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Introduction

Let Ω be a bounded C 2 -domain in R d , d = 2, 3. Assume that Ω contains a finite number of inhomogeneities, each of the form z j + αB j , where B j ⊂ R d is a bounded, smooth domain containing the origin. The total collection of inhomogeneities is B α = ∪ m j=1 (z j + αB j ). The points z j ∈ Ω, j = 1, . . . , m, which determine the location of the inhomogeneities, are assumed to satisfy the following inequalities: |z j -z j ′ | ≥ c 0 > 0, ∀ j = j ′ and dist(z j , ∂Ω) ≥ c 0 > 0, ∀ j.

(

Assume that α > 0, the common order of magnitude of the diameters of the inhomogeneities, is sufficiently small, that these inhomogeneities are disjoint, and that their distance to R d \ Ω is larger than c 0 /2. Let µ 0 and ε 0 denote the permeability and the permittivity of the background medium, and assume that µ 0 > 0 and ε 0 > 0 are positive constants. Let µ j > 0 and ε j > 0 denote the permeability and the permittivity of the j-th inhomogeneity, z j + αB j , these are also assumed to be positive constants.

Introduce the piecewise-constant electric permittivity

ε α (x) = ε 0 , x ∈ Ω \ Bα , ε j , x ∈ z j + αB j , j = 1 . . . m. (2) 
If we allow the degenerate case α = 0, then the function ε 0 (x) equals the constant ε 0 . Assume that, the magnetic permeability is given by µ α (x) = µ 0 , for all x ∈ Ω.

Let ν = ν(x) denote the outward unit normal vector to Ω at a point on ∂Ω, and ∂ t = ∂ ∂t .

In this paper, we will denote by bold letters the functional spaces for the vector fields. Thus H s (Ω) denotes the usual Sobolev space on Ω and H s (Ω) denotes (H s (Ω)) d and L 2 (Ω) denotes (L 2 (Ω)) d . As usual for Maxwell equations, we need spaces of fields with square integrable curls:

H( curl ; Ω) = {u ∈ L 2 (Ω), curl u ∈ L 2 (Ω)},
and with square integrable divergences H(div ; Ω) = {u ∈ L 2 (Ω), div u ∈ L 2 (Ω)}.

We will also need the following functional spaces:

Y (Ω) = {u ∈ L 2 (Ω), div u = 0 in Ω}, X(Ω) = H 1 (Ω) ∩ Y (Ω),
and T L 2 (∂Ω) the space of vector fields on ∂Ω that lie in L 2 (∂Ω). Finally, the "minimal" choice for the magnetic variational space would be X N (Ω) = {v ∈ H( curl ; Ω) ∩ H(div ; Ω); v × ν = 0 on ∂Ω}.

We use •, • for the duality bracket and (•, •) for the L 2 product.

In the non flawed region Ω an electric field/magnetic field pair (E, H) satisfies:

curl E = -µ 0 ∂ t H in Ω × (0, T ), curl H = ε 0 ∂ t E in Ω × (0, T ), (4) 
Let T H -1/2 div (∂Ω) denote the space of tangential vector fields on ∂Ω that lie in H -1/2 (∂Ω). The most common boundary data is

(E × ν)| ∂Ω×(0,T ) given in T H -1/2 div (∂Ω). ( 5 
)
By dividing the second equation in (4) by ε 0 and taking the curl, we obtain in terms of the magnetic field:

curl ( 1 ε 0 curl H) + µ 0 ∂ 2 t H = 0 in Ω × (0, T ), (6) 
and the boundary data is supposed to be given by

(H × ν)| ∂Ω×(0,T ) = f given in T H -1/2 div (∂Ω). (7) 
Moreover, we set

H| t=0 = ϕ, ∂ t H| t=0 = ψ in Ω. ( 8 
)
Here T > 0 is a final observation time and ϕ, ψ ∈ C ∞ (Ω) and f ∈ C ∞ (0, T ; C ∞ (∂Ω)) are subject to the compatibility conditions

∂ 2l t f | t=0 = (∆ l ϕ) × ν| ∂Ω and ∂ 2l+1 t f | t=0 = (∆ l ψ) × ν| ∂Ω , l = 1, 2, . . .
Let H α ∈ R d be the magnetic field corresponding to the case of the presence of a finite number of small electromagnetic inhomogeneities. This field (under the assumption (3)) satisfies

             curl ( 1 εα curl H α ) + µ 0 ∂ 2 t H α = 0 in Ω × (0, T ), div (µ 0 H α ) = 0 in Ω × (0, T ), H α | t=0 = ϕ, ∂ t H α | t=0 = ψ in Ω, H α × ν| ∂Ω×(0,T ) = f, (9) 
It is well known that (6) has a unique solution H ∈ C ∞ ([0, T ]×Ω). It is also known (see for example [START_REF] Nicaise | Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem[END_REF]) that since Ω is smooth (C 2 -regularity would be sufficient) the non homogeneous Maxwell's equations ( 9) have a unique weak solution

H α ∈ C 0 (0, T ; X(Ω))∩ C 1 (0, T ; L 2 (Ω)). Indeed, curl H α belongs to C 0 (0, T ; X(Ω)) ∩ C 1 (0, T ; L 2 (Ω)).
Having found H α , we then obtain the field E α through the formula:

∂ t E α = 1 ε α curl H α .
Our main goal in this paper is to determine, most effectively, properties of the inhomogeneities z j + αB j , from over determined boundary information about specific solutions to [START_REF] Kime | Boundary controllability of Maxwell's equations in a spherical region[END_REF]. In particular, we study media that consist of a homogeneous(constant coefficient) electromagnetic material with a finite number of small inhomogeneities, and as our main result we derive asymptotic formulas for the perturbations in the (tangential) boundary magnetic fields caused by the presence of these inhomogeneities.

Our formulas may be used to determine properties (location, relative size) of the small inhomogeneities in case a single, or a few (tangential) boundary electric fields and their corresponding(tangential)boundary magnetic fields are known. For stationary Maxwell's equations it has been known that the Dirichlet to Neumann map uniquely determines (smooth) isotropic electromagnetic parameters, see [START_REF] Mcdowall | An electromagnetic inverse problem in chiral media[END_REF], [START_REF] Romanov | Inverse Problems for Maxwell's Equations, Inverse and Ill-posed Problems Series[END_REF], [START_REF] Somersalo | A linearized inverse boundary value problem for Maxwell's equations[END_REF]. We will provide in this paper a rigorous derivation of the inverse Fourier transform of a linear combination of derivatives of point masses, located at the positions z j of the inhomogeneities, as the leading order term of an appropriate averaging of (partial) dynamic boundary measurements of the tangential components of magnetic fields on part of the boundary. We refer the reader to [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], [START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities[END_REF], [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF], and [START_REF] Friedman | Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF] for discussions on closely related (stationary) identification problems.

Our approach, aimed at determining specific internal features of an object based on electromagnetic boundary measurements, differs from [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF], [START_REF] Ammari | Reconstruction of closely spaced small inclusions[END_REF], [START_REF] Ammari | Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter[END_REF], [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II.The full Maxwell equations[END_REF], [START_REF] Volkov | An inverse problem for the time harmonic Maxwell equations[END_REF] and it can be regarded as constructive method, but until tested.

Asymptotic behavior

We start the derivation of the asymptotic formula for curl H α × ν with the following estimate.

Lemma 2.1 The following estimate as α → 0 holds:

||∂ t (H α -H)|| L ∞ (0,T ;L 2 (Ω)) + ||H α -H|| L ∞ (0,T ;X N (Ω)) ≤ Cα d , (10) 
where the constant C is independent of α and the set of points {z j } m j=1 provided that assumption (1) holds.

Proof. From ( 6)-( 9), it is obvious that H α -H ∈ X N (Ω), then due to the Green formula we have for any v ∈ X N (Ω):

Ω µ 0 ∂ 2 t (H α -H)•v+ Ω 1 ε α curl (H α -H)• curl v = m j=1 ( 1 ε 0 - 1 ε j ) z j +αB j curl H• curl v.
(11) Let v α be defined by

v α ∈ X N (Ω), curl 1 εα curl v α = ∂ t (H α -H) in Ω. (12) 
Then,

Ω 1 ε α curl (H α -H) • curl v α = - Ω ∂ t (H α -H) • (H α -H) = - 1 2 ∂ t Ω |H α -H| 2
and by Green formula, relation [START_REF] Lions | Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués[END_REF] gives:

Ω ∂ 2 t (H α -H) • v α = Ω curl 1 ε α curl ∂ t v α • v α = - Ω 1 ε α curl ∂ t v α • curl v α = - 1 2 ∂ t Ω 1 ε α | curl v α | 2 .
Thus, it follows from (11) that

µ 0 ∂ t Ω 1 ε α | curl v α | 2 + ∂ t Ω |H α -H| 2 = -2 m j=1 ( 1 ε 0 - 1 ε j ) z j +αB j curl H • curl v α .
Next,

| m j=1 ( 1 ε 0 - 1 ε j ) z j +αB j curl H • curl v α | ≤ C|| curl H|| L 2 (Bα) || curl v α || L 2 (Ω) . Since H ∈ C ∞ ([0, T ] × Ω) we have || curl H|| L 2 (Bα) ≤ || curl H|| L ∞ (Bα) α d ( m j=1 |B j |) 1 2 ≤ Cα d , which gives | m j=1 ( 1 ε 0 - 1 ε j ) z j +αB j curl H • curl v α | ≤ Cα d || curl v α || L 2 (Ω)
and so,

µ 0 ∂ t Ω 1 ε α | curl v α | 2 +∂ t Ω |H α -H| 2 ≤ Cα d ( Ω 1 ε α | curl v α | 2 + Ω |H α -H| 2 ) 1/2 . ( 13 
)
From the Gronwall Lemma it follows that

( Ω 1 ε α | curl v α | 2 ) 1/2 + ( Ω |H α -H| 2 )) 1/2 ≤ Cα d . (14) 
Combining ( 14) with the fact that

||∂ t (H α -H)|| L ∞ (0,T ;H -1 (Ω)) ≤ C|| curl v α || L ∞ (0,T ;L 2 (Ω)) ,
the following estimate holds

||H α -H|| L ∞ (0,T ;L 2 (Ω)) + ||∂ t (H α -H)|| L ∞ (0,T ;L 2 (Ω)) ≤ Cα d . (15) 
Now, taking (formally 11) we arrive at

) v = ∂ t (H α -H) in (
µ 0 ∂ t Ω |∂ t (H α -H)| 2 + 1 ε α | curl (H α -H)| 2 = 2 m j=1 ( 1 ε 0 - 1 ε j ) z j +αB j curl H• curl ∂ t (H α -H).
By using the regularity of H in Ω and estimate [START_REF] Nicaise | Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem[END_REF] given above, we see that

| m j=1 ( 1 ε 0 - 1 ε j ) z j +αB j curl H• curl ∂ t (H α -H)| ≤ C|| curl H|| H 2 (Bα) ||∂ t (H α -H)|| H -1 (Ω) ≤ Cα 2d ,
where C is independent of t and α, and so, we obtain

∂ t Ω |∂ t (H α -H)| 2 + 1 ε α | curl (H α -H)| 2 ≤ Cα 2d
which yields the following estimate

||∂ t (H α -H)|| L ∞ (0,T ;L 2 (Ω)) + ||H α -H|| L ∞ (0,T ;X N (Ω)) ≤ Cα d ,
where C is independent of α and the points {z j } m j=1 . Now, we can estimate curl H α -curl H as follows.

Proposition 2.1 Let H α and H be solutions to the problems ( 9) and ( 6) respectively. There exist constants 0 < α 0 , C such that for 0 < α < α 0 the following estimate holds:

|| curl (H α -H)|| L ∞ (0,T ;L 2 (Ω)) ≤ Cα d , (16) 
Proof. To prove estimate [START_REF] Romanov | Inverse Problems for Maxwell's Equations, Inverse and Ill-posed Problems Series[END_REF] it is useful to introduce the following function

v(x) = T 0 v(x, t)z(t) dt ∈ L 2 (Ω), (17) 
where v ∈ L 1 (0, T ; L 2 (Ω)) and z(t) is a given function in

C ∞ 0 (]0, T [). Then, Ĥ(x) = T 0 H(x, t)z(t) dt and Ĥα (x) = T 0 H α (x, t)z(t) dt ∈ X(Ω),
which by relation [START_REF] Komornik | Boundary stabilization, observation and control of Maxwell's equations[END_REF] give

             ( Ĥα -Ĥ) ∈ H 1 (Ω), curl curl ( Ĥα -Ĥ) = 0(α d ) in Ω, div ( Ĥα -Ĥ) = 0 in Ω, ( Ĥα -Ĥ) × ν| ∂Ω = 0, and so, || curl ( Ĥα -Ĥ)|| L 2 (Ω) = O(α d ). ( 18 
)
The fact that curl (H α -H) belongs to L ∞ (0, T ; L 2 (Ω)) and by using ( 17) and ( 18) we arrive at:

Ω | curl H α (x, t) -curl H(x, t)| 2 dx = O(α 2d ) a.e. in t ∈ (0, T ), which means that || curl (H α -H)|| L 2 (Ω) = O(α d ) a.e. in t ∈ (0, T ).
This equation can be bounded easily according to t ∈ (0, T ). Thus, estimate (16) holds.

Before formulating our main result in this section, let us denote Φ j , j = 1, . . . , m the unique vector-valued solution of the following free space Laplace equation:

                   ∆Φ j = 0 in B j , and R d \ B j , Φ j is continuous across ∂B j , ε j ε 0 ∂Φ j ∂ν j | + - ∂Φ j ∂ν j | -= -ν j , lim |y|→+∞ |Φ j (y)| = 0, (19) 
where ν j denotes the outward unit normal to ∂B j , and superscripts -and + indicate the limiting values as the point approaches ∂B j from outside B j , and from inside B j , respectively. The existence and uniqueness of this Φ j can be established using single layer potentials with suitably chosen densities, see [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF] for the case of conductivity problem. For each inhomogeneity z j + αB j we introduce the polarizability tensor M j which is a d × d, symmetric, positive definite matrix associated with the j-th inhomogeneity, given by

(M j ) k,l = e k • ( ∂B j (ν j + ( ε j ε 0 -1) ∂Φ j ∂ν j | + (y))y • e l dσ j (y)). (20) 
Here (e 1 , . . . , e d ) is an orthonormal basis of R d . In terms of this function we are able to prove the following result about the asymptotic behavior of curl

H α • ν j | ∂(z j +αB j ) + .
Theorem 2.1 Suppose that ( 1) is satisfied and let Φ j , j = 1, . . . , m be given as in [START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities[END_REF].

Then, for the solutions H α , H of problems ( 9) and ( 6) respectively, and for y ∈ ∂B j we have

( curl H α (z j + αy) • ν j )| ∂(z j +αB j ) + = curl H(z j , t) • ν j (21) +(1 - ε j ε 0 ) ∂Φ j ∂ν j | + (y) • curl H(z j , t) + o(1).
The term o(1) uniform in y ∈ ∂B j and t ∈ (0, T ) and depends on the shape of {B j } m j=1

and Ω, the constants c 0 , T , ε 0 , {ε j } m j=1 , the data ϕ, ψ, and f , but is otherwise independent of the points {z j } m j=1 .

Proof.

Let H α = curl H α (x, t) and H 0 = curl H(x, t). Then, according to ( 6)-( 9) we have

µ 0 ∂ 2 t H α -curl 1 ε α H α = 0 and curl H α = 0, for x ∈ Ω. (22) 
We restrict, for simplicity, our attention to the case of a single inhomogeneity, i.e., the case m = 1. The proof for any fixed number m of well separated inhomogeneities follows by iteration of the argument that we will present for the case m = 1. In order to further simplify notation, we assume that the single inhomogeneity has the form αB, that is, we assume it is centered at the origin. We denote the electromagnetic permeability inside αB by ε * and define Φ * the same as Φ j , defined in [START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities[END_REF], but with B j and ε j replaced by B and ε * , respectively. Define ν to be the outward unit normal to ∂B. Now, following a common practice in multiscale expansions we introduce the local variable y = x α , then the domain Ω = ( Ω α ) is well defined.

Next, let ̟ be given in

C ∞ 0 (]0, T [). For any function v ∈ L 1 (0, T ; L 2 (Ω)), we define v(x) = T 0 v(x, t) ̟(t) dt ∈ L 2 (Ω).
We remark that

∂ t v(x) = - T 0 v(x, t)̟ ′ (t) dt. So that we deduce from (22) that Ĥα satisfies      curl 1 ε α Ĥα = T 0 H α ̟ ′′ (t) dt in Ω, curl Ĥα = 0 in Ω. Analogously, Ĥ satisfies      1 ε 0 curl Ĥ = T 0 H ̟ ′′ (t) dt in Ω, curl Ĥ = 0 in Ω.
Indeed, we have Ĥα × ν = Ĥ × ν = curl ∂Ω f × ν on the boundary ∂Ω, where curl ∂Ω is the tangential curl. Following [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II.The full Maxwell equations[END_REF] and [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF], we introduce q * α as the unique solution to the following problem

                   ∆q * α = 0 in Ω = ( Ω α ) \ B and in B, q * α is continuous across ∂B, ε 0 ∂q * α ∂ν | + -ε * ∂q * α ∂ν | -= -(ε 0 -ε * ) Ĥ(αy) • ν on ∂B, q * α = 0 on ∂ Ω.
The jump condition

ε 0 ∂q * α ∂ν | + -ε * ∂q * α ∂ν | -= -(ε 0 -ε * ) Ĥ(αy) • ν on ∂B
guarantees that Ĥα (x) -Ĥ(x) -grad y q * α ( x α ) belongs to the functional space X N (Ω), where grad ∂Ω is the tangential gradient. Since

             curl 1 ε α ( Ĥα -Ĥ -grad y q * α ( x α )) = T 0 H α -χ(Ω \ αB)H + ε * ε 0 χ(αB)H ̟ ′′ (t) dt in Ω, curl ( Ĥα -Ĥ -grad y q * α ( x α )) = 0 in Ω, ( Ĥα -Ĥ -grad y q * α ( x α )) × ν = 0 on ∂Ω,
where χ(ω) is the characteristic function of the domain ω, we arrive, as a consequence of the energy estimate given by Lemma 2.1, at the following

                 ( Ĥα -Ĥ -grad y q * α ( x α )) ∈ X N (Ω), curl 1 ε α ( Ĥα -Ĥ -curl y q * α ( x α )) = 0(α) in Ω, curl ( Ĥα -Ĥ -grad y q * α ( x α )) = 0 in Ω, ( Ĥα -Ĥ -grad y q * α ( x α )) × ν = 0 on ∂Ω.
From [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II.The full Maxwell equations[END_REF] we know that this yields the following estimate

|| curl 1 ε α ( Ĥα -Ĥ -grad y q * α ( x α ))|| L 2 (Ω) + || Ĥα -Ĥ -grad y q * α ( x α )|| L 2 (Ω) ≤ Cα,
and so, ( Ĥα -Ĥ -grad y q * α (

x α )) • ν| + = 0(α) on ∂(αB).
Now, we denote by q * be the unique (scalar) solution to

                 ∆q * = 0 in R d \ B and in B, q * is continuous across ∂B, ε 0 ∂q * ∂ν | + -ε * ∂q * ∂ν | -= -(ε 0 -ε * ) Ĥ(0) • ν on ∂B, lim |y|→+∞ q * = 0.
In the spirit of Theorem 1 in [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF] it follows that ||( grad y q * -grad y q * α )(

x α )|| L 2 (Ω) ≤ Cα 1/2 , which yields ( Ĥα -Ĥ -grad y q * ( x α )) • ν = o(1) on ∂(αB).
Writing q * in terms of Φ * gives

T 0 ( curl H α (αy)•ν)| ∂(αB) + -ν• curl H(0, t)-( ε 0 ε * -1) ∂Φ * ∂ν | + (y)• curl H(0, t) ̟(t) dt = o(1),
for any ̟ ∈ C ∞ 0 (]0, T [), and so, by iterating the same argument for the case of m (well separated) inhomogeneities z j + αB j , j = 1, . . . , m, we arrive at the promised asymptotic formula (21).

Reconstruction

Before describing our identification and reconstruction procedure, let us introduce the following cutoff function β(x) ∈ C ∞ 0 (Ω) such that β ≡ 1 in a subdomain Ω ′ of Ω that contains the inhomogeneities B α and let η ∈ R d . We will take in what follows H(x, t) = η ⊥ e iη•x-i √ ε 0 |η|t where η ⊥ is a unit vector that is orthogonal to η which corresponds to taking ϕ(x) = η ⊥ e iη•x , ψ(x) = -i √ ε 0 |η|η ⊥ e iη•x , and f (x, t) = η ⊥ × νe iη•x-i √ ε 0 |η|t and assume that we are in possession of the measurements of:

curl H α × ν on Γ × (0, T ),
where Γ is an open part of ∂Ω. Suppose now that T and the part Γ of the boundary ∂Ω are such that they geometrically control Ω which means that they satisfy the geometric control hypothesis of the work of Bardos, Lebeau and Rauch in [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF]:

Definition 3.1 Let Γ be
an open subset of ∂Ω and T a positive number. One says that (Γ, T ) geometrically control Ω if for every geometrical optic ray s → γ(s), there exists s 0 ∈]0, T [ such that γ(s 0 ) ∈ Γ×]0, T [ and γ(s 0 ) non diffractive point.

It follows from [START_REF] Nicaise | Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem[END_REF] (see also [START_REF] Lagnese | Exact boundary controllability of Maxwell's equations in a general region[END_REF], [START_REF] Kime | Boundary controllability of Maxwell's equations in a spherical region[END_REF] and [START_REF] Komornik | Boundary stabilization, observation and control of Maxwell's equations[END_REF]) that we can construct (a unique) g η ∈ H 1 0 (0, T ; T L 2 (Γ)) (by the Hilbert Uniqueness Method) such that the unique weak solution w η to

                   (∂ 2 t + curl curl )w η = 0 in Ω × (0, T ), div w η = 0 in Ω × (0, T ), w η | t=0 = β(x)η ⊥ e iη•x , ∂ t w η | t=0 = 0 in Ω, w η × ν| ∂Ω\Γ×(0,T ) = 0, w η × ν| Γ×(0,T ) = g η , (23) satisfies w η (T ) = ∂ t w η (T ) = 0 in Ω. Let θ η ∈ H 1 (0, T ; T L 2 (Γ)) denote the unique solution of the Volterra equation of second kind    ∂ t θ η (x, t) + T t e -i|η|(s-t) (θ η (x, s) -i|η|∂ t θ η (x, s)) ds = g η (x, t) for x ∈ Γ, t ∈ (0, T ), θ η (x, 0) = 0 for x ∈ Γ.
(24) The existence and uniqueness of this θ η in H 1 (0, T ; T L 2 (Γ)) for any η ∈ R d can be established using the resolvent kernel. However, observing from differentiation of (24) with respect to t that θ η is the unique solution of the ODE:

∂ 2 t θ η -θ η = e i|η|t ∂ t (e -i|η|t g η ) for x ∈ Γ, t ∈ (0, T ), θ η (x, 0) = 0, ∂ t θ η (x, T ) = 0 for x ∈ Γ, (25) 
the function θ η may be find (in practice) explicitly with variation of parameters and it also immediately follows from this observation that θ η belongs to H 2 (0, T ; T L 2 (Γ)). We introduce v η as the unique weak solution (obtained by transposition as done in [START_REF] Lions | Nonhomogeneous Boundary Value Problems and Applications[END_REF] and in [START_REF] Lions | Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués[END_REF] [Theorem 4.2, page 46] for the scalar function) in C 0 (0, T ; X(Ω)) ∩ C 1 (0, T ; L 2 (Ω)) to the following problem

                         (∂ 2 t + curl curl )v η = 0 in Ω × (0, T ), div v η = 0 in Ω × (0, T ), v η | t=0 = 0 in Ω, ∂ t v η | t=0 = m j=1 i(1 - ε 0 ε j )η × (ν j + ( ε 0 ε j -1) ∂Φ j ∂ν j | + )e iη•z j δ ∂(z j +αB j ) ∈ Y (Ω) in Ω, v η × ν| ∂Ω×(0,T ) = 0.
Then, the following holds.

Proposition 3.1 Suppose that Γ and T geometrically control Ω. For any η ∈ R d and η ⊥ unit vector in R d that is orthogonal to η, we have

T 0 Γ g η • ( curl v η × ν) = α d m j=1 ε 0 (1 - ε j ε 0 )e 2iη•z j η × ( ∂B j (ν j (26) +( ε j ε 0 -1) ∂Φ j ∂ν j | + (y))))y • η • η ⊥ ds j (y) + O(α d ).
Proof. Multiply the equation (∂ 2 t + curl curl )v η = 0 by w η and integrating by parts in t ∈ (0, T ), we get

T 0 Ω (∂ 2 t + curl curl )v η w η = T 0 Ω curl curl v η w η + Ω T 0 ∂ 2 t v η w η = T 0 Ω curl curl v η w η + Ω ∂ t v η w η | t=0 -∂ t v η w η | t=T - Ω T 0 ∂ t v η ∂ t w η = T 0 Ω curl curl v η w η + Ω ∂ t v η w η | t=0 + Ω v η ∂ t w η | t=0 + Ω T 0 v η ∂ 2 t w η .
So, by Green's formula,

T 0 Ω (∂ 2 t + curl curl )v η w η = -α d-1 m j=1 i(1 - ε j ε 0 )e 2iη•z j η × ( ∂B j (ν j + ( ε j ε 0 -1) ∂Φ j ∂ν j | + (y))e iαη•y ) • β(y)η ⊥ ds j (y) -ε -1 0 T 0 Γ g η • ( curl v η × ν) = 0. Therefore α d-1 m j=1 i(1 - ε j ε 0 )e 2iη•z j η × ( ∂B j (ν j + ( ε j ε 0 -1) ∂Φ j ∂ν j | + (y))e iαη•y ) • β(y)η ⊥ ds j (y) = -ε -1 0 T 0 Γ g η • ( curl v η × ν).
Now, we take the Taylor expansion of α d-1 e iαη•y in the left side of the last equation and we use the definition of the cutoff function β(x), we obtain the convenient asymptotic formula (26).

To identify the locations and certain properties of the small inhomogeneities B α let us view the averaging of the boundary measurements curl H α × ν| Γ×(0,T ) , using the solution θ η to the Volterra equation (24) or equivalently the ODE (25), as a function of η. The following holds. Theorem 3.1 Let η ∈ R d and η ⊥ be a unit vector in R d that is orthogonal to η. Let H α be the unique solution in C 0 (0, T ; X(Ω))∩C 1 (0, T ; L 2 (Ω)) to the Maxwell's equations [START_REF] Kime | Boundary controllability of Maxwell's equations in a spherical region[END_REF] with ϕ(x) = η ⊥ e iη•x , ψ(x) = -i √ ε 0 |η|η ⊥ e iη•x , and f (x, t) = η ⊥ e iη•x-i √ ε 0 |η|t . Suppose that Γ and T geometrically control Ω, then we have

T 0 Γ θ η • ( curl H α × ν -curl H × ν) + ∂ t θ η • ∂ t ( curl H α × ν -curl H × ν) = α d m j=1 (ε 0 -ε j )e 2iη•z j (η × M j (η)) • η ⊥ + O(α d ), (27) 
where θ η is the unique solution to the Volterra equation ( 25) with g η defined as the boundary control in (23) and M j is the polarization tensor of B j , defined by

(M j ) k,l = e k • ( ∂B j (ν j + ( ε j ε 0 -1) ∂Φ j ∂ν j | + (y))y • e l ds j (y)). (28) 
Here (e 1 , • • • , e d ) is an orthonormal basis of R d . The term O(α d ) is independent of the points {z j , j = 1, • • • , m}.

Proof. From ∂ t θ η (T ) = 0 and ( curl

H α × ν -curl H × ν)| t=0 = 0 the term T 0 Γ ∂ t θ η • ∂ t ( curl H α × ν -curl H × ν)
has to be interpreted as follows

T 0 Γ ∂ t θ η • ∂ t ( curl H α × ν -curl H × ν) = - T 0 Γ ∂ 2 t θ η • ( curl H α × ν -curl H × ν). (29) Next, introduce Hα,η (x, t) = H(x, t) + t 0 e -i √ ε 0 |η|s v η (x, t -s) ds, x ∈ Ω, t ∈ (0, T ). ( 30 
)
We have

T 0 Γ θ η • ( curl H α × ν -curl H × ν) + ∂ t θ η • ∂ t ( curl H α × ν -curl H × ν) = T 0 Γ θ η • ( curl H α × ν -curl Hα,η × ν) + ∂ t θ η • ∂ t ( curl H α × ν -curl Hα,η × ν) + T 0 Γ θ η • t 0 e -i √ ε 0 |η|s v η (x, t -s) × ν ds + ∂ t θ η • ∂ t t 0 e -i √ ε 0 |η|s v η (x, t -s) × ν ds .
Since θ η satisfies the Volterra equation (25) and

∂ t ( t 0 e -i √ ε 0 |η|s v η (x, t -s) × ν ds) = ∂ t (e -i √ ε 0 |η|t t 0 e i √ ε 0 |η|s v η (x, s) × ν ds) = i √ ε 0 |η|e -i √ ε 0 |η|t t 0 e i √ ε 0 |η|s v η (x, s) × ν ds + v η (x, t) × ν,
we obtain by integrating by parts over (0, T ) that

T 0 Γ θ η • t 0 e -i √ ε 0 |η|s v η (x, t -s) × ν ds + ∂ t θ η • ∂ t t 0 e -i √ ε 0 |η|s v η (x, t -s) × ν ds = T 0 Γ (v η (x, t) × ν) • (∂ t θ η + T t θ η (s)e i √ ε 0 |η|(t-s) ds) -i √ ε 0 |η|(e -i √ ε 0 |η|t ∂ t θ η (t)) • t 0 e i √ ε 0 |η|s v η (x, s) × ν ds dt = T 0 Γ v η (x, t) × ν • (∂ t θ η + T t (θ η (s) -i √ ε 0 |η|∂ t θ η (s))e i √ ε 0 |η|(t-s) ds) dt = T 0 Γ g η (x, t) • ( curl v η (x, t) × ν) dt
and so, from Proposition 3.1 we obtain

T 0 Γ θ η • ( curl H α × ν -curl H × ν) + ∂ t θ η • ∂ t ( curl H α × ν -curl H × ν) = α d m j=1 (1 - ε j ε 0 )e 2iη•z j η × ( ∂B j (ν j + ( ε j ε 0 -1) ∂Φ j ∂ν j | + (y))η • y) • η ⊥ ds j (y) + T 0 Γ θ η • ( curl H α × ν -curl Hα,η × ν) + ∂ t θ η • ∂ t ( curl H α × ν -curl Hα,η × ν) + o(α d ).
In order to prove Theorem 3.1 it suffices then to show that

T 0 Γ θ η •( curl H α ×ν -curl Hα,η ×ν)+∂ t θ η •∂ t ( curl H α ×ν -curl Hα,η ×ν) = o(α d ). (31) Since                              (∂ 2 t -curl 1 ε 0 curl )( t 0 e -i √ ε 0 |η|s v η (x, t -s) ds) = m j=1 i(1 - ε j ε 0 )η × (ν j + ( ε j ε 0 -1) ∂Φ j ∂ν j | + (y))e iη•z j δ ∂(z j +αB j ) e -i √ ε 0 |η|t in Ω × (0, T ), ( t 0 e -i √ ε 0 |η|s v η (x, t -s) ds)| t=0 = 0, ∂ t ( t 0 e -i √ ε 0 |η|s v η (x, t -s) ds)| t=0 = 0 in Ω, ( t 0 e -i √ ε 0 |η|s v η (x, t -s) ds) × ν| ∂Ω×(0,T ) = 0, it follows from Theorem 2.1 that          (∂ 2 t -curl 1 ε 0 curl )(H α -Hα,η ) = O(α d ) ∈ Y (Ω), in Ω × (0, T ), (H α -Hα,η )| t=0 = 0, ∂ t (H α -Hα,η )| t=0 = 0 in Ω, (H α -Hα,η ) × ν| ∂Ω×(0,T ) = 0.
Following the proof of Proposition 2.1, we immediately obtain

||H α -Hα,η || L 2 (Ω) = O(α d ), t ∈ (0, T ), x ∈ Ω,
where O(α d ), d = 2, 3 is independent of the points {z j } m j=1 . To prove (31) it suffices then from (29) to show that the following estimate holds Our identification procedure is deeply based on Theorem 3.1. Let us neglect the asymptotically small remainder in the asymptotic formula (27), and define ℵ α (η) by

|| curl H α × ν -curl Hα,η × ν|| L 2 (0,T ;T L 2 (Γ)) = O(α d ).
ℵ α (η) = T 0 Γ θ η • ( curl (H α -H) × ν) + ∂ t θ η • ∂ t ( curl (H α -H) × ν) .
Recall that the function e 2iη•z j is exactly the Fourier Transform (up to a multiplicative constant) of the Dirac function δ -2z j (a point mass located at -2z j ). From Theorem 3.1 it follows that the function e 2iη•z j is (approximately) the Fourier Transform of a linear combination of derivatives of point masses, or אα (η) ≈ α d m j=1

L j δ -2z j , where L j is a second order constant coefficient, differential operator whose coefficients depend on the polarization tensor M j defined by (28) (see [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computional reconstruction[END_REF] for its properties) and אα (η) represents the inverse Fourier Transform of ℵ α (η). The method of reconstruction consists in sampling values of אα (η) at some discrete set of points and then calculating the corresponding discrete inverse Fourier Transform. After a rescaling the support of this discrete inverse Fourier Transform yields the location of the small inhomogeneities B α . Once the locations are known we may calculate the polarization tensors (M j ) m j=1 by solving an appropriate linear system arising from (27). This procedure generalizes the approach developed in [START_REF] Ammari | Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter[END_REF] for the two-dimensional (time-independent) inverse conductivity problem and generalize the results in [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF] to the full time-dependent Maxwell's equations.

Let θ be given in C ∞ 0 ( 0 H

 00 α (x, t)θ(t) dt.From definition (30) we can write                 ( Ĥα -Ĥα ) ∈ H 1 (Ω), curl curl ( Ĥα -Ĥα ) = O(α d ) ∈ Y (Ω) in Ω, div ( Ĥα -Ĥα ) = 0 in Ω, ( Ĥα -Ĥα ) × ν| ∂Ω = 0. (32)In the spirit of the standard elliptic regularity[START_REF] Evans | Partial Differential Equations[END_REF] we deduce for the boundary value problem (32) that|| curl ( Ĥα -Ĥα ) × ν|| L 2 (Γ) = O(α d ), for all θ ∈ C ∞ 0 (]0, T [); whence || curl (H α -Ĥα ) × ν|| L 2 (Γ) = O(α d ) a. e. in t ∈ (0, T ),and so, the desired estimate (27) holds. The proof of Theorem 3.1 is then over.