (nj + 1) × (nj + 1) matrix:

G(j) = 1 n 2 TrD ℓ BD m EQ 1 + 1 n TrD m EQ 2 n ℓ,m=j
, and G0,(j) which is egal to G(j) exept for its first column equal to zero. With these notations, Eq. (6.17), valid for for j ≤ ℓ ≤ n, can take the following matrix form:

χ (j) = G0,(j) χ (j) + δ(j) + ε (j)
3 .

We will heavily rely on the following:

lim sup n I -G 0,(j) -1 ∞ < ∞ .
which can be proved as in Lemma 5.2-(4) and Lemma 5.5. We drop superscript 0,(j) in the equation below for the sake of readability.

χ = Gχ + δ + ε 3 ⇔ χ = Gχ + δ + ε 3 + ( G -G)χ + ( δ -δ) , ⇔ χ = (I -G) -1 δ + (I -G) -1 ε 3 + (I -G) -1 ( G -G)χ + (I -G) -1 ( δ -δ) , ⇔ χ = x + (I -G) -1 ε 3 + (I -G) -1 ( G -G)χ + (I -G) -1 ( δ -δ) (6.30)
The first component of the previous equation writes:

χ (j) j = x (j) j + [(I -G 0,(j) ) -1 ε 3 ] 1 + (I -G 0,(j) ) -1 ( G0,(j) -G 0,(j) )χ + (I -G 0,(j) ) -1 ( δ -δ) 1 , △ = x (j) j + ε 41,j + ε 42,j .
Due to Lemma 5.2-( 4) which applies to G 0,(j) and to the fact that max ℓ,j≤n E|ε 3,ℓj | ≤ Kn -1 2 , we have:

E|ε 41,j | ≤ n-j+1 m=1 [(I -G 0,(j) ) -1 ] 1,m E|ε 3,ℓj | ≤ K √ n .
The second error term ε 42,j is the sum of the following terms:

ε 42,j = [(I -G 0,(j) ) -1 ( G0,(j) -G 0,(j) )χ] 1 + [(I -G 0,(j) ) -1 ( δ -δ)] 1
Let us first prove that [(I -G 0,(j) ) -1 ( G0,(j) -G 0,(j) )χ] 1 is dominated by a sequence independent of j that converges to zero as n → ∞. The mere definition of χ (j) ℓ,n (see (6.16)) yields

χ (j) ∞ ≤ (N σ 4 max )(nρ 2 ) -1 , where • ∞ stands for the ℓ ∞ -norm. Hence |[(I -G 0,(j) ) -1 ( G0,(j) -G 0,(j) )χ] 1 | ≤ (I -G 0,(j) ) -1 ∞ ( G0,(j) -G 0,(j) ) T ∞ χ ∞ ≤ K ( G0,(j) -G 0,(j) ) T ∞ .
Let us prove that ( G0,(j) -G 0,(j) ) T ∞ ----→ n→∞ 0 (6.31) uniformly in j. To this end, let us evaluate the (ℓ, m)-element of matrix G0,(j) -G 0,(j) (m > j):

n|[ G0,(j) -G 0,(j) ] ℓm | = 1 n TrD ℓ BD m EQ (1 + 1 n TrD m EQ) 2 - 1 n TrD ℓ D m T 2 (1 + 1 n TrD m T ) 2 ≤ (1 + 1 n TrD m T ) 2 1 n TrD ℓ BD m EQ -(1 + 1 n TrD m EQ) 2 1 n TrD ℓ D m T 2 ≤ (1 + 1 n TrD m T ) 2 1 n TrD ℓ BD m (EQ -T ) + (1 + 1 n TrD m T ) 2 1 n TrD ℓ T D m (B -T ) + (1 + 1 n TrD m T ) 2 -(1 + 1 n TrD m EQ) 2 1 n TrD ℓ D m T 2 . (6.32)
The first term of the right hand side of (6.32) satisfies:

(1 + 1 n TrD m T ) 2 1 n TrD ℓ BD m (EQ -T ) ≤ 1 + σ 2 max ρ 2 1 n TrU (EQ -T ) ,
where U is the

N × N diagonal matrix U = σ 4 max ρ -1 diag (sign (E[Q] ii -t i ) , 1 ≤ i ≤ N )
. By Lemma 6.3-(2a), the right hand side of this inequality converges to zero as n → ∞.

The second and third terms of the right hand side of (6.32) can be handled similarly with the help of Lemma 6.3 and one can prove that elements of n( G0,(j) -G 0,(j) ) are dominated by a sequence independent of j that converges to zero. This implies that ( G0,(j) -G 0,(j) ) T ∞ converges to zero uniformly in j and (6.31) is proved. As a consequence, [(I-G 0,(j) ) -1 ( G0,(j) -G 0,(j) )χ] 1 is dominated by a sequence independent of j that converges to zero. The other term [(I -G 0,(j) ) -1 ( δδ)] 1 in the expression of ε 42,j is handled similarly. Eq. (6.18) is proved.

Proof of (6.19). We rewrite Equation (6.15) as E j+1 (E j Γ j ) 2 = η 1,j + κη 2,j + ε 2,j with

η 1,j = 1 n 2 1 1 + 1 n TrD j EQ 2 TrD j (E j+1 Q j ) D j (E j+1 Q j ) , η 2,j = 1 n 2 1 + 1 n TrD j EQ 2 N i=1 σ 4 ij (E j+1 [Q j ] ii ) 2 ,
and we prove that n j=1 η 1,j -Ṽn P -→ 0 and n j=1 η 2,j -W n P -→ 0 where Ṽn and W n are defined in Section 5. To prove the first assertion, we first notice that

TrD j (E j+1 Q j )D j (E j+1 Q j ) = E j+1 (TrD j (E j+1 Q j )D j Q j ) = E j+1 (TrD j (E j+1 Q)D j Q) + ε with |ε| ≤ 2σ 4 max ρ -2 by Lemma 6.3-(3). Therefore, η 1,j = E j+1 χ (j) j,n 1 + 1 n TrD j EQ 2 + ε 1 + 1 n TrD j EQ 2 .
It remains to control the difference 1 + 1 n TrD j EQ -2 -1 + 

+ ρI N ) = N log ρ + N ∞ ρ 1 ω - 1 N TrQ(-ω) dω .
Since 1 N TrQ(z) ∈ S(R + ), we have 1 ω -1 N TrQ(-ω) ≥ 0 for ω > 0. In fact, recall that Q(-ω) ≤ ω -1 by Proposition 2.2. Therefore, by Fubini's Theorem,

E log det(Y n Y * n + ρI N ) = N log ρ + N ∞ ρ 1 ω - 1 N TrEQ(-ω) dω .
Similarly,

N V n (ρ) = N log(λ + ρ)π n (dλ) = N log ρ + N ∞ ρ 1 ω - 1 N TrT (-ω) dω.
Hence the bias term is given by:

B n (ρ) △ = E log det(Y n Y * n + ρI N ) -N V n (ρ) = ∞ ρ
Tr (T (-ω) -EQ(-ω)) dω .

In Appendix B, we prove that:

Tr(T -Q) = Tr( T -Q) . (7.2) 
Therefore, we can also write the bias as:

B n (ρ) = ∞ ρ Tr T (-ω) -E Q(-ω) dω . (7.3) 
For technical reasons (and in order to rely on results of Section 5), we use representation (7.3) of the bias instead of (7.1). The proof of Theorem 3.3 will rely on the study of the asymptotic behaviour of the integrand in the right hand side of this equation.

As a by-product of Section 5, the existence and uniqueness of the solution of the system of equations (3.1) is straightforward. Indeed, define the n × 1 vectors w and p as w = (w j,n ; 1 ≤ j ≤ n) , p = p j,n ; 1 ≤ j ≤ n .

Then the system (3.1) can be written in a matrix form as w = Aw + p . The rest of the proof will be carried out into four steps:

(1) We first introduce a perturbated version of the system (7.4). For the reader's convenience, we recall the following notations:

t i = 1 ω 1 + 1 n Tr Di T , tj = 1 ω 1 + 1 n TrD j T , c i = 1 ω 1 + 1 n Tr Di E Q , cj = 1 ω 1 + 1 n TrD j EQ , b i = 1 ω 1 + 1 n Tr Di C , bj = 1 ω 1 + 1 n TrD j C
, where z is equal to -ω with ω ≥ 0. Write the integrand in (7.3) as

Tr T (-ω) -E Q(-ω) = 1 n n j=1 ϕ j (ω) with ϕ j (ω) △ = n( tj (-ω) -E[ Q(-ω)] jj ) . (7.5) Let ψ (j) (ω) △ = n( bj (-ω) -E[ Q(-ω)] jj
) and define the n × 1 vectors ϕ and ψ and the n × n matrix Ȃ as

ϕ = ϕ j ; 1 ≤ j ≤ n , ψ = ψ (j) ; 1 ≤ j ≤ n , Ȃ = 1 n 2 TrD j D m CT (1 + 1 n TrD j T )(1 + 1 n TrD j C) n j,m=1
We first prove that ϕ = Ȃϕ + ψ . (7.6) (2) We prove that

ψ (j) = κ ω 2 bj cj ω n N i=1 σ 2 ij c 3 i 1 n n m=1 σ 4 im E[ Qi ] 2 mm - cj n N i=1 σ 4 ij E[Q j ] 2 ii + ε (j) , (7.7) 
with |ε (j) | ≤ Kn -1/2 where K is a constant that does not depend on n nor on j (but may depend on ω).

(3) Matrix Ȃ readily approximates A and vector ψ approximates p for large n by Step 2. Therefore, by inspecting Equations (7.4) and (7.6), one may expect ϕ to be close to w. We prove here that

ϕ -w ∞ ---------→ n→∞,N/n→c 0 . (7.8) (4) Let β n (ω) = 1 n n j=1 w j,n (ω) 
. Eq. (7.8) yields 1 n n j=1 ϕ j (ω)β n (ω) → 0 . In order to prove (3.5), it remains to integrate and to provide a Dominated Convergence Theorem argument. To this end, we shall prove that:

|β n (ω)| ≤ K ′ ω 3 (7.9)
for n large enough. This will establish (3.4). We will also prove that

1 n n j=1 ϕ j (ω) ≤ K ′ ω 2 (7.10)
for ω ∈ [ρ, +∞), where K ′ does not to depend on n nor on ω. This will yield (3.5) and the proof of Theorem 3.3 will be completed.

7.1. Proof of step 1: Equation (7.6). Recall that ψ (j) = n( bj -E[ Q] jj ). Using these expressions, we have for 1 ≤ j ≤ n:

ϕ j = n( tj -bj ) + ψ (j) = n bj tj b-1 j -t-1 j + ψ (j) = ω bj tj TrD j (C -T ) + ψ (j) = ω bj tj N i=1 σ 2 ij c i t i t -1 i -c -1 i + ψ (j) = ω 2 bj tj n 2 N i=1 n m=1 σ 2 ij σ 2 im c i t i ϕ m + ψ (j) = ω 2 bj tj n m=1 1 n 2 Tr(D j D m CT ) ϕ m + ψ (j) ,
which yields Eq. (7.6).

7.2. Proof of step 2: Expression of ψ (j) . We shall develop ψ (j) as

ψ (j) = ψ 1 + ψ 2 -ψ 3 (7.11) ψ 1 = ψ 4 + ε 1 (7.12)
ψ 2 = -ψ 5 + ψ 6 (7.13)

ψ 5 = ψ 7 + ε 5 (7.14) ψ 6 = ψ 8 + ε 6 (7.15) ψ 3 = ψ 9 + ε 3 (7.16)
where the ψ k 's and the ε k 's will be introduced when required. We shall furthermore prove that |ε k | ≤ Kn -1/2 for k = 1, 3, 5, 6. This will yield

ψ (j) = ψ 4 -ψ 7 + ψ 8 -ψ 9 + ε (j) with |ε (j) | = |ε 1 -ε 3 -ε 5 + ε 6 | ≤ K n 1/2 . (7.17)
Let us begin with decomposition (7.11):

ψ (j) = n bj E [ Q] jj [ Q] -1 jj -b-1 j (a) = nω bj E [ Q] jj y * j Q j y j - 1 n TrD j C (b) = nω bj cj E y * j Q j y j - 1 n TrD j C -nω 2 bj cj E [ Q] jj y * j Q j y j - 1 n TrD j EQ y * j Q j y j - 1 n TrD j C (c) = ω bj cj TrD j E (Q j -Q) + ω bj cj TrD j (EQ -C) -nω 2 bj cj E [ Q] jj y * j Q j y j - 1 n TrD j EQ y * j Q j y j - 1 n TrD j C △ = ψ 1 + ψ 2 -ψ 3
where (a) follows from (6.2) and the definition of bj , (b) follows from identity (6.8), and (c) follows from the following equality:

E y * j Q j y j - 1 n TrD j C = 1 n TrD j (EQ j -C) = 1 n TrD j E (Q j -Q) + 1 n TrD j (EQ -C) .
Eq. (7.11) is established.

We now turn to the decomposition (7.12). Combining (6.1) and (6.2), we obtain

Q = Q j -ω[ Q] jj Q j y j y * j Q j , hence ψ 1 = ω 2b j cj E [ Q] jj y * j Q j D j Q j y j .
Using identity (6.8) and the fact that E(y * j Q j D j Q j y j ) = 1 n E(TrD j Q j D j Q j ), we obtain:

ψ 1 = ω 2 n bj c2 j E (TrD j Q j D j Q j ) -ω 3 bj c2 j E [ Q] jj y * j Q j y j - 1 n TrD j EQ y * j Q j D j Q j y j △ = ψ 4 + ε 1 .
We have: 

|ε 1 | ≤ 1 ω E y * j Q j D j Q j y j |ε 11 + ε 12 + ε 13 | , with ε 11 = y * j Q j y j -1 n TrD j Q j , ε 12 = 1 n TrD j (Q j -EQ j ), and ε 13 = 1 n TrD j E (Q j -Q).
|ε 1 | ≤ K E(y * j Q j D j Q j y j ) 2 1 2 √ n ≤ K ′ √ n ,
and (7.12) is established.

We now establish decomposition (7.13):

ψ 2 = ω bj cj TrD j (EQ -C) = ω bj cj N i=1 σ 2 ij c i E [Q] ii c -1 i -[Q] -1 ii = -ω 2 bj cj N i=1 σ 2 ij c i E [Q] ii ξ i Qi ξ * i - 1 n Tr Di E Q (a) = -ω 2 bj cj N i=1 σ 2 ij c 2 i E ξ i Qi ξ * i - 1 n Tr Di E Q + ω 3 bj cj N i=1 σ 2 ij c 2 i E [Q] ii ξ i Qi ξ * i - 1 n Tr Di E Q 2 △ = -ψ 5 + ψ 6
where (a) follows from (6.7). Equation (7.13) is established.

Let us now turn to decomposition (7.14). We have

ψ 5 = ω 2 bj cj n N i=1 σ 2 ij c 2 i
Tr Di E Qi -Q . By similar arguments as those used for ψ 1 , we have:

ψ 5 = ω 3b j cj n 2 N i=1 σ 2 ij c 3 i E Tr Di Qi Di Qi + ω 3 bj cj n 2 N i=1 σ 2 ij c 2 i E([Q] ii -c i )Tr Di Qi ξ * i ξ i Qi △ = ψ 7 + ε 5
where |ε 5 | ≤ Kn -1 2 and (7.14) is established.

Turning to (7.15), we have

ψ 6 = ω 3 bj cj N i=1 σ 2 ij c 2 i E [Q] ii ξ i Qi ξ * i - 1 n Tr Di E Q 2 = ω 3 bj cj N i=1 σ 2 ij c 3 i E ξ i Qi ξ * i - 1 n Tr Di E Q 2 -ω 4 bj cj N i=1 σ 2 ij c 3 i E [Q] ii ξ i Qi ξ * i - 1 n Tr Di E Q 3 △ = ψ ′ 6 + ε 61 , (7.18) 
using again (6.7). The term ε 61 satisfies: We now handle the term ψ ′ 6 in (7.18). We have:

|ε 61 | ≤ 1 ω 2 N i=1 σ 2 ij E |ε 611,i + ε 612,i + ε 613,i | 3 ≤ 9 ω 2 N i=1 σ 2 ij E |ε 611,i | 3 + E |ε 612,i | 3 + |ε 613,i | 3 , where ε 611,i = ξ i Qi ξ * i -1 n Tr Di Qi , ε 612,i = 1 n Tr Di Qi -E Qi ,
ψ ′ 6 = ω 3 bj cj N i=1 σ 2 ij c 3 i E ξ i Qi ξ * i - 1 n Tr Di Qi + ε 612,i + ε 613,i 2 = ω 3 bj cj N i=1 σ 2 ij c 3 i E ξ i Qi ξ * i - 1 n Tr Di Qi 2 + ε 62 △ = ψ 8 + ε 62 ,
where

ε 62 = ω 3 bj cj N i=1 σ 2 ij c 3 i E (ε 612,i + ε 613,i ) 2 + 2E ξ i Qi ξ * i - 1 n Tr Di Qi (ε 612,i + ε 613,i ) .
Using Lemmas 6.2-(1) and 6.3, it is easy to show that

|ε 62 | ≤ K √ n .
Furthermore, the terms E ( ) 2 in the expression of ψ 8 has a more explicit form. Indeed, applying Lemma 6.2-(2) yields: It remains to give decomposition (7.16). Using (6.8), we have

ψ 8 = ω 3b j cj n 2 N i=1 σ 2 ij c 3 i E Tr Di Qi Di Qi + κ n m=1 σ 4 im E [ Qi ]
ψ 3 = nω 2 bj cj E [ Q] jj y * j Q j y j - 1 n TrD j EQ y * j Q j y j - 1 n TrD j C = nω 2 bj c2 j E y * j Q j y j - 1 n TrD j EQ y * j Q j y j - 1 n TrD j C -nω 3 bj c2 j E [ Q] jj y * j Q j y j - 1 n TrD j EQ 2 y * j Q j y j - 1 n TrD j C △ = ψ ′ 3 + ε 31 . The term ε 31 satisfies |ε 31 | ≤ n ω E y * j Q j y j - 1 n TrD j Q j + ε 311 + ε 312 2 × y * j Q j y j - 1 n TrD j Q j + ε 311 + ε 312 + ε 313
with ε 311 = 1 n TrD j (Q j -EQ j ), ε 312 = 1 n TrD j E (Q j -Q), and ε 313 = 1 n TrD j (EQ -C). The terms ε 311 , ε 312 , and y * j Q j y j -1 n TrD j Q j can be handled by Lemmas 6.2-(1) and 6.3. The term ε 313 coincides with ψ 2 (nω bj cj ) -1 . The derivations made on ψ 2 above (decompositions (7.13-7.15)) show that |ψ 2 (ω bj cj ) -1 | ≤ K therefore |ε 313 | ≤ Kn -1 .

Using these results, we obtain after some standard manipulations:

|ε 31 | ≤ K √ n .
The term ψ ′ 3 can be written as:

ψ ′ 3 = nω 2 bj c2 j E y * j Q j y j - 1 n TrD j Q j + ε 311 + ε 312 y * j Q j y j - 1 n TrD j Q j + ε 311 + ε 312 + ε 313 = nω 2 bj c2 j E y * j Q j y j - 1 n TrD j Q j 2 + ε 32 △ = ψ 9 + ε 32
with |ε 32 | ≤ Kn -1/2 . Similarly to ψ 8 , we can develop ψ 9 to obtain We now put the pieces together and provide Eq. (7.17) satisfied by ψ (j) . We recall that

ψ 9 = ω 2b j c2 j n E(TrD j Q j D j Q j ) + κ N i=1 σ 4 ij E [Q j ]
ψ 4 = ω 2b j c2 j n E (TrD j Q j D j Q j ) , ψ 7 = ω 3b j cj n 2 N i=1 σ 2 ij c 3 i E Tr Di Qi Di Qi , ψ 8 = ω 3b j cj n 2 N i=1 σ 2 ij c 3 i E Tr Di Qi Di Qi + κ n m=1 σ 4 im E [ Qi ] 2 mm , ψ 9 = ω 2 bj c2 j n E(TrD j Q j D j Q j ) + κ N i=1 σ 4 ij E [Q j ] 2 ii .
When computing the right hand side of (7.17), all terms of the form ETrD j Q j D j Q j and ETr Di Qi Di Qi cancel out and we end up with Equation (7.7).

Step 2 is established. We are now in position to prove ϕw ∞ → 0. Working out Eq. (7.6) and (7.4), we obtain:

ϕ = w + (I -A) -1 ( Ȃ -A)ϕ + (I -A) -1 (ψ -p), hence ϕ -w ∞ ≤ (I -A) -1 ∞ ( Ȃ -A) ∞ ϕ ∞ + (I -A) -1 ∞ ψ -p ∞ .
Thanks to (7.22), we have ϕ = (I -Ȃ) -1 ψ for n large enough. One can check from (7.7) that sup n ψ ∞ < ∞. Therefore, by (7.23), we have sup n ϕ ∞ < ∞. Using (7.20) and (7.21), we then have (

I -A) -1 ∞ ( Ȃ -A) ∞ ϕ ∞ → 0.
It remains to prove that ψp ∞ → 0. In Step 3, it has been established that ψ is a perturbated version of p as defined in (3.2) in the sense of Eq. (7.7). Using the arguments developed in the course of the proof of (6.18), it is a matter of routine to check ψ-p ∞ → 0. Details are omitted. Hence (I -A) -1 ∞ ψp ∞ → 0. Consequently, ϕw ∞ → 0 and Step 3 is proved. 7.4. Proof of step 4: Dominated Convergence. In this section, constant K ′ does not depend on n neither on ω but its value is allowed to change from line to line. We first prove (7.9). We have where u n = (u ℓn ) and v n = (v ℓn ) are the vectors given in the statement of Lemma 5.5. We now inspect the expressions of u ℓn and v ℓn . Eq. (5.4) yields:

|β n | ≤ w ∞ ≤ (I -A) -
min ℓ (v ℓ,n ) ≥ 1 (ω + σ max ) 2 min j 1 N TrD j ,
and max ℓ (u ℓ,n ) ≤ (N σ 2 max )(nω 2 ) -1 by (5.6). Gathering all these estimates, we obtain |β n | ≤ K ′ ω -3 . and Inequality (7.9) is proved.

We now prove (7.10). We have

| 1 n n j=1 ϕ j | ≤ ϕ ∞ ≤ (I -Ȃ) -1 ∞ ψ ∞ (7.24)
by (7.6) and (7.22). We know that the right hand side is bounded as n → ∞. However, not much is known about the behaviour of the bound with respect to ω. Using Inequality (7.24) and relying on the derivations that lead to (7.6-7.7), one can prove that (I -Ȃ) -1 ∞ , ψ ∞ , and therefore ϕ ∞ are bounded on the compact subsets of [ρ, +∞). Therefore, in order to establish (7.10), it is sufficient to prove that ϕ ∞ is bounded by K ′ ω -2 near infinity. To this end, we develop |ϕ j (ω)| as follows:

|ϕ j (ω)| = n tj E [ Q] jj [ Q] -1 jj -t-1 j = nω tj E [ Q] jj y * j Q j y j - 1 n TrD j T ≤ ω tj E[ Q] jj |TrD j E (Q -T )| + nω tj E [ Q] jj y * j Q j y j - 1 n TrD j EQ (a) ≤ ω tj E[ Q] jj |TrD j E (Q -T )| + nω tj cj E y * j Q j y j - 1 n TrD j EQ +nω 2 tj cj E [ Q] jj y * j Q j y j - 1 n TrD j EQ 2 (b) ≤ ω tj E[ Q] jj |TrD j E (Q -T )| + ω tj cj |E(TrD j (Q j -Q))| +2nω 2 tj cj E [ Q] jj y * j Q j y j - 1 n TrD j EQ j 2 +2 ω 2 tj cj n E[ Q] jj (TrD j E(Q j -Q)) 2 ,
where (a) follows from (6.8) and (b), from the fact that (y * j Q j y j -1 n TrD j EQ) 2 ≤ 2(y * j Q j y j - 

1 n TrD j EQ j ) 2 + 2( 1 n TrD j E(Q j -Q)) 2 . Let α(ω) = n max 1≤i≤N |t i -E[Q] ii |.
E y * j Q j y j - 1 n TrD j EQ j 2 = 1 n 2 E(TrD j Q j D j Q j ) + κ N i=1 σ 4 ij E[Q j ] 2 ii ≤ N σ 4 max (1 + |κ|) n 2 ω 2 .
Since matrix D j E j Qj UQj 1+ 1 n TrDj Qj ≤ K, Lemma 6.

2-(1) in conjunction with Assumption

A-1 yield Ex 2 1,j ≤ Kn -1 . Furthermore, we have:

|x j,3 | ≤ y * j Q j U Q j y j y * j Q j y j - 1 n
TrD j Q j since y * j Q j y j ≥ 0 and 1 n TrD j Q j ≥ 0. Cauchy-Schwarz inequality yields:

Ex 2 j,3 ≤ E(y * j Q j U Q j y j ) 4 1 2 E y * j Q j y j - 1 n TrD j Q j 4 1 2
which in turn yields Ex 2 j,3 < K n since E(y * j Q j U Q j y j ) 4 ≤ K and E y * j Q j y j -

1 n TrD j Q j 4 ≤ K n 2 , (A.2)
where the first inequality in (A.2) follows from 0 ≤ y * j Q j U Q j y j ≤ Q j U Q j y j 2 and from Assumption A-1, and the second from Assumption A-1 and Lemma 6.2-(1).

We are now in position to conclude. Ex 2 j,2 = E ((E j -E j+1 )x j,3 ) 2 ≤ 2E (E j x j,3 ) 2 + (E j+1 x j,3 ) 2 (a)

≤ 2E E j x 2 j,3 + E j+1 x 2 j,3 = 4Ex 2 j,3 , where (a) follows from Jensen's inequality. Now, Ex 2 j = E(x j,1 + x j,2 ) 2 ≤ (Ex 2 j,1 )

1 2 + (Ex 2 j,2 ) 1 2 2 ≤ K n
and E(TrU (Q -EQ)) 2 = n j=1 Ex 2 j ≤ K. Inequality (2c) is proved.

Proof of (2d). We rely again on the decomposition (A.1) and follow the lines of the computations in ( [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF], page 580):

TrU (Q -EQ) = -n j=1 (E j -E j+1 ) y * j Q j U Q j y j 1 + y * j Q j y j .

Thus,

E 1 N TrU (Q -EQ) 4 = 1 N 4 E   n j=1 (E j -E j+1 ) y * j Q j U Q j y j 1 + y * j Q j y j   4 (a) ≤ K N 4 E   n j=1 (E j -E j+1 ) y * j Q j U Q j y j 1 + y * j Q j y j 2   2 (b) ≤ K N 4 N n j=1 E (E j -E j+1 ) y * j Q j U Q j y j 1 + y * j Q j y j 4 ≤ K N 2 sup j E (E j -E j+1 ) y * j Q j U Q j y j 1 + y * j Q j y j 4 ,
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 2 = log det(I n -A n ) + κTrA n , where κ = E|X 11 | 4 -2 in the fourth cumulant of the complex variable X 11 and the CLT expresses as: N Θ n (I n -EI n )
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 32 The CLT). Consider the family of random matrices (Y n Y * n ) and assume that A-1, A-2 and A-3 hold true. Let ρ > 0, let κ = E|X 11 | 4 -2, and let Θ 2

  ℓn ) < ∞ and lim inf n min 1≤ℓ≤n (v ℓn ) > 0 .

  and (1) is proved. Proof of Lemma 5.1-(2). Let us first prove the upper bound. Proposition 5.5 together with Lemma 5.2 yield lim sup n max j

Lemma 6 . 3 .( 1 ) 1 ρ

 6311 Consider the family of random matrices (Y n Y * n ) and assume that A-1 and A-2 hold true. Let z = -ρ where ρ > 0. Then, Matrices C n satisfy C n ≤ and 0 < c i ≤ 1 ρ . These inequalities remain true when C is replaced with B or C.

  D m = diag 1 n Tr D1 C, . . . , 1n Tr DN C , we have χ 2χ 4χ 6 = 0, and (6.26) becomes

  introduce matrix G n = A T n = (g ℓm ) n ℓ,m=1 , its (nj + 1) × (nj +1) principal submatrix G (j) n = (g ℓ,m ) nℓ,m=j and the matrix G

(7. 4 )

 4 Since (I -A) is invertible for n large enough, this proves Theorem 3.3-(1).

2 mm.

 2 Decomposition (7.15) is established with ε 6 = ε 61 + ε 62 .

7. 3 . 23 )

 323 Proof of step 3: ϕw ∞ → 0. In order to prove(7.8), we need the following facts:The proof of (7.20) is close to the proof of (6.31) above and is therefore omitted. The bound (7.21) follows from Lemma 5.2-(3). We now prove(7.22) and(7.23). Recall that by Lemma 5.5, there exist two vectorsu n = (u ℓ,n ) ≻ 0 and v n = (v ℓ,n ) ≻ 0 such that u n = Au n + v n , sup n u n ∞ < ∞ and lim inf n min ℓ (v ℓ,n ) > 0. Matrix Ȃ satisfies the equation u n = Ȃu n + vn with vn = (v ℓn ) = v n + (A -Ȃ)u n . Combining(7.20) with inequalities sup n u n ∞ < ∞ and lim inf n (min ℓ v ℓn ) > 0, we have lim inf n (min ℓ vℓn ) > 0. Therefore, Lemma 5.2 applies to matrix Ȃ for n large enough which implies(7.22) and(7.23).

1 ∞ p ∞ by ( 7 . 4 ) 6 max ω 4 + σ 4 max ω 3 )

 1746443 . By inspecting (3.2) one obtains p ∞ ≤ |κ|(N/n)( σ ≤ K ′ ω -3 . We need now to bound (I -A) -1 ∞ in terms of ω ∈ [ρ, ∞). Lemma 5.2-(3) yield: (I -A) -1 ∞ ≤ max ℓ (u ℓ,n ) min ℓ (v ℓ,n )

  17, Lemmas 6.1 and 6.6] For every sequence U n of N × N diagonal matrices and every sequence U n of n × n diagonal matrices such as sup n max U n , Ũn < ∞ , the following limits hold true almost surely:

  n + ε 41,j + ε 42,j where max

	j≤n	E|ε 41,j | ≤	K √ n	and max

j≤n |ε 42,j | ≤ δ n ,

(6.18) 

  As in (6.2), [Q j ] ii satisfies [Q j ] ii = -1 where ξ j i is the row ξ i without element j, and Qj i = (Y j i * Y j i + ρI n-1 ) -1 where Y j i is matrix Y without row i and column j. Using this identity and Lemmas 6.2-(1) and 6.3, we can show that [Q j ] ii is approximated by t i , which is key to prove We first provide an expression of the bias that involves the Stieltjes transforms 1 N Tr Q and 1 N Tr T . By writing log det(Y n Y * n + ρI N ) = N log ρ + log det( 1 ρ Y n Y * n + I N ) and by taking the derivative of log det( 1 ρ Y n Y * n + I N ) with respect to ρ, we obtain log det(Y n Y * n

	We now sketch the proof of -→ 0. -(z(1 + ξ j n j=1 η 2,j -W n P i Qj i ξ j i * )) n j=1 η 2,j -W n P -→ 0.
		7. Proof of Theorem 3.3		
	and one easily obtains	n j=1 η 1,j -Ṽn	P -→ 0.	1 n TrD j T	-2 , to plug (6.18)

  By Lemmas 6.2-(1), 6.3-(2c), and 6.3-(3), we have E|ε 11 | 2 ≤ Kn -1 , E|ε 12 | 2 ≤ Kn -2 , and |ε 13 | 2 ≤ Kn -2 respectively. By Cauchy-Schwarz inequality, we therefore have:

  and ε 613,i = 1 n Tr Di E Qi -Q . By Lemma 6.2-(1), E |ε 611,i | 3 ≤ Kn -3/2 . By Lemma 6.3-(2d), E |ε 612,i | 3 ≤ E |ε 612,i | Kn -3/2 . By Lemma 6.3-(3), |ε 613,i | 3 ≤ Kn -3 , hence

			4	3/4	≤
	|ε 6,1 | ≤	K √ n	.

  Decomposition (7.16) is established with ε 3 = ε 31 + ε 32 .

	2 ii	(7.19)

  Using Lemma 6.3-(3), we obtain from the last inequality

	ϕ(ω) ∞ ≤	σ 2 max ω	α(ω) +	σ 2 max ω 2 +	2n ω	E y * j Q j y j -	1 n	TrD j EQ j	2	+	2σ 4 max nω 3 .
	As in (7.19), we have									

In the sequel, κ is defined as κ = E|X 11 | 4 -2.

Therefore,

for ω ∈ [ρ, +∞). A similar derivation yields α(ω) ≤

Plugging this inequality into (7.25), we obtain

for ω large enough.

We have proved that ϕ(ω) ∞ is bounded on compact subsets of [ρ, ∞), and furthermore, that (7.10) is true for ω large enough. Therefore, (7.10) holds for every ω ∈ [ρ, +∞). Step 4 is proved, and so is Theorem 3.3.

Appendix A. Proof of Lemma 6.3

Proof of Lemma 6.3-(1). Straightforward.

Proof of Lemma 6.3-(2).

Proof of (2a). From [17, Lemmas 6.1 and 6.6], we get

the Dominated Convergence Theorem yields the first part of (2a). The second part is proved similarly.

Proof of (2b). Recall from Theorem 2.3-(1) and from the mere definitions of T and B that matrices T (z) and B(z) can be written as

.

We therefore have

TrD j (EQ -T ). It can be easily checked that

x n ij → n 0 for every i, j by (2a). It remains to apply the Dominated Convergence Theorem to the integral with respect to Lebesgue measure on [0, 1] 2 of the staircase function f n (x, y) defined as f n (i/N, j/n) = x n ij to deduce that 1 n TrU (B -T ) → 0. This ends the proof of (2b).

In the sequel, K is a constant whose value might change from line to line but which remains independent of n.

Proof of (2c). We have

where (a) follows from the fact that

follows from the fact that E j Tr U Q j = E j+1 Tr U Q j since Q j does not depend on y j and (c) follows from (6.1) and from the fact that Tr Q j y j y * j Q j U = y * j Q j U Q j y j . Now, one can easily check that n j=1 x j (= TrU (Q -EQ)) is the sum of a martingale difference sequence with respect to the increasing filtration F n , . . . , F 1 since E k x j = 0 for k > j. Therefore,

Write x j = x j,1 + x j,2 where:

Using the fact that y j and F j+1 are independent, and the fact that Q j does not depend on y j , one easily obtains:

Thus x j,1 and x j,2 write:

where (a) follows from Burkholder's inequality and (b) from the convexity inequality (

Recall now that y * j Q j y j ≥ 0 and Q j (-ρ) ≤ 1/ρ. Standard computations yield:

which is uniformly bounded by Assumptions A-1 and A-2. Therefore, (2d) is proved.

Proof of . Developing the difference Q -Q j with the help of (6.1), we obtain:

Consider a spectral representation of Y j Y j * , i.e., Y j Y j * = N i=1 λ i e i e * i . We have

We shall show now that Tr(T ) -Tr( T ) = (n -N )/z. Formula (7.2) is obtained by combining these two equations. Equations (2.2) in the statement of Lemma 2.4 can be rewritten as

By summing the first N equations over i and the next n equations over j and by eliminating the term 1 n N i=1 n j=1 σ 2 ij t i tj , we obtain i t ij tj = (n -N )/z, which is the desired result. Equation (7.2) is proved.