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The largest eigenvalue of finite rank deformation of large

Wigner matrices: convergence and non-universality of the

fluctuations

M. Capitaine∗, C. Donati-Martin† and D. Féral‡

Abstract

In this paper, we investigate the asymptotic spectrum of complex or real Deformed Wigner
matrices (MN)N defined by MN = WN/

√
N + AN where WN is a N × N Hermitian (resp.

symmetric) Wigner matrix whose entries have a symmetric law satisfying a Poincaré inequality.
The matrix AN is Hermitian (resp. symmetric) and deterministic with all but finitely many
eigenvalues equal to zero. We first show that, as soon as the first largest or last smallest eigenvalues
of AN are sufficiently far from zero, the corresponding eigenvalues of MN almost surely exit the
limiting semicircle compact support as the size N becomes large. The corresponding limits are
universal in the sense that they only involve the variance of the entries of WN . On the other hand,
when AN is diagonal with a sole simple non-null (fixed) eigenvalue large enough, we prove that the
fluctuations of the largest eigenvalue are not universal and vary with the particular distribution
of the entries of WN .

1 Introduction

This paper lies in the lineage of recent works studying the influence of some perturbations on the
asymptotic spectrum of classical random matrix models. Such questions come from Statistics (cf.
[Jo]) and appeared in the framework of empirical covariance matrices, also called non-white Wishart
matrices or spiked population models, considered by J. Baik, G. Ben Arous and S. Péché [Bk-B-P]
and by J. Baik and J. Silverstein [Bk-S1]. The work [Bk-B-P] deals with random sample covariance
matrices (SN )N defined by

SN =
1

N
Y ∗

NYN (1.1)

where YN is a p×N complex matrix whose sample column vectors are i.i.d, centered, Gaussian and of
covariance matrix a deterministic Hermitian matrix Σp having all but finitely many eigenvalues equal
to one. Besides, the size of the samples N and the size of the population p = pN are assumed of the
same order (as N → ∞). The authors of [Bk-B-P] first noticed that, as in the classical case (known
as the Wishart model) where Σp = Ip is the identity matrix, the global limiting behavior of the spec-
trum of SN is not affected by the matrix Σp. Thus, the limiting spectral measure is the well-known
Marchenko-Pastur law. On the other hand, they pointed out a phase transition phenomenon for the
fluctuations of the largest eigenvalue according to the value of the largest eigenvalue(s) of Σp. The
approach of [Bk-B-P] does not extend to the real Gaussian setting and the whole analog of their result
is still an open question. Nevertheless, D. Paul was able to establish in [P] the Gaussian fluctuations
of the largest eigenvalue of the real Gaussian matrix SN when the largest eigenvalue of Σp is simple
and sufficiently larger than one. More recently, J. Baik and J. Silverstein investigated in [Bk-S1] the
almost sure limiting behavior of the extremal eigenvalues of complex or real non necessarily Gaussian
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matrices. Under assumptions on the first four moments of the entries of YN , they showed in particu-
lar that when exactly k eigenvalues of Σp are far from one, the k first eigenvalues of SN are almost
surely outside the limiting Marchenko-Pastur support. Fluctuations of the eigenvalues that jump are
universal and have been recently found by Z. Bai and J. F. Yao in [B-Ya2] (we refer the reader to
[B-Ya2] for the precise restrictions made on the definition of the covariance matrix Σp). Note that
the problem of the fluctuations in the very general setting of [Bk-S1] is still open.

Our purpose here is to investigate the asymptotic behavior of the first extremal eigenvalues of
some complex or real Deformed Wigner matrices. These models can be seen as the additive analogue
of the spiked population models and are defined by a sequence (MN )N given by

MN =
1√
N

WN + AN := XN + AN (1.2)

where WN is a Wigner matrix such that the common distribution of its entries satisfied some tech-
nical conditions (given in (i) below) and AN is a deterministic matrix of finite rank. We establish
the analog of the main result of [Bk-S1] namely that, once AN has exactly k (fixed) eigenvalues far
enough from zero, the k first eigenvalues of MN jump almost surely outside the limiting semicircle
support. This result is universal (as the one of [Bk-S1]) since the corresponding almost sure limits
only involve the variance of the entries of WN . On the other hand, at the level of the fluctuations,
we exhibit a striking phenomenon in the particular case where AN is diagonal with a sole simple
non-null eigenvalue large enough. Indeed, we find that in this case, the fluctuations of the largest
eigenvalue of MN are not universal and strongly depend on the particular law of the entries of WN .
More precisely, we prove that the limiting distribution of the (properly rescaled) largest eigenvalue of
MN is the convolution of the distribution of the entries of WN with a Gaussian law. In particular, if
the entries of WN are not Gaussian, the fluctuations of the largest eigenvalue of MN are not Gaussian.

In the following section, we first give the precise definition of the Deformed Wigner matrices (1.2)
considered in this paper and we recall the known results on their asymptotic spectrum. Then, we
present our results and sketch their proof. We also outline the organization of the paper.

2 Model and results

Throughout this paper, we consider complex or real Deformed Wigner matrices (MN )N of the form
(1.2) where the matrices WN and AN are defined as follows:

(i) WN is a N ×N Wigner Hermitian (resp. symmetric) matrix such that the N2 random variables

(WN )ii,
√

2ℜe((WN )ij)i<j ,
√

2ℑm((WN )ij)i<j (resp. the N(N+1)
2 random variables 1√

2
(WN )ii,

(WN )ij , i < j) are independent identically distributed with a symmetric distribution µ of vari-
ance σ2 and satisfying a Poincaré inequality (see Section 3).

(ii) AN is a deterministic Hermitian (resp. symmetric) matrix of fixed finite rank r and built from
a family of J fixed real numbers θ1 > · · · > θJ independent of N with some jo such that
θjo

= 0. We assume that the non-null eigenvalues θj of AN are of fixed multiplicity kj (with∑
j 6=jo

kj = r) i.e. AN is similar to the diagonal matrix

DN = diag(θ1, . . . , θ1︸ ︷︷ ︸
k1

, . . . , θjo−1, . . . , θjo−1︸ ︷︷ ︸
kjo−1

, 0, . . . . . . , 0︸ ︷︷ ︸
N−r

, θjo+1, . . . , θjo+1︸ ︷︷ ︸
kjo+1

, . . . , θJ , . . . , θJ︸ ︷︷ ︸
kJ

). (2.1)

Before going into details of the results, we want to point out that the condition made on µ (namely
that µ satisfies a Poincaré inequality) is just a technical condition: we conjecture that our results still
hold under weaker assumptions (see Remark 2.1 below). Nevertheless, a lot of measures satisfy a
Poincaré inequality (we refer the reader to [B-G] for a characterization of such measures on R, see
also [A. et al]). For instance, consider µ(dx) = exp(−|x|α)dx with α ≥ 1.
Futhermore, note that this condition implies that µ has moments of any order (cf. Corollary 3.2 and
Proposition 1.10 in [L]).
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Let us now introduce some notations. When the entries of WN are further assumed to be Gaussian
that is, in the complex (resp. real) setting when WN is of the so-called GUE (resp. GOE), we will

write WG
N instead of WN . Then XG

N := 1√
N

WG
N will be said of the GU(O)E(N, σ2

N ) and we will let

MG
N = XG

N + AN be the corresponding Deformed GU(O)E model.
In the following, given an arbitrary Hermitian matrix B of order N , we will denote by λ1(B) ≥ · · · ≥
λN (B) its N ordered eigenvalues and by µB = 1

N

∑N
i=1 δλi(B) its empirical measure. For notational

convenience, we will also define λ0(B) = +∞ and λN+1(B) = −∞.

The Deformed Wigner model is built in such a way that the Wigner Theorem is still satisfied.
Thus, as in the classical Wigner model (AN ≡ 0), the spectral measure (µMN

) converges a.s. to the
semicircle law µsc whose density is given by

dµsc

dx
(x) =

1

2πσ2

√
4σ2 − x2 11[−2σ,2σ](x). (2.2)

This result follows from Lemma 2.2 of [B]. Note that it only relies on the two first moment assump-
tions on the entries of WN and the fact that the AN ’s are of finite rank.

On the other hand, the asymptotic behavior of the extremal eigenvalues may be affected by the
perturbation AN . Recently, S. Péché studied in [Pe] the Deformed GUE under a finite rank perturba-
tion AN defined by (ii). Following the method of [Bk-B-P], she highlighted the effects of the non-null
eigenvalues of AN at the level of the fluctuations of the largest eigenvalue of MG

N . To explain this in
more detail, let us recall that when AN ≡ 0, it was established in [T-W] that as N → ∞,

σ−1N2/3
(
λ1(X

G
N ) − 2σ

)
L−→ F2 (2.3)

where F2 is the well-known GUE Tracy-Widom distribution (see [T-W] for the precise definition).
Dealing with the Deformed GUE MG

N , it appears that this result is modified as soon as the first
largest eigenvalue(s) of AN are quite far from zero. In the particular case of a rank one perturbation
AN having a fixed non-null eigenvalue θ > 0, [Pe] proved that the fluctuations of the largest eigenvalue
of MG

N are still given by (2.3) when θ is small enough and precisely when θ < σ. The limiting law is
changed when θ = σ. As soon as θ > σ, [Pe] established that the largest eigenvalue λ1(M

G
N ) fluctuates

around

ρθ = θ +
σ2

θ
(2.4)

(which is > 2σ since θ > σ) as

√
N
(
λ1(M

G
N ) − ρθ

)
L−→ N (0, σ2

θ) (2.5)

where

σθ = σ

√
1 − σ2

θ2
. (2.6)

Similar results are conjectured for the Deformed GOE but S. Péché emphasized that her approach
fails in the real framework. Indeed, it is based on the explicit Fredholm determinantal representation
for the distribution of the largest eigenvalue(s) that is specific to the complex setting. Nevertheless,
M. Mäıda [M] obtained a large deviation principle for the largest eigenvalue of the Deformed GOE
MG

N under a rank one deformation AN ; from this result she could deduce the almost sure limit
with respect to the non-null eigenvalue of AN . Thus, under a rank one perturbation AN such that
DN = diag(θ, 0, · · · , 0) where θ > 0, [M] showed that

λ1(M
G
N )

a.s−→ ρθ, if θ > σ (2.7)

and

λ1(M
G
N )

a.s−→ 2σ, if θ ≤ σ. (2.8)
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Note that the approach of [M] extends with minor modifications to the Deformed GUE. Following the
investigations of [Bk-S1] in the context of general spiked population models, one can conjecture that
such a phenomenon holds in a more general and non necessarily Gaussian setting. The first result of
our paper, namely the following Theorem 2.1, is related to this question. Before being more explicit,
let us recall that when AN ≡ 0, the whole spectrum of the rescaled complex or real Wigner matrix
XN = 1√

N
WN belongs almost surely to the semicircle support [−2σ, 2σ] as N goes to infinity and

that (cf. [B-Yi] or Theorem 2.12 in [B])

λ1(XN )
a.s−→ 2σ and λN (XN )

a.s−→ −2σ. (2.9)

Note that this last result holds true in a more general setting than the one considered here (see [B-Yi]
for details) and in particular only requires the finiteness of the fourth moment of the law µ. Moreover,
one can readily extend the previous limits to the first extremal eigenvalues of XN i.e.

for any fixed k ≥ 1, λk(XN )
a.s−→ 2σ and λN−k(XN )

a.s−→ −2σ. (2.10)

Here, we prove that, under the assumptions (i)-(ii), (2.10) fails when some of the θj ’s are sufficiently
far from zero: as soon as some of the first largest (resp. the last smallest) non-null eigenvalues θj ’s of
AN are taken strictly larger then σ (resp. strictly smaller than −σ), the same part of the spectrum of
MN almost surely exits the semicircle support [−2σ, 2σ] as N → ∞ and the new limits are the ρθj

’s
defined by

ρθj
= θj +

σ2

θj
. (2.11)

Observe that ρθj
is > 2σ (resp. < −2σ) when θj > σ (resp. < −σ) (and ρθj

= ±2σ if θj = ±σ).
Here is the precise formulation of our result. For definiteness, we set k1 + · · · + kj−1 := 0 if j = 1.

Theorem 2.1. Let J+σ (resp. J−σ) be the number of j’s such that θj > σ (resp. θj < −σ).

(a) ∀1 ≤ j ≤ J+σ, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj
a.s.,

(b) λk1+···+kJ+σ
+1(MN) −→ 2σ a.s.,

(c) λk1+···+kJ−J
−σ

(MN ) −→ −2σ a.s.,

(d) ∀j ≥ J − J−σ + 1, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN ) −→ ρθj
a.s.

Remark 2.1. Let us notice that, following [Bk-S1], one can expect that this theorem holds true in a
more general setting than the one considered here, namely only requires four first moment conditions
on the law µ of the Wigner entries. As we will explain in the following, the assumption (i) that
µ satisfies a Poincaré inequality is actually fundamental in our reasoning since we will need several
variance estimates.

This theorem will be proved in Section 4. The second part of this work is devoted to the study of
the particular rank one diagonal deformation AN = diag(θ, 0, · · · , 0) such that θ > σ. We investigate
the fluctuations of the largest eigenvalue of any real or complex Deformed model MN satisfying (i)
around its limit ρθ (given by the previous theorem). We obtain the following result.

Theorem 2.2. Let AN = diag(θ, 0, · · · , 0) and assume that θ > σ. Define

vθ =
t

4

(m4 − 3σ4

θ2

)
+

t

2

σ4

θ2 − σ2
(2.12)

where t = 4 (resp. t = 2) when WN is real (resp. complex) and m4 :=
∫

x4dµ(x). Then

√
N
(
λ1(MN ) − ρθ

)
L−→ (1 − σ2

θ2
)
{

µ ∗ N (0, vθ)
}

. (2.13)
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Note that when m4 = 3σ4 as in the Gaussian case, the variance of the limiting distribution in (2.13)
is equal to σ2

θ (resp. 2σ2
θ) in the complex (resp. real) setting (with σθ given by (2.6)).

Remark 2.2. Since µ is symmetric, it readily follows from Theorem 2.2 that when AN = diag(θ, 0, · · · , 0)
and θ < −σ, the smallest eigenvalue of MN fluctuates as

√
N
(
λN (MN ) − ρθ

)
L−→ (1 − σ2

θ2
)
{

µ ∗ N (0, vθ)
}

.

In particular, one derives the analog of (2.5) for the Deformed GOE that is

Theorem 2.3. Let AN be an arbitrary deterministic symmetric matrix of rank one having a non-null
eigenvalue θ such that θ > σ. Then the largest eigenvalue of the Deformed GOE fluctuates as

√
N
(
λ1(M

G
N ) − ρθ

)
L−→ N (0, 2σ2

θ). (2.14)

Obviously, thanks to the orthogonal invariance of the GOE, this result is a direct consequence of
Theorem 2.2.

It is worth noticing that, according to the Cramer-Lévy Theorem (cf. [F], Theorem 1 p. 525),
the limiting distribution (2.13) is not Gaussian if µ is not Gaussian. Thus, (2.13) depends on the
particular law µ of the entries of the Wigner matrix WN which implies the non-universality of the
fluctuations of the largest eigenvalue of rank one diagonal deformation of symmetric or Hermitian
Wigner matrices (as conjectured in Remark 1.7 of [Fe-Pe]).

The latter also shows that in the non-Gaussian setting, the fluctuations of the largest eigenvalue
depend, not only on the spectrum of the deformation AN , but also on the particular definition of
the matrix AN . Indeed, in collaboration with S. Péché, the third author of the present article has
recently stated in [Fe-Pe] the universality of the fluctuations of some Deformed Wigner models under
a full deformation AN defined by (AN )ij = θ

N for all 1 ≤ i, j ≤ N (see also [Fu-K]). Before giving
some details on this work, we have to precise that [Fe-Pe] considered Deformed models such that the
entries of the Wigner matrix WN have sub-Gaussian moments. Nevertheless, thanks to the analysis
made in [R], one can observe that the assumptions of [Fe-Pe] can be reduced and that it is for example
sufficient to assume that the Wi,j ’s have moment of order 19 (the precise condition of [R] is given
by (2.15) below). Thus, the conclusions of [Fe-Pe] apply to the setting considered in our paper. The
main result of [Fe-Pe] establishes the universality of the fluctuations of the largest eigenvalue of the
complex Deformed model MN associated to a full deformation AN and for any value of the parameter
θ. In particular, when θ > σ, it is proved therein the universality of the Gaussian fluctuations (2.5).
Notice that the approach of [Fe-Pe] is completely different from the one developed below in Section
5 to derive Theorem 2.2. It is mainly based on a combinatorial method inspired by the work [So]
(which handles the non-Deformed Wigner model) and the known fluctuations for the Deformed GUE
(given by [Pe]). The combinatorial arguments of [Fe-Pe] also work (with minor modifications) in the
real framework and yields the universality of the fluctuations if θ < σ. In the case where θ > σ which
is of particular interest here, the analysis made in [Fe-Pe] reduced the universality problem in the real
setting to the knowledge of the particular Deformed GOE model which was unknown up to now (note
that this remark is also valid in the case where θ = σ). Thus, thanks to our previous Theorem 2.3
and the analysis of [Fe-Pe] and [R], we are now in position to claim the following universality.

Theorem 2.4. Let AN be a full perturbation given by (AN )ij = θ
N for all (i, j). Assume that θ > σ.

Let WN be an arbitrary real Wigner matrix with the underlying measure µ being symmetric with a
variance σ2 and such that there exists some p > 18 satisfying

µ([x, +∞[) ≤ 1

xp
. (2.15)

Then the largest eigenvalue of the Deformed model MN has the Gaussian fluctuations (2.14).

Remark 2.3. To be complete, let us notice that the previous result still holds when we allow the
distribution ν of the diagonal entries of WN being different from µ provided that ν is symmetric and
satisfies (2.15).
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The fundamental tool of this paper is the Stieltjes transform. For z ∈ C\R, we denote the resolvent
of the matrix MN by

GN (z) = (zIN − MN)−1

and the Stieltjes transform of the expectation of the empirical measure of the eigenvalues of MN by

gN (z) = E(trN (GN (z)))

where trN is the normalized trace. We also denote by

gσ(z) = E((z − s)−1)

the Stieltjes transform1 of a random variable s with semi-circular distribution µsc.
Theorem 2.1 is the analog of the main statement of [Bk-S1] established in the context of general

spiked population models. The conclusion of [Bk-S1] requires numerous results obtained previously
by J. Silverstein and co-authors in [Ch-S], [B-S1] and [B-S2] (a summary of all this literature can be
found in [B] pp. 671–675). From very clever and tedious manipulations of some Stieltjes transforms
and the use of the matricial representation (1.1), these works highligh a very close link between the
spectra of the Wishart matrices and the covariance matrix (for quite general covariance matrix which
include the spiked population model). Our approach mimics the one of [Bk-S1]. Thus, using the
fact that the Deformed Wigner model is the additive analog of the spiked population model, several
arguments can be quite easily adapted here (this point has been explained in Chapter 4 of the PhD
Thesis [Fe]). Actually, the main point in the proof consists in establishing that for any ε > 0, almost
surely,

Spect(MN ) ⊂ Kε
σ(θ1, · · · , θJ) (2.16)

for all N large, where we have defined

Kε
σ(θ1, · · · , θJ) = Kσ(θ1, · · · , θJ) + [−ε; ε]

and

Kσ(θ1, · · · , θJ) :=
{
ρθJ

; ρθJ−1 ; · · · ; ρθJ−J
−σ+1

}
∪ [−2σ; 2σ] ∪

{
ρθJ+σ

; ρθJ+σ−1 ; · · · ; ρθ1

}
.

This point is the analog of the main result of [B-S1]. The analysis of [B-S1] is based on technical and
numerous considerations of Stieltjes transforms strongly related to the Wishart context and that can
not be directly transposed here. Thus, our approach to prove such an inclusion of the spectrum of
MN is very different from the one of [B-S1]. Indeed, we use the methods developed by U. Haagerup
and S. Thorbjørnsen in [H-T], by H. Schultz [S] and by the two first authors of the present article
[C-D]. The key point of this approach is to obtain a precise estimation at any point z ∈ C\R of the
following type

gσ(z) − gN (z) +
1

N
Lσ(z) = O(

1

N2
), (2.17)

where Lσ is the Stieltjes transform of a distribution Λσ with compact support in Kσ(θ1, · · · , θJ ). In-
deed such an estimation allows us through the inverse Stieltjes transform and some variance estimates
to deduce that trN 1cKε(θ1,··· ,θJ )(MN ) = O(1/N

4
3 ) a.s.. Thus the number of eigenvalues of MN in

cKε(θ1, · · · , θJ) is almost surely a O(1/N
1
3 ) and since for each N this number has to be an integer,

we deduce that it is actually equal to zero as N goes to infinity.
Dealing with the particular diagonal perturbation AN = diag(θ, 0, . . . , 0), we obtain the fluctua-

tions of the largest eigenvalue λ1(MN) by an approach close to the one of [P] and the ideas of [B-B-P].
The reasoning relies on the writing of λ1(MN) in terms of the resolvent of a non-Deformed Wigner
matrix.

The paper is organized as follows. In Section 3, we introduce preliminary lemmas which will be of
basic use later on. Section 4 is devoted to the proof of Theorem 2.1. We first establish an equation
(called “Master equation”) satisfied by gN up to some correction of order 1

N2 (see Section 4.1). Then

1Note that in some papers for which we make reference, the Stieltjes transform is defined with the opposite sign.
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we explain how this master equation gives rise to an estimation of type (2.17) and thus to the inclusion
(2.16) of the spectrum of MN in Kε(θ1, · · · , θJ ) (see Sections 4.2 and 4.3). In Section 4.4, we use this
inclusion to relate the asymptotic spectra of AN and MN and then deduce Theorem 2.1. The last
section states Theorem 2.2.

Acknowledgments. The authors are very grateful to Jack Silverstein and Jinho Baik for providing
them their proof of Theorem 5.2 (that is a fundamental argument in the proof of Theorem 2.2) which
is presented in the Appendix of the present article.

3 Basic lemmas

We assume that the distribution µ of the entries of the Wigner matrix WN satisfies a Poincaré
inequality: there exists a positive constant C such that for any C1 function f : R → C such that f
and f ′ are in L2(µ),

V(f) ≤ C

∫
|f ′|2dµ,

with V(f) = E(|f − E(f)|2).
For any matrix M , define ||M ||2 = (Tr(M∗M))1/2 the Hilbert-Schmidt norm. Let Ψ : (MN (C)sa) →
RN2

(resp. Ψ : (MN (C)s) → R
N(N+1)

2 ) be the canonical isomorphism which maps an Hermitian (resp.
symmetric) matrix to the real parts and the imaginary parts of its entries (resp. to the entries)
(M)ij , i ≤ j.

Lemma 3.1. Let MN be the complex (resp. real) Wigner Deformed matrix introduced in Section

2. For any C1 function f : RN2

(resp. R
N(N+1)

2 ) → C such that f and the gradient ∇(f) are both
polynomially bounded,

V[f ◦ Ψ(MN )] ≤ C

N
E{‖∇ [f ◦ Ψ(MN)] ‖2

2}. (3.1)

Proof: According to Lemma 3.2 in [C-D],

V[f ◦ Ψ(XN )] ≤ C

N
E{‖∇ [f ◦ Ψ(XN )] ‖2

2}. (3.2)

Note that even if the result in [C-D] is stated in the Hermitian case, the proof is valid and the result
still holds in the symmetric case. Now (3.1) follows putting g(xij ; i ≤ j) := f(xij + (AN )ij ; i ≤ j) in
(3.2) and noticing that the (AN )ij are uniformly bounded in i, j, N . 2

This lemma will be useful to estimate many variances.
Now, we recall some useful properties of the resolvent (see [K-K-P], [C-D]). For any Hermitian matrix
M we denote its spectrum by Spect(M).

Lemma 3.2. For a N × N Hermitian or symmetric matrix M , for any z ∈ C\Spect(M), we denote
by G(z) := (zIN − M)−1 the resolvent of M .
Let z ∈ C\R,

(i) ‖G(z)‖ ≤ |ℑm(z)|−1 where ‖.‖ denotes the operator norm.

(ii) |G(z)ij | ≤ |ℑm(z)|−1 for all i, j = 1, . . .N .

(iii) For p ≥ 2,

1

N

N∑

i,j=1

|G(z)ij |p ≤ (|ℑm(z)|−1)p.

(iv) The derivative with respect to M of the resolvent G(z) satisfies:

G′
M (z).B = G(z)BG(z) for any matrix B.
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(v) Let z ∈ C such that |z| > ‖M‖; we have

‖G(z)‖ ≤ 1

|z| − ‖M‖ .

Proof: We just mention that (v) comes readily noticing that the eigenvalues of the normal matrix
G(z) are the 1

z−λi(M) , i = 1, . . . , N. 2

We will also need the following estimations on the Stieltjes transform gσ of the semi-circular distribu-
tion µsc.

Lemma 3.3. gσ is analytic on C\[−2σ, 2σ] and

• ∀z ∈ {z ∈ C : ℑmz 6= 0},
σ2g2

σ(z) − zgσ(z) + 1 = 0. (3.3)

|gσ(z)| ≤ |ℑmz|−1. (3.4)

|gσ(z)−1| ≤ |z|+ σ2|ℑmz|−1. (3.5)

|g′σ(z)| = |
∫

1

(z − t)2
dµσ(t)| ≤ |ℑm(z)|−2. (3.6)

For a > 0, θ ∈ R,

∣∣∣∣
1

agσ(z) − z + θ

∣∣∣∣ ≤ |ℑm(z)|−1. (3.7)

• ∀z ∈ {z ∈ C : |z| > 2σ},
|gσ(z)| ≤ 1

|z| − 2σ
. (3.8)

|g′σ(z)| = |
∫

1

(z − t)2
dµσ(t)| ≤ 1

(|z| − 2σ)2
. (3.9)

|gσ(z)|−1 ≤ |z| + σ2

|z| − 2σ
. (3.10)

Proof: For the equation (3.3), we refer the reader to Section 3.1 of [B]. (3.7) is a consequence of
ℑm(gσ(z))ℑm(z) < 0. Other inequalities derive from (3.3) and the definition of gσ. 2

4 Almost sure convergence of the first extremal eigenvalues

Sections 4.1, 4.2 and 4.3 below describe the different steps of the proof of the inclusion (2.16). We
choose to develop the case of the complex Deformed Wigner model and just to point out some differ-
ences with the real model case (at the end of Section 4.3) since the approach would be basically the
same. In these sections, we will often refer the reader to the paper [C-D] where the authors deal with
several independent non Deformed Wigner matrices. The reader needs to fix r = 1, m = 1, a0 = 0,
a1 = σ and to change the notations λ = z, GN = gN , G = gσ in [C-D] in order to use the different
proofs we refer to in the present framework. We shall denote by Pk any polynomial of degree k with
positive coefficients and by C, K any constants; Pk, C, K can depend on the fixed eigenvalues of AN

and may vary from line to line. We also adopt the following convention to simplify the writing: we
sometimes state in the proofs below that a quantity ∆N (z), z ∈ C\R is O( 1

Np ), p = 1, 2. This means
precisely that

|∆N (z)| ≤ (|z| + K)l Pk(|ℑm(z)|−1)

Np

for some k and some l and we give the precise majoration in the statements of the theorems or
propositions.
Section 4.4 explains how to deduce Theorem 2.1 from the inclusion (2.16).
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4.1 The master equation

4.1.1 A first master inequality

In order to obtain a master equation for gN (z), we first consider the Gaussian case, i.e. XN = XG
N is

distributed as the GUE(N, σ2

N ) distribution.2

Let us recall the integration by part formula for the Gaussian distribution.

Lemma 4.1. Let Φ be a complex valued C1 function on (MN(C)sa) and XN ∼ GUE(N, σ2

N ). Then,

E[φ′(XN ).H ] =
N

σ2
E[φ(XN )Tr(XNH)] (4.1)

for any Hermitian matrix H, or by linearity for H = Ejk, 1 ≤ j, k ≤ N where Ejk, 1 ≤ j, k ≤ N is
the canonical basis of the complex space of N × N matrices.

We apply the above lemma to the function Φ(XN ) = (GN (z))ij = ((zIN − XN − AN )−1)ij ,
z ∈ C\R, 1 ≤ i, j ≤ N . In order to simplify the notation, we write (GN (z))ij = Gij . We obtain, for
H = Eij :

E((GHG)ij) =
N

σ2
E(Gij Tr(XNH)]

E(GiiGjj) =
N

σ2
E(Gij(XN )ji]

Now, we consider the normalized sum 1
N2

∑
ij of the previous identities to obtain:

E((trN G)2) =
1

σ2
E(trN (GXN )).

Then, since

GXN = (z − XN − AN )−1(XN + AN − zIN − AN + zIN ) = −IN − GAN + zG,

we obtain the following master equation:

E((trN G)2) +
1

σ2
(−zE(trN G) + 1 + E(trN GAN )) = 0.

Now, it is well known (see [C-D], [H-T] and Lemma 3.1) that:

Var(trN (G)) ≤ C|ℑmz|−4

N2
,

thus, we obtain:

Proposition 4.1. The Stieltjes transform gN satisfies the following inequality:

|σ2g2
N (z) − zgN(z) + 1 +

1

N
E(Tr(GN (z)AN ))| ≤ C

|ℑmz|−4

N2
(4.2)

Note that since AN is of finite rank, E(Tr(GN (z)AN )) ≤ C where C is a constant independent of N
(depending on the eigenvalues of AN and z).

We now explain how to obtain the corresponding equation (4.2) in the Wigner case. Since the
computations are the same as in [C-D]3 and [K-K-P]4, we just give some hints of the proof.

Step 1: The integration by part formula for the Gaussian distribution is replaced by the following
tool:

2Throughout this section, we will drop the subscript G in the interest of clarity.
3This paper treats the case of several independent non Deformed Wigner matrices.
4The authors considered a non Deformed Wigner matrix in the symmetric real setting.
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Lemma 4.2. Let ξ be a real-valued random variable such that E(|ξ|p+2) < ∞. Let φ be a function
from R to C such that the first p + 1 derivatives are continuous and bounded. Then,

E(ξφ(ξ)) =

p∑

a=0

κa+1

a!
E(φ(a)(ξ)) + ǫ (4.3)

where κa are the cumulants of ξ, |ǫ| ≤ C supt |φ(p+1)(t)|E(|ξ|p+2), C depends on p only.

We apply this lemma with the function φ(ξ) given, as before, by φ(ξ) = Gij and ξ is now one of
the variable ℜe((XN )kl), ℑm((XN )kl). Note that, since the above random variables are symmetric,
only the odd derivatives in (4.3) give a non null term. Moreover, as we are concerned by estimation of
order 1

N2 of gN , we only need to consider (4.3) up to the third derivative (see [C-D]). The computation
of the first derivative will provide the same term as in the Gaussian case.

Step 2: Study of the third derivative.
We refer to [C-D] or [K-K-P] for a detailed study of the third derivative. Using some bounds on
GN , see Lemma 3.2, we can prove that the only term arising from the third derivative in the master
equation, giving a contribution of order 1

N , is:

1

N
E




(

1

N

N∑

k=1

G2
kk

)2


 .

In conclusion, the first master equation in the Wigner case reads as follows:

Theorem 4.1. For z ∈ C\R, gN(z) satisfies

∣∣∣∣∣∣
σ2gN (z)2 − zgN(z) + 1 +

1

N
E[Tr(GN (z)AN )] +

1

N

κ4

2
E



(

1

N

N∑

k=1

(GN (z))2kk

)2



∣∣∣∣∣∣

≤ P6(|ℑm(z)|−1)

N2
(4.4)

where κ4 is the fourth cumulant of the distribution µ.

4.1.2 Estimation of |gN − gσ|
Since

|E[Tr(GN (z)AN )]| ∨ |E



(

1

N

N∑

k=1

(GN (z))2kk

)2

 | ≤ P4(|ℑm(z)|−1),

Theorem 4.1 implies that for any z ∈ C\R,

|σ2gN(z)2 − zgN(z) + 1| ≤ P6(|ℑm(z)|−1)

N
(4.5)

To estimate |gN − gσ| from the equation (3.3) satisfied by the Stieltjes transform gσ on the one hand
and from the equation (4.5) on the other hand, we follow the method initiated in [H-T] and [S]. We
don’t develop it here since it follows exactly the lines of Section 3.4 in [C-D] but we briefly recall the
main arguments and results which will be useful later on. We define the open connected set

O′

N = {z ∈ C,ℑm(z) > 0,
P6(|ℑmz|−1)

N
(σ2|ℑm(z)|−1 + |z|) <

1

4|ℑmz|−1
}.

One can prove that for any z in O′

N ,

• gN(z) 6= 0 and
1

|gN (z)| ≤ 2(σ2|ℑm(z)|−1 + |z|) (4.6)
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• ΛN(z) := σ2gN(z) + 1
gN (z) is such that

|ΛN (z) − z| ≤ P6(|ℑmz|−1)

N
2(σ2|ℑmz|−1 + |z|) (4.7)

and we have

ℑm(ΛN (z)) ≥ ℑm(z)

2
> 0. (4.8)

• Writing the equation (3.3) at the point ΛN(z), we easily get that

gN (z) = gσ(ΛN (z)) (4.9)

on the non empty open subset O”
N = {z ∈ O′

N ,ℑmz >
√

2σ} and then on O′

N by the principle
of uniqueness of continuation.

This allows us to get an estimation of |gN (z) − gσ(z)| on O′

N and then to deduce:

Proposition 4.2. For any z ∈ C such that ℑm(z) > 0,

|gN(z) − gσ(z)| ≤ (|z| + K)
P9(|ℑmz|−1)

N
. (4.10)

4.1.3 Study of the additional term E[Tr(ANGN (z))]

From now on and until the end of Section 4.1, we denote by γ1, . . . , γr the non-null eigenvalues of AN

(γi = θj for some j 6= j0) in order to simplify the writing. Let UN := U be a unitary matrix such that
AN = U∗∆U where ∆ is the diagonal matrix with entries ∆ii = γi, i ≤ r; ∆ii = 0, i > r. We set

hN(z) = E[Tr(ANGN (z))] (4.11)

hN (z) =

r∑

k=1

γk

N∑

i,j=1

U∗
ikUkjE[Gji]

Our aim is to express hN (z) in terms of the Stieltjes transform gN (z) for N large, using the integration
by part formula. Note that since we want an estimation of order O( 1

N2 ) in the master inequality (4.4),
we only need an estimation of hN (z) of order O( 1

N ). As in the previous subsection, we first write the
equation in the Gaussian case and then study the additional term (third derivative) in the Wigner
case.

a) Gaussian case
Apply the formula (4.1) to Φ(XN ) = Gjl and H = Eil to get

E[GjiGll] =
N

σ2
E[Gjl(XN )li]

and

1

N

N∑

l=1

E[GjiGll] =
1

σ2
E[(GXN )ji].

Expressing GXN in terms of GAN , we obtain:

Iji := σ2
E[Gji trN (G)] + δij − zE[Gji] + E[(GAN )ji] = 0. (4.12)

Now, we consider the sum
∑

i,j U∗
ikUkjIji, k = 1, . . . r fixed and we denote αk =

∑
i,j U∗

ikUkjGji =
(UGU∗)kk. Then, we have the following equality, using that U is unitary:

σ2
E[αk trN (G)] + 1 − zE[αk] +

∑

i,j

U∗
ikUkjE[(GAN )ji] = 0.

11



Now,

∑

i,j

U∗
ikUkjE[(GAN )ji] = E[(UGANU∗)kk] = E[(UGU∗∆UU∗)kk]

= γkE[(UGU∗)kk] = γkE[αk].

Therefore,
σ2

E[αk trN (G)] + 1 + (γk − z)E[αk] = 0.

Since αk is bounded and Var(trN (G)) = O( 1
N2 ), we obtain

E[αk](σ2gN(z) + γk − z) + 1 = O(
1

N
). (4.13)

Then using (4.10) we deduce that E[αk](σ2gσ(z) + γk − z) + 1 = O( 1
N ) and using (3.7)

hN (z) =
r∑

k=1

γkE[αk] =
r∑

k=1

γk

z − σ2gσ(z) − γk
+ O(

1

N
). (4.14)

b) The general Wigner case
We shall prove that (4.13) still holds. We now rely on Lemma 4.2 to obtain the analogue of (4.12)

Jij := σ2
E[Gji trN (G)] + δij − zE[Gji] + E[(GAN )ji] +

κ4

6N

[
1

N

N∑

l=1

E[Ai,j,l]

]
= O(

1

N2
). (4.15)

The term Ai,j,l is a fixed linear combination of the third derivative of Φ := Gjl with respect to Re(XN)il

(i.e. in the direction eil = Eil + Eli) and ℑm(XN )il (i.e. in the direction fil :=
√
−1(Eil − Eli)). We

don’t need to write the exact form of this term since we just want to show that this term will give a
contribution of order O( 1

N ) in the equation for hN (z). Let us write the derivative in the direction eil:

E[(GeilGeilGeilG)jl]

which is the sum of eight terms of the form:

E[Gji1Gi2i3Gi4i5Gi6l] (4.16)

where if i2q+1 = i (resp. l), then i2q+2 = l (resp. i), q = 0, 1, 2.

Lemma 4.3. Let 1 ≤ k ≤ r fixed, then

F (N) := |
N∑

i,j=1

U∗
ikUkj

1

N

N∑

l=1

E[Ai,j,l]| ≤ C|ℑmz|−4 (4.17)

for a numerical constant C.

Proof: F (N) is the sum of eight terms corresponding to (4.16). Let us write for example the term
corresponding to i1 = i, i3 = i, i5 = i:

1

N

∑

i,j,l

U∗
ikUkjE[GjiGliGliGll]

= E



 1

N

∑

i,l

U∗
ik(UG)kiGliGliGll





= E

[
1

N

∑

i

U∗
ik(UG)ki(G

T GDGT )ii

]

where the superscript T denotes the transpose of the matrix and GD is the diagonal matrix with
entries Gii. From the bounds ‖GN(z)‖ ≤ |ℑmz|−1 and ‖U‖ = 1, we get the bound given in the
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lemma.
We give the majoration for the term corresponding to i1 = l, i3 = l, i5 = l:

1

N

∑

i,j,l

U∗
ikUkjE[GjlG

3
il]

= E



 1

N

∑

i,l

U∗
ik(UG)klG

3
il





Its absolute value is bounded by E

[
1
N

∑
i,l |Gil|3

]
|ℑmz|−1 and thanks to lemma 3.2 by |ℑmz|−4. The

other terms are treated in the same way. 2

As in the Gaussian case, we now consider the sum
∑

i,j U∗
ikUkjJji. From Lemma 4.3 and the bound

(using Cauchy-Schwarz inequality)
N∑

i,j=1

|U∗
ikUkj | ≤ N,

we still get (4.13) and thus (4.14). More precisely, we proved

Proposition 4.3. Let hN(z) = E[Tr(ANGN (z))], then

|hN (z) −
r∑

k=1

γk

z − σ2gσ(z) − γk
| ≤ P11(|ℑm(z)|−1)

N
(K + |z|).

4.1.4 Convergence of E

[(
1
N

∑N
k=1 G2

kk

)2
]

We now study the last term in the master inequality of Theorem 4.1. For the non Deformed Wigner
matrices, it is shown in [K-K-P] that

RN (z) := E



(

1

N

N∑

k=1

G2
kk

)2

 −→

N −→∞
g4

σ(z).

Moreover, Proposition 3.2 in [C-D], in the more general setting of several independent Wigner matrices,
gives an estimate of |RN (z) − g4

σ(z)|. The above convergence holds true in the Deformed case. We
just give some hints of the proof of the estimate of |RN (z)− g4

σ(z)| since the computations are almost
the same as in the non Deformed case. Let us set

dN (z) =
1

N

N∑

k=1

G2
kk.

We start from the resolvent identity

zGkk = 1 +
N∑

l=1

(MN )klGlk

= 1 +
N∑

l=1

(AN )klGlk +
N∑

l=1

(XN )klGlk

and

zdN (z) =
1

N

N∑

k=1

Gkk +
1

N

N∑

k=1

(ANG)kkGkk +
1

N

N∑

k,l=1

(XN )klGlkGkk.

For the last term, we apply an integration by part formula (Lemma 4.2) to obtain (see [K-K-P], [C-D])

E


 1

N

N∑

k,l=1

(XN )klGlkGkk


 = σ2

E

[
(

1

N

N∑

k=1

Gkk)dN (z)

]
+ O(

1

N
).
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It remains to see that the additional term due to AN is of order O( 1
N ).

1

N

N∑

k=1

(ANG)kkGkk =
1

N

r∑

p=1

γp(UGGDU∗)pp

and

| 1

N

N∑

k=1

(ANG)kkGkk| ≤ (
r∑

p=1

|γp|)
|ℑmz|−2

N
.

We thus obtain (again with the help of a variance estimate)

zE[dN (z)] = gN (z) + σ2gN(z)E[dN (z)] + O(
1

N
).

Then using (4.10) and since dN (z) is bounded we deduce that

zE[dN (z)] = gσ(z) + σ2gσ(z)E[dN (z)] + O(
1

N
).

Thus (using (3.7))

E[dN (z)] =
gσ(z)

z − σ2gσ(z)
+ O(

1

N
) −→

N −→∞

gσ(z)

z − σ2gσ(z)
= g2

σ(z).

Now, using some variance estimate,

E[d2
N (z)] = (E[dN (z)])2 + O(

1

N
) = g4

σ(z) + O(
1

N
). 2

We can now give our final master inequality for gN (z) following our previous estimates:

Theorem 4.2. For z ∈ C such that ℑm(z) > 0, gN(z) satisfies

∣∣∣∣σ
2g2

N(z) − zgN(z) + 1 +
1

N
Eσ(z)

∣∣∣∣ ≤
P14(|ℑmz|−1)

N2
(|z| + K)

where Eσ(z) =
∑r

k=1
γk

z−σ2gσ(z)−γk
+ κ4

2 g4
σ(z), κ4 is the fourth cumulant of the distribution µ.

Note that Eσ(z) can be written in terms of the distinct eigenvalues θj ’s of AN as

Eσ(z) =
J∑

j=1,j 6=j0

kj
θj

z − σ2gσ(z) − θj
+

κ4

2
g4

σ(z).

Let us set

Lσ(z) = gσ(z)−1
E((z − s)−2)Eσ(z) (4.18)

where s is a centered semicircular random variable with variance σ2.

4.2 Estimation of |gσ(z) − gN(z) + 1
N

Lσ(z)|
The method is roughly the same as the one described in Section 3.6 in [C-D]. Nevertheless we choose
to develop it here for the reader convenience. We have for any z in O′

n, by using (4.9),
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|gσ(z) − gN (z) + 1
N Lσ(z)|

= |gσ(z) − gσ(ΛN(z)) +
1

N
Lσ(z)|

= |E
[
(z − s)−1(ΛN (z) − s)−1(ΛN(z) − z) +

1

N
gσ(z)−1(z − s)−2Eσ(z)

]
|

≤ |E
[
(z − s)−1(ΛN (z) − s)−1(ΛN(z) − z +

1

N
gσ(z)−1Eσ(z))

]
|

+E
[
|(z − s)−1{(z − s)−1 − (ΛN (z) − s)−1}|

] 1

N
|gσ(z)−1Eσ(z)|

≤ 2|ℑm(z)|−2|ΛN (z) − z +
1

N
Eσ(z)gσ(z)−1|

+
P8(|ℑm(z)|−1)

N
|ΛN (z) − z|(|z| + K)

where we made use of the estimates (3.5), (4.8), ∀z ∈ C\R, x ∈ R,
∣∣∣∣

1

z − x

∣∣∣∣ ≤ |ℑm(z)|−1,

|Eσ(z)| ≤ P4(|ℑm(z)|−1) (using (3.7)). (4.19)

Let us write

|Λn(z) − z + 1
N Eσ(z)gσ(z)−1|

= 1
gN (z)

{
σ2g2

N(z) − zgN(z) + 1 + 1
N Eσ(z)

}
+ 1

gN (z)gσ(z)
1
N {gN(z) − gσ(z)}Eσ(z).

We get from Theorem 4.2, (4.6), (4.10), (4.19), (3.5)

|ΛN (z) − z +
1

N
Eσ(z)gσ(z)−1| ≤ (|z| + K)3

P15(|ℑmz|−1)

N2
.

Finally, using also (4.7), we get for any z in O′

n,

|gσ(z) − gN (z) +
1

N
Lσ(z)| ≤ (|z| + K)3

P17(|ℑm(z)|−1)

N2
.

Now, for z /∈ O′

n, such that ℑm(z) > 0

1 ≤ 4
P6(|(ℑm(z))−1|)

N
(|z| + σ2|ℑm(z)|−1)|ℑm(z)|−1

≤ (|z| + K)
P8(|ℑm(z)−1|)

N
.

We get

|gσ(z) − gN (z) +
1

N
Lσ(z)| ≤ |gσ(z) − gN (z)| + 1

N
|Lσ(z)|

≤ (|z| + K)
P8(|ℑm(z)|−1)

N
×

[
(|z| + K)

P9(|ℑm(z)|−1)

N
+

1

N
P7(|ℑm(z)|−1)(|z| + K)

]

≤ (|z| + K)2
P17(|ℑm(z)|−1)

N2
.

Thus, for any z such that ℑm(z) > 0,

|gσ(z) − gN (z) +
1

N
Lσ(z)| ≤ (|z| + K)3

P17(|ℑm(z)|−1)

N2
. (4.20)
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Let us denote for a while gN = gAN

N and Lσ = LAN
σ . Note that we get exactly the same estimation

(4.20) dealing with −AN instead of AN . Hence since gσ(z) = −gσ(−z), g−AN

N (z) = −gAN

N (−z) (using
the symmetry assumption on µ) and L−AN

σ (z) = LAN
σ (−z), it readily follows that (4.20) is also valid

for any z such that ℑmz < 0. In conclusion,

Proposition 4.4. For any z ∈ C\R,

|gσ(z) − gN (z) +
1

N
Lσ(z)| ≤ (|z| + K)3

P17(|ℑm(z)|−1)

N2
. (4.21)

4.3 Inclusion of the spectrum of MN

The following step now consists in deducing Proposition 4.6 from Proposition 4.4 (from which we
will easily deduce the appropriate inclusion of the spectrum of MN). Since this transition is based
on the inverse Stieltjes transform, we start with establishing the fundamental Proposition 4.5 below
concerning the nature of Lσ. Note that one can rewrite Lσ as

Lσ(z) = gσ(z)−1 × g′σ(z)

(
J∑

j=1

kj
θj

1
gσ(z) − θj

+
κ4

2
g4

σ(z)

)
. (4.22)

We recall that J+σ (resp. J−σ) denotes the number of j’s such that θj > σ (resp. θj < −σ). As in
the introduction, we define

ρθj
= θj +

σ2

θj
(4.23)

which is > 2σ (resp. < −2σ) when θj > σ (resp. < −σ).

Proposition 4.5. Lσ is the Stieltjes transform of a distribution Λσ with compact support

Kσ(θ1, · · · , θJ) :=
{
ρθJ

; ρθJ−1 ; · · · ; ρθJ−J
−σ+1

}
∪ [−2σ; 2σ] ∪

{
ρθJ+σ

; ρθJ+σ−1 ; · · · ; ρθ1

}
.

As in [S], we will use the following characterization:

Theorem 4.3. [T]

• Let Λ be a distribution on R with compact support. Define the Stieltjes transform of Λ, l :
C\R → C by

l(z) = Λ

(
1

z − x

)
.

Then l is analytic in C\R and has an analytic continuation to C\supp(Λ). Moreover

(c1) l(z) → 0 as |z| → ∞,

(c2) there exists a constant C > 0, an n ∈ N and a compact set K ⊂ R containing supp(Λ) such
that for any z ∈ C\R,

|l(z)| ≤ Cmax{dist(z, K)−n, 1},

(c3) for any φ ∈ C∞(R, R) with compact support

Λ(φ) = − 1

π
lim

y→0+
ℑm

∫

R

φ(x)l(x + iy)dx.

• Conversely, if K is a compact subset of R and if l : C\K → C is an analytic function satisfying
(c1) and (c2) above, then l is the Stieltjes transform of a compactly supported distribution Λ on
R. Moreover, supp(Λ) is exactly the set of singular points of l in K.

In our proof of Proposition 4.5, we will refer to the following lemma which gives several properties on
gσ.

16



Lemma 4.4. gσ is analytic and invertible on C\[−2σ, 2σ] and its inverse zσ satisfied

zσ(g) =
1

g
+ σ2g, ∀g ∈ gσ(C\[−2σ, 2σ]).

(a) The complement of the support of µσ is characterized as follows

x ∈ R\[−2σ, 2σ] ⇐⇒ ∃g ∈ R
∗ such that |1

g
| > σ and x = zσ(g).

(b) Given x ∈ R\[−2σ, 2σ] and θ ∈ R such that |θ| > σ, one has

1

gσ(x)
= θ ⇐⇒ x = θ +

σ2

θ
:= ρθ.

This lemma can be easily proved using for example the explicit expression of gσ (derived from (3.3))
namely for all x ∈ R\[−2σ, 2σ],

gσ(x) =
x

2σ2

(
1 −

√
1 − 4σ2

x2

)
.

Proof of Proposition 4.5: Using (4.22), one readily sees that the singular points of Lσ is the set

[−2σ; 2σ]
⋃{

x ∈ R\[−2σ, 2σ] and 1
gσ(x) ∈ Spect(AN )

}
. Hence (using point (b) of Lemma 4.4) the set

of singular points of Lσ is exactly Kσ(θ1, · · · , θJ).

Now, we are going to show that Lσ satisfies (c1) and (c2) of Theorem 4.3. We have obviously that

|z − σ2gσ(z) − θj | ≥ | |z − θj | − |σ2gσ(z)| |.

Now, let α > 0 such that α > 2σ and for any j = 1, . . . , J , α − |θj | > σ2

α−2σ . For any z ∈ C such that
|z| > α,

|z − θj | ≥ |z| − |θj | >
σ2

α − 2σ

and according to (3.8)

|σ2gσ(z)| ≤ σ2

|z| − 2σ
≤ σ2

α − 2σ
.

Thus we get that for z ∈ C such that |z| > α,

|z − σ2gσ(z) − θj | ≥ |z| − |θj | −
σ2

α − 2σ
.

Using also (3.8), (3.9), (3.10), we get readily that for |z| > α,

|Lσ(z)| ≤
(
|z|+ σ2

|z| − 2σ

)
1

(|z| − 2σ)2





J∑

j=1

kj
|θj |

|z| − |θj | − σ2

α−2σ

+
|κ4|

2(|z| − 2σ)4



 .

Then, it is clear than |Lσ(z)| → 0 when |z| → +∞ and (c1) is satisfied.

Now we follow the approach of [S](Lemma 5.5) to prove (c2). Denote by E the convex envelope of
Kσ(θ1, · · · , θJ ) and define the interval

K := {x ∈ R; dist(x, E) ≤ 1} =
[
min{x ∈ Kσ(θ1, · · · , θJ)} − 1; max{x ∈ Kσ(θ1, · · · , θJ)} + 1

]

and
D = {z ∈ C; 0 < dist(z, K) ≤ 1} .
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• Let z ∈ D ∩ C\R with ℜe(z) ∈ K. We have dist(z, K) = |ℑmz| ≤ 1. Using the upper bounds
(3.4), (3.5), (3.6) and (3.7), we easily deduce that there exists some constant C0 such that for
any z ∈ D ∩ C\R with ℜe(z) ∈ K.

|Lσ(z)| ≤ C0|ℑmz|−7 = C0dist(z, K)−7 = C0 max(dist(z, K)−7; 1).

• Let z ∈ D ∩ C\R with ℜe(z) /∈ K. Then dist(z, Kσ(θ1, · · · , θJ)) ≥ 1. Since Lσ is bounded on
compact subsets of C\Kσ(θ1, · · · , θJ), we easily deduce that there exists some constant C1 such
that for any z ∈ D with ℜe(z) /∈ K,

|Lσ(z)| ≤ C1 ≤ C1dist(z, K)−7 = C1 max(dist(z, K)−7; 1).

• Since |Lσ(z)| → 0 when |z| → +∞, Lσ is bounded on C\D. Thus, there exists some constant
C2 such that for any z ∈ C\D,

|Lσ(z)| ≤ C2 = C2 max(dist(z, K)−7; 1).

Hence (c2) is satisfied with C = max(C0, C1, C2) and n = 7 and Proposition 4.5 follows from Theorem
4.3. 2

We are now in position to deduce the following proposition from the estimate (4.21).

Proposition 4.6. For any smooth function ϕ with compact support

E[trN (ϕ(MN ))] =

∫
ϕdµsc +

1

N
Λσ(ϕ) + O(

1

N2
). (4.24)

Consequently, for ϕ smooth, constant outside a compact set and such that supp(ϕ)∩Kσ(θ1, · · · , θJ ) =
∅,

trN (ϕ(MN )) = O(
1

N
4
3

) a.s. (4.25)

Proof: Using the inverse Stieltjes tranform, we get respectively that, for any ϕ in C∞(R, R) with
compact support,

E[trN (ϕ(MN ))] −
∫

ϕdµsc −
Λσ(ϕ)

N
= − 1

π
lim

y→0+
ℑm

∫

R

ϕ(x)rN (x + iy)dx (4.26)

where rN = gσ(z) − gN(z) + 1
N Lσ(z) satisfies, according to Proposition 4.4, for any z ∈ C\R,

|rN (z)| ≤ 1

N2
(|z| + K)αPk(|ℑm(z)−1|) (4.27)

where α = 3 and k = 17.
We refer the reader to the Appendix of [C-D] where it is proved using the ideas of [H-T] that

lim sup
y→0+

|
∫

R

ϕ(x)h(x + iy)dx| ≤ C < +∞ (4.28)

when h is an analytic function on C\R which satisfies

|h(z)| ≤ (|z| + K)αPk(|ℑm(z)−1|). (4.29)

Dealing with h(z) = N2rN (z), we deduce that

lim sup
y→0+

|
∫

R

ϕ(x)rN (x + iy)dx| ≤ C

N2
(4.30)

and then (4.24).
Following the proof of Lemma 5.6 in [S], one can show that Λσ(1) = 0. Then, the rest of the proof of
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(4.25) sticks to the proof of Lemma 6.3 in [H-T] (using Lemma 3.1). 2

Following [H-T](Theorem 6.4), we set K = Kσ(θ1, · · · , θJ)+(− ε
2 , ε

2 ), F = {t ∈ R; d(t, Kσ(θ1, · · · , θJ)) ≥
ε} and take ϕ ∈ C∞(R, R) such that 0 ≤ ϕ ≤ 1, ϕ(t) = 0 for t ∈ K and ϕ(t) = 1 for t ∈ F . Then
according to (4.25), trN (ϕ(MN )) = O( 1

N
4
3
) a.s. Since ϕ ≥ 1F , it follows that trN (1F (MN )) = O( 1

N
4
3
)

a.s. and thus the number of eigenvalues of MN in F is almost surely a O( 1

N
1
3
) as N goes to infinity.

Since for each N this number has to be an integer we deduce that the number of eigenvalues of MN

in F is zero almost surely as N goes to infinity. The fundamental inclusion (2.16) follows, namely, for
any ε > 0, almost surely

Spect(MN) ⊂ Kσ(θ1, · · · , θJ) + (−ε, ε)

when N goes to infinity.

Such a method can be carried out in the case of Wigner real symmetric matrices; then the approx-
imate Master equation is the following

σ2gN(z)2−zgN(z)+1+
1

N

κ4

2
E
[( 1

N

N∑

k=1

Gkk(z)2
)2]

+
σ2

N
E
(
trN GN (z)2

)
+E (trN [ANGN (z)]) = O(

1

N2
).

Note that the additionnal term σ2

N E
(
trN GN (z)2

)
already appears in the non-Deformed GOE case in

[S]. One can establish in a similar way the analog of (4.10) and then, following the proof of Corollary
3.3 in [S], deduce that

E
(
trN GN (z)2

)
= E

(
(z − s)−2

)
+ O(

1

N
),

where s is a centered semi-circular variable with variance σ2. Hence by similar arguments as in the
complex case, one get the master equation

σ2gN (z)2 − zgN(z) + 1 +
1

N
Eσ(z) = O(

1

N2
)

where

Eσ(z) =

J∑

j=1,j 6=j0

kj
θj

z − σ2gσ(z) − θj
+

κ4

2
g4

σ(z) + E
(
(z − s)−2

)
.

It can be proved that Lσ(z) := gσ(z)−1E((z−s)−2)Eσ(z) is the Stieltjes transform of a distribution Λσ

with compact support Kσ(θ1, · · · , θJ) too. The last arguments hold likewise in the real symmetric case.

Hence we have established

Theorem 4.4. Let J+σ (resp. J−σ) be the number of j’s such that θj > σ (resp. θj < −σ). Then for
any ε > 0, almost surely, there is no eigenvalue of MN in

(−∞, ρθJ
− ǫ) ∪ (ρθJ

+ ǫ, ρθJ−1 − ǫ) ∪ · · · ∪ (ρθJ−J
−σ+1 + ǫ,−2σ − ǫ)

∪ (2σ + ǫ, ρθJ+σ
− ǫ) ∪ · · · ∪ (ρθ2 + ǫ, ρθ1 − ǫ) ∪ (ρθ1 + ǫ, +∞) (4.31)

when N is large enough.

Remark 4.1. As soon as ǫ > 0 is small enough that is when

2ǫ < min
(
ρθj−1 − ρθj

, J − J−σ + 2 ≤ j ≤ J or 2 ≤ j ≤ J+σ;−2σ − ρθJ−J
−σ+1 ; ρθJ+σ

− 2σ
)

the union (4.31) is made of non-empty disjoint intervals.
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4.4 Almost sure convergence of the first extremal eigenvalues

As announced in the introduction, Theorem 2.1 is the analog of the main statement of [Bk-S1] es-
tablished for general spiked population models (1.1). The previous Theorem 4.4 is the main step of
the proof since now, we can quite easily adapt the arguments needed for the conclusion of [Bk-S1]
viewing the Deformed Wigner model (1.2) as the additive analog of the spiked population model (1.1).

Let us consider one of the positive eigenvalue θj of the AN ’s. We recall that this implies that
λk1+···+kj−1+i(AN ) = θj for all 1 ≤ i ≤ kj . We want to show that if θj > σ (i.e. with our notations, if
j ∈ {1, · · · , J+σ}), the corresponding eigenvalues of MN almost surely jump above the right endpoint
2σ of the semicircle support as

∀1 ≤ i ≤ kj , λk1+···+kj−1+i(MN) −→ ρθj
a.s.

whereas the rest of the asymptotic spectrum of MN lies below 2σ with

λk1+···+kJ+σ
+1(MN ) −→ 2σ a.s..

Analog results hold for the negative eigenvalues θj (see points (c) and (d) of Theorem 2.1). To describe
the phenomenon, one can say that, when N is large enough, the (first extremal) eigenvalues of MN

can be viewed as a “smoothed” deformation of the (first extremal) eigenvalues of AN . So, our main
purpose now is to establish the link between the spectra of the matrices MN and AN . According to
the analysis made in the previous section (Proposition 4.5), we yet know that the θj ’s are related to
the ρθj

’s through the Stieltjes transform gσ. More precisely, one has

for all j such that |θj | > σ,
1

gσ(ρθj
)

= θj .

Actually, one can refine this analysis and state the following important Lemma 4.5 on gσ. As before,
we denote (recall Lemma 4.4) by zσ its inverse which is given by

zσ(g) =
1

g
+ σ2g.

Using Lemma 4.4, one readily sees that the set cKσ(θ1, · · · , θJ) can be characterized as follows

x ∈ cKσ(θ1, · · · , θJ ) ⇐⇒ ∃g ∈ Gσ such that x = zσ(g) (4.32)

where

Gσ :=
{
g ∈ R

∗ : |1
g
| > σ and

1

g
/∈ Spect(AN )

}
.

Obviously, when x ∈ cKσ(θ1, · · · , θJ), one has g = gσ(x).

Lemma 4.5. Let [a, b] be a compact set contained in cKσ(θ1, · · · , θJ). Then,

(i) [
1

gσ(a)
,

1

gσ(b)
] ⊂ (Spect(AN ))c.

(ii) For all 0 < σ̂ < σ, the interval [zσ̂(gσ(a)); zσ̂(gσ(b))] is contained in cKσ̂(θ1, · · · , θJ) and
zσ̂(gσ(b)) − zσ̂(gσ(a)) ≥ b − a.

Proof: The function 1
gσ

being increasing, (i) readily follows from (4.32).

Noticing that Gσ ⊂ Gσ̂ for all σ̂ < σ implies (recall also that gσ decreases on [a, b]) that [gσ(b); gσ(a)] ⊂
Gσ̂. Relation (4.32) combined with the fact that the function zσ̂ is decreasing on [gσ(b); gσ(a)] leads
to

[zσ̂(gσ(a)); zσ̂(gσ(b))] ⊂ cKσ̂(θ1, · · · , θJ )

and the first part of (ii) is stated. Now, we have

lσ(σ̂) := zσ̂(gσ(b)) − zσ̂(gσ(a))

=
1

gσ(b)
− 1

gσ(a)
+ σ̂2(gσ(b) − gσ(a)).
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Since gσ decreases on [a, b], we have gσ(b)− gσ(a) ≤ 0 and thus lσ is decreasing on R+. Then the last
point of (ii) follows since lσ(σ) = b − a. 2

Thanks to this lemma and the previous Theorem 4.4, one can state the asymptotic relation between
the spectrum of AN and the one of MN .
Let [a, b] be an interval contained in cKσ(θ1, · · · , θJ ). By Theorem 4.4, [a, b] is outside the spectrum
of MN . Moreover, from Lemma 4.5 (i), it corresponds an interval [a′, b′] outside the spectrum of AN

i.e. there is an integer iN ∈ {0, . . . , N} such that

λiN +1(AN ) <
1

gσ(a)
:= a′ and λiN

(AN ) >
1

gσ(b)
:= b′. (4.33)

a and a′ (resp. b and b′) are linked as follows

a = ρa′ := a′ +
σ2

a′ (resp. b = ρb′).

Our aim now is to prove that [a, b] splits the eigenvalues of MN exactly as [a′, b′] splits the spectrum
of AN . In [B-S2], one talks about the exact separation phenomenon.

Theorem 4.5. With iN satisfying (4.33), one has

P[λiN +1(MN) < a and λiN
(MN ) > b, for all large N ] = 1. (4.34)

Remark 4.2. This result is the analog of the main statement of [B-S2] (cf. Theorem 1.2 of [B-S2])
established in the spiked population setting (and in fact for quite general sample covariance matrices).

Intuitively, the statement of Theorem 4.5 seems rather natural when σ is close to zero. Indeed,
when N goes to ∞, since the spectrum of 1√

N
WN is concentrated in [−2σ, 2σ] (recall (2.9)), the

spectrum of MN would be close to the one of AN as soon as σ will be close to zero (in other words,
the spectrum of MN is, viewed as a deformation of the one of AN , continuous in σ in a neighborhood
of zero). Actually, this can be justified regardless of the size of σ thanks to the following classical
result (due to Weyl).

Lemma 4.6. (cf. Theorem 4.3.7 of [H-J]) Let B and C be two N × N Hermitian matrices. For any
pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≤ N + 1, we have

λj+k−1(B + C) ≤ λj(B) + λk(C).

For any pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≥ N + 1, we have

λj(B) + λk(C) ≤ λj+k−N (B + C).

Note that this lemma is the additive analogue of Lemma 1.1 of [B-S2] needed for the investigation of
the spiked population model.

Proof of Theorem 4.5: With our choice of [a, b] and the very definition of the spectrum of the
AN ’s, one can consider ǫ′ > 0 small enough such that, for all large N ,

λiN +1(AN ) <
1

gσ(a)
− ǫ′ and λiN

(AN ) >
1

gσ(b)
+ ǫ′.

Given L > 0 and k ≥ 0 (their size will be determined later), we introduce the matrix W k,L
N =

1√
1+ k

L

WN and Mk,L
N = AN + 1√

N
W k,L

N . We also define

σk,L =
1√

1 + k
L

σ, ak,L = zσk,L
(gσ(a)) and bk,L = zσk,L

(gσ(b))
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where we recall that zσk,L
(g) = 1

g + σ2
k,Lg. Note that for all L > 0, one has: M0,L

N = MN , a0,L = a
and b0,L = b.
We first choose the size of L as follows. We take L0 large enough such that for all L ≥ L0,

max
( 1

L
σ2(|gσ(a)| + |gσ(b)|); 3σ

L

)
<

b − a

4
(4.35)

From the very definition of the ak,L’s and bk,L’s, one can easily see that bk,L − ak,L ≥ b − a (using
the last point of (ii) in Lemma 4.5) and that this choice of L0 ensures that, for all L ≥ L0 and for all
k ≥ 0,

|ak+1,L − ak,L| <
b − a

4
and |bk+1,L − bk,L| <

b − a

4
(4.36)

Now, we fix L such that L ≥ L0 and we write ak = ak,L, bk = bk,L and σk = σk,L.

Lemma 4.6 first gives that

λiN +1(M
k,L
N ) ≤ ak − ǫ′ − σ2

kgσ(a) +
1√

1 + k
L

λ1(
1√
N

WN ) for iN < N

and λiN
(Mk,L

N ) ≥ bk + ǫ′ − σ2
kgσ(b) +

1√
1 + k

L

λN (
1√
N

WN ) for iN > 0.

Furthermore, according to (2.9), the two first extremal eigenvalues of 1√
N

WN are such that, almost

surely, at least for N large enough

0 < max(−λN (
1√
N

WN ), λ1(
1√
N

WN )) < 3σ.

Thus, for all k, almost surely, at least for N large enough (N does not depend on k),

0 <
1√

1 + k
L

× max(−λN (
1√
N

WN ), λ1(
1√
N

WN )) < 3σk.

As σk → 0 when k → +∞, there is K large enough such that for all k ≥ K,

max(|3σk − σ2
kgσ(a)|, |3σk + σ2

kgσ(b)|) < ǫ′

and then a.s for N large enough

λiN +1(M
k,L
N ) < ak if iN < N, (4.37)

λiN
(Mk,L

N ) > bk if iN > 0 (4.38)

Since (4.37) respectively (4.38) are obviously satisfied too for iN = N resp. iN = 0, we have established
that for any iN ∈ {0, . . . , N}, for all k ≥ K,

P
[
λiN +1(M

k,L
N ) < ak and λiN

(Mk,L
N ) > bk for all large N

]
= 1.

In particular,

P
[
λiN +1(M

K,L
N ) < aK and λiN

(MK,L
N ) > bK for all large N

]
= 1. (4.39)

Now, we shall show that with probability 1: for N large, [aK , bK ] and [a, b] split the eigenvalues

of, respectively, MK,L
N and MN having equal amount of eigenvalues to the left sides of the intervals.

To this aim, we will proceed by induction on k and show that, for all k ≥ 0, [ak, bk] and [a, b] split
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the eigenvalues of Mk,L
N and MN (recall that MN = M0,L

N ) in exactly the same way. To begin, let us
consider for all k ≥ 0, the set

Ek = {no eigenvalues of Mk,L
N in [ak, bk], for all large N}.

By Lemma 4.5 (ii) and Theorem 4.4, we know that P(Ek) = 1 for all k. In particular, from the fact
that P(E0) = 1, one has for all ω ∈ E0, for all large N :

∃jN (ω) ∈ {0, · · · , N} such that λjN (ω)+1(MN ) < a and λjN (ω)(MN ) > b. (4.40)

Extending the random variable jN by setting for instance jN := −1 on cE0, we want to show that
for all k,

P[λjN +1(M
k,L
N ) < ak and λjN

(Mk
N) > bk, for all large N ] = 1. (4.41)

This can be done by induction calling, once more time, on Lemma 4.6. By (4.40), this is true for
k = 0. Now, let us assume that (4.41) holds true. We shall show that this still holds replacing k by
k + 1. One has

Mk+1,L
N = Mk,L

N + (
1√

1 + k+1
L

− 1√
1 + k

L

)
1√
N

WN

so, by Lemma 4.6,

λjN +1(M
k+1,L
N ) ≤ λjN +1(M

k,L
N ) +

1

L
(−λN (

1√
N

WN )).

But, for N large enough, 0 < −λN ( 1√
N

WN ) ≤ 3σ a.s, so by the choice (4.35) on L,

λjN +1(M
k+1,L
N ) < ak +

b − a

4
:= âk.

Similarly, one can show that

a.s. λjN
(Mk+1,L

N ) > bk − b − a

4
:= b̂k.

Now, by (4.36), one readily observes âk −ak+1 = ak −ak+1 + b−a
4 > 0 and similarly that b̂k − bk+1 < 0

which implies that
[âk, b̂k] ⊂ [ak+1, bk+1].

So, as P(Ek+1) = 1, we deduce that with probability 1:

λjN +1(M
k+1,L
N ) < ak+1 and λjN

(Mk+1,L
N ) > bk+1, for all N large enough.

As a consequence, (4.41) holds for all k ≥ 0 and in particular for k = K. Comparing this with (4.39),
we deduce that jN = iN a.s. and

P
[
λiN +1(MN ) < a and λiN

(MN ) > b for all large N
]

= 1.

This ends the proof of Theorem 4.5. 2

Now, we are in position to prove the main Theorem 2.1.

Proof of Theorem 2.1: Our reasoning is close to the last Section 4 of [Bk-S1]. It is enough to
establish parts (a) and (b) since the assertions (c) and (d) can then be deduced by taking -MN instead
of MN .
The proof of (a) is mainly based on successive applications of Theorem 4.5. Fix an integer 1 ≤ j ≤ J+σ,
and let us consider for ǫ > 0, the interval [a, b] = [ρθj

+ ǫ, ρθj−1 − ǫ] which is included in the union
(4.31) (at least for ǫ small enough). We define Kj = k1 + · · ·+ kj (with θ0 := +∞ and the convention
λ0(MN ) = λ0(AN ) = +∞). Since 1/gσ(ρθk

) = θk for k = j − 1 and j and since the function 1/gσ is
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continuous and increasing on [a, b], the compact interval [a, b] satisfies (4.33) with iN = Kj−1 (with
the convention that iN = 0 if j = 1). Hence, by Theorem 4.5, one has

P[λKj−1(MN ) ≥ ρθj−1 − ǫ and λKj−1+1(MN ) ≤ ρθj
+ ǫ, for N large] = 1.

Similar arguments imply that, for all j ∈ {1, . . . , J+σ − 1},

P[λKj
(MN) ≥ ρθj

− ǫ and λKj+1(MN) ≤ ρθj+1 + ǫ, for N large] = 1.

As a result, we deduce that for all 1 ≤ j ≤ J+σ − 1,

P[ρθj
− ǫ ≤ λKj

(MN ) ≤ · · · ≤ λKj−1+1(MN ) ≤ ρθj
+ ǫ, for N large] = 1. (4.42)

So, letting ǫ go to zero, we obtain (a) for each integer j of {1, · · · , J+σ − 1}.
Let us now quickly consider the case where j = J+σ. Note first that, from the preceding discussion,
we still have (for ǫ small enough)

P[λKJ+σ−1+1(MN) ≤ ρθJ+σ
+ ǫ, for N large] = 1.

Then, using the fact that 1/gσ increases continuously on ]2σ, +∞[ with 1/gσ(]2σ, +∞[) =]σ, +∞[, one
can show that once ǫ > 0 is small enough, the compact set [a, b] = [2σ + ǫ, ρθJ+σ

− ǫ] satisfies the
assumptions of Theorem 4.5 with iN = KJ+σ

. This leads to

P[λKJ+σ
(MN ) ≥ ρθJ+σ

− ǫ and λKJ+σ
+1(MN ) ≤ 2σ + ǫ, for N large] = 1.

Thus, letting ǫ → 0, we deduce that (4.42) holds for j = J+σ and the assertion (a) is established. For
point (b), it remains to prove that

lim inf
N

λKJ+σ
+1(MN ) ≥ 2σ a.s.

Such an inequality follows from the fact that the spectral measure of MN converges almost surely
towards the semicircle law µsc which is compactly supported in [−2σ, 2σ]. This completes the proof
of Theorem 2.1. 2

5 Fluctuations

The (complex or real) Wigner matricial models under consideration are the same as previously (i.e
defined by (i) in Section 2) but now we assume that the perturbation AN is diagonal with unique
eigenvalue θ > σ: AN = diag(θ, 0, · · · , 0). According to the previous section, the a.s convergence of
λ1(MN ) towards ρθ is universal in the sense that it does not depend on µ. In this section, we are
going to show that the fluctuations of λ1(MN ) around this universal limit are not universal any more.

Indeed, we are going to prove that
√

N(1 − σ2

θ2 )−1(λ1(MN ) − ρθ) converges in distribution towards
the convolution of µ and a Gaussian distribution. Hence, the limiting distribution clearly varies with
µ and in particular cannot be Gaussian unless µ is Gaussian.

5.1 Basic tools

We start with the following results which will be of basic use later on. Note that in the following, a
complex random variable x will be said standardized if E(x) = 0 and E(|x|2) = 1.

Theorem 5.1. (Lemma 2.7 [B-S1]) Let B = (bij) be a N×N Hermitian matrix and YN be a vector of
size N which contains i.i.d standardized entries with bounded fourth moment. Then there is a constant
K > 0 such that

E|Y ∗
NBYN − TrB|2 ≤ KTr(BB∗).

Theorem 5.2. (cf. [B-Ya2] or Appendix by J. Baik and J. Silverstein) Let B = (bij) be a N × N
random Hermitian matrix and YN = (y1, . . . , yN ) be an independent vector of size N which contains
i.i.d standardized entries with bounded fourth moment and such that E(y2

1) = 0 if y1 is complex.
Assume that
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(i) there exists a constant a > 0 (not depending on N) such that ||B|| ≤ a,

(ii) 1
N TrB2 converges in probability to a number a2,

(iii) 1
N

∑N
i=1 b2

ii converges in probability to a number a2
1.

Then the random variable 1√
N

(Y ∗
NBYN − TrB) converges in distribution to a Gaussian variable with

mean zero and variance
(E|y1|4 − 1 − t/2)a2

1 + (t/2)a2

where t = 4 when Y1 is real and is 2 when y1 is complex.

Proof: This result is in fact a particular case of a more general result of [B-Ya2] (Theorems 7.1 and
7.2) which follows from the method of moments. We give an alternative elegant proof by J. Baik and
J. Silverstein in the Appendix of the present paper.

Theorem 5.3. (Theorem 1.1 in [B-Ya1]) Let f be an analytic function on an open set of the complex
plane including [−2σ; 2σ]. If the entries ((WN )ij)1≤i≤j≤N of a general Wigner matrix WN satisfy the
conditions

• E(|(WN )ij |4) = M for i 6= j,

• For any η > 0, limN→+∞
1

η4n2

∑
i,j E

[
|(WN )ij |41{|(WN)ij |≥η

√
n}

]
= 0,

then N{trN (f( 1√
N

WN )) −
∫

fdµsc} converges in distribution towards a Gaussian variable.

In our setting, µ satisfies a Poincaré inequality and thus, as already noticed in Section 2, µ satisfies∫
|x|qdµ(x) < +∞ for any q in N. Hence, the general Wigner matrices we consider obviously satisfy

the conditions of Theorem 5.3. Nevertheless, in the following study of fluctuations, we do not use
the Poincaré inequality; thus one can expect that Theorem 2.2 is still valid under assumptions on the
only first moments of µ provided one can prove the a.s convergence of λ1(MN ) towards ρθ under these
weaker assumptions.

5.2 Proof of Theorem 2.2

The approach is the same for the complex and real settings and is close to the one of [P] and the ideas

of [B-B-P]. Let M̂N−1 be the N − 1 × N − 1 matrix obtained from MN removing the first row and

the first column. Thus,
√

N√
N−1

M̂N−1 is a non-Deformed Wigner matrix associated with the measure

µ. We will denote by λ1(M̂N−1) the largest eigenvalue and by λN−1(M̂N−1) the lowest eigenvalue of

the matrix M̂N−1. Let 0 < δ < ρθ−2σ
4 . Let us define the event

ΩN =
{

λ1(M̂N−1) ≤ 2σ + δ; λN−1(M̂N−1) ≥ −2σ − δ; λ1(MN ) ≥ ρθ − δ
}

.

According to [B-Yi] and Theorem 2.1 of the previous section, limN→+∞ P(ΩN ) = 1. Thus, it is
sufficient to restrict ourselves to the event ΩN in order to study the convergence in distribution of√

N(λ1(MN ) − ρθ).

Let V = t (v1, . . . , vN ) be an eigenvector corresponding to λ1(MN ).

MNV = λ1(MN )V ⇐⇒
{

θv1 + (WN )11√
N

v1 +
∑N

j=2(MN )1jvj = λ1(MN)v1

(MN)i1v1 +
∑N

j=2(M̂N−1)ijvj = λ1(MN )vi, ∀i = 2, . . . , N.

Define the following vectors in CN−1:

V̂ = t (v2, . . . , vN )

and

M̌·1 = t ((MN )21, . . . , (MN )N1) =
1√
N

t ((WN )21, . . . , (WN )N1) .
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On ΩN , λ1(MN ) is not an eigenvalue of M̂N−1 and one can write the eigen-equations using the

resolvent Ĝ(λ1(MN )) := (λ1(MN )IN−1 − M̂N−1)
−1 as follows:

V̂ = v1Ĝ(λ1(MN ))M̌·1. (5.1)

λ1(MN )v1 = θv1 +
(WN )11√

N
v1 + v1M̌

∗
·1Ĝ(λ1(MN ))M̌·1. (5.2)

Since v1 is obviously non equal to zero, one gets from (5.2)

λ1(MN ) = θ +
(WN )11√

N
+ M̌∗

·1Ĝ(λ1(MN ))M̌·1. (5.3)

On ΩN , ρθ is not an eigenvalue of M̂N−1 and the resolvent Ĝ(ρθ) := (ρθIN−1 − M̂N−1)
−1 is well

defined too. Thus, (5.3) is equivalent to

λ1(MN ) − ρθ =
(WN )11√

N
+ M̌∗

·1Ĝ(ρθ)M̌·1 −
σ2

θ
+ M̌∗

·1

[
Ĝ(λ1(MN )) − Ĝ(ρθ)

]
M̌·1. (5.4)

Using Ĝ(λ1(MN )) − Ĝ(ρθ) = −(λ1(MN ) − ρθ)Ĝ(ρθ)Ĝ(λ1(MN )) and gσ(ρθ) = 1
θ , one gets

λ1(MN ) − ρθ

=
(WN )11√

N
+ M̌∗

·1Ĝ(ρθ)M̌·1 − σ2gσ(ρθ)

+M̌∗
·1

[
−(λ1(MN ) − ρθ)Ĝ(ρθ)

(
Ĝ(ρθ) − (λ1(MN ) − ρθ)Ĝ(ρθ)Ĝ(λ1(MN ))

)]
M̌·1.

Finally, defining fθ(z) :=
1

ρθ − z
1|z|≤2σ+δ, we can easily deduce from the previous equality the follow-

ing identity on ΩN :

{1 + cN + δ1(N) + δ2(N)}
√

N(λ1(MN ) − ρθ) = (WN )11 +

√
N

N − 1
dN +

√
N

N − 1
δ3(N)

where
cN = σ2trN−1

[
f2

θ (M̂N−1)
]

dN =
√

N − 1
{

M̌∗
·1

(
Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

)
M̌·1 − σ2trN−1

(
Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

)}

δ1(N) = −(λ1(MN ) − ρθ)M̌
∗
·1

[
Ĝ(ρθ)

]2
Ĝ(λ1(MN ))M̌·11ΩN

δ2(N) = M̌∗
·1

[
Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

]2
M̌·1 − σ2trN−1

[
Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

]2

δ3(N) = σ2
√

N − 1

{
trN−1

(
fθ(M̂N−1)

)
−
∫

fθdµsc

}
.

First

|δ1(N)| ≤ |λ1(MN ) − ρθ|‖M̌·1‖2‖Ĝ(ρθ)‖2‖Ĝ(λ1(MN))‖1ΩN

≤ 1

(ρθ − 2σ − 2δ)(ρθ − 2σ − δ)2





1

N

N∑

j=2

|(WN )j1|2



 |λ1(MN ) − ρθ|,

(using point (v) of Lemma 3.2). By the law of large numbers 1
N

∑N
j=2 |(WN )j1|2 converges a.s. to-

wards σ2 and according to Theorem 2.1, |λ1(MN )−ρθ| converges a.s. to zero. Hence δ1(N) converges
obviously in probability towards zero.
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Now, since fθ is analytic on an open set including [−2σ; 2σ], we deduce from Theorem 5.3 the con-

vergence in probability of δ3(N) towards zero and of cN towards σ2

∫
f2

θ dµsc =
σ2

θ2 − σ2
.

According to Theorem 5.1 and using Lemma 3.2(v),

E(|δ2(N)|2) ≤ K

N − 1
E

(
trN

[
Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

]4)

≤ K

N − 1
E

(
‖Ĝ(ρθ)‖41‖M̂N−1‖≤2σ+δ

)

≤ K

N − 1

1

(ρθ − 2σ − δ)4
.

The convergence in probability of δ2(N) towards zero readily follows by Tchebychev inequality.

Let us check that Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ satisfies the conditions of Theorem 5.2.

(i) ‖Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
‖ ≤ 1

ρθ−2σ−δ by Lemma 3.2 (v).

(ii) According to Theorem 5.3, trN−1 f2
θ (M̂N−1) converges in probability towards

∫
f2

θ dµsc. Since on

the event {‖M̂N−1‖ ≤ 2σ + δ}, with limiting probability 1, trN−1[Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
]2 coincide with

trN−1 f2
θ (M̂N−1), it also converges in probability towards

∫
f2

θ dµsc.

(iii) It is proved in Proposition 3.1 in [C-D] that for any z ∈ C such that ℑmz > 0, 1
N−1

∑N−1
i=1 ([Ĝ(z)]ii)

2

converges in probability towards g2
σ(z). The same result holds for 1

N−1

∑N−1
i=1 ([Ĝ(z)]ii)

21‖M̂N−1‖≤2σ+δ
.

For any ǫ > 0 and any α > 0,

P

(∣∣∣ 1
N−1

∑N−1
i=1 ([Ĝ(ρθ)]ii)

21‖M̂N−1‖≤2σ+δ
− g2

σ(ρθ)
∣∣∣ > ǫ

)

≤ P

(
| 1

N − 1

N−1∑

i=1

{
([Ĝ(ρθ)]ii)

2 − ([Ĝ(ρθ + iα)]ii)
2
}

1‖M̂N−1‖≤2σ+δ
| >

ǫ

3

)

+P

(
| 1

N − 1

N−1∑

i=1

([Ĝ(ρθ + iα)]ii)
21‖M̂N−1‖≤2σ+δ

− g2
σ(ρθ + iα)| >

ǫ

3

)

+P

(
|g2

σ(ρθ) − g2
σ(ρθ + iα)| >

ǫ

3

)
.

Since
{
([Ĝ(ρθ)]ii)

2 − ([Ĝ(ρθ + iα)]ii)
2
}

1‖M̂N−1‖≤2σ+δ

= [Ĝ(ρθ) − Ĝ(ρθ + iα)]ii[Ĝ(ρθ) + Ĝ(ρθ + iα)]ii1‖M̂N−1‖≤2σ+δ

= iα[Ĝ(ρθ)Ĝ(ρθ + iα)]ii[Ĝ(ρθ) + Ĝ(ρθ + iα)]ii1‖M̂N−1‖≤2σ+δ,

we get by using Lemma 3.2 (v)

|([Ĝ(ρθ)]ii)
2 − ([Ĝ(ρθ + iα)]ii)

2|1‖M̂N−1‖≤2σ+δ ≤ 2α

(ρθ − 2σ − δ)3
.

Similarly, we get that

|g2
σ(ρθ) − g2

σ(ρθ + iα)| ≤ 2α

(ρθ − 2σ)3
.

Thus, choosing α such that 2α
(ρθ−2σ−δ)3 < ǫ

3 , we readily deduce the convergence in probability of

1

N − 1

N−1∑

i=1

([Ĝ(ρθ)]ii)
21‖M̂N−1‖≤2σ+δ
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towards g2(ρθ).

Since Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
and M̌·1 are independent, we can deduce from Theorem 5.2 that dN con-

verges in distribution towards a Gaussian law with mean zero and variance

vθ := σ4

{
(E(| (WN )12

σ
|4) − 1 − t/2)

1

θ2
) +

t

2

1

θ2 − σ2

}

where t = 4 in the real setting and t = 2 in the complex one. One readily verifies that vθ satisfies (2.12).

Let 0 < ǫ < 1. Since δ1(N)+ δ2(N) converges in probability towards zero, the probability of the event

Ω̃N = ΩN ∩ {|δ1(N) + δ2(N)| ≤ ǫ} tends to 1. Now, since cN ≥ 0 we have the following identity on

Ω̃N :
√

N(λ1(MN ) − ρθ) =
1

uN

{
(WN )11 +

√
N

N − 1
dN +

√
N

N − 1
δ3(N)

}

with uN := 1 + cN + δ1(N) + δ2(N) converging in distribution towards (1 − σ2

θ2 )−1. Moreover,

since (WN )11 and dN are independent, (WN )11 +
√

N
N−1dN +

√
N

N−1δ3(N) converges in distribution

towards the convolution of µ and a Gaussian distribution N (0, vθ). Finally, we can conclude that√
N(λ1(MN ) − ρθ) converges in distribution towards (1 − σ2

θ2 ) {µ ∗ N (0, vθ)}. 2

Appendix by J. Baik and J. Silverstein

This Appendix presents the proof by J. Baik and J. Silverstein of the CLT (given by Theorem 5.2)
needed in the previous section for the proof of Theorem 2.2. Their proof is based on a writing of the
expression

(1/
√

N)(Y ∗
NBYN − TrB) (A.1)

as a sum of martingale difference, and uses the following CLT.

Theorem A.1. (Theorem 35.12 of [Bi]) For each N , suppose ZN1, ZN2, . . . , ZNrN
is a real martingale

difference sequence with respect to the increasing σ-field {FN,j} having second moments. If as N → ∞,

rN∑

j=1

E(Z2
Nj |FN,j−1)

P−→ v2 (A.2)

where v2 is a positive constant, and for each ǫ > 0,

rN∑

j=1

E(Z2
Nj 1|ZNj|≥ǫ)→ 0 (A.3)

then
rN∑

j=1

ZNj
L−→ N (0, v2).

Proof of Theorem 5.2: First, one can write (A.1) as a sum of martingale differences:

(1/
√

N)(Y ∗
NBYN − TrB) = (1/

√
N)

N∑

i=1

(
(|yi|2 − 1)bii + ȳi

∑

j<i

yjbij + ȳi

∑

j>i

yjbij

)

= (1/
√

N)

N∑

i=1

(
(|yi|2 − 1)bii + ȳi

∑

j<i

yjbij + yi

∑

j<i

ȳjbji

)
=

N∑

i=1

Zi

where
Zi = ZNi = (1/

√
N)((|yi|2 − 1)bii + ȳi

∑

j<i

yjbij + yi

∑

j<i

ȳj b̄ij).
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Let FN,i (resp. FN,0) be the σ-field generated by y1, . . . , yi and B (resp. by B). Let also Ei(·) denote
conditional expectation with respect to FN,i.
It is clear that Zi is measurable with respect to FN,i and satisfies Ei−1(Zi) = 0.

We will show the conditions of Theorem A.1 are met.

To verify the Lindeberg condition (A.3), we need to show this property is closed under addition.
This will follow from the following fact. For random variables X1, X2, and positive ǫ

E(|X1 + X2|2 1(|X1+X2|≥ǫ)) ≤ 4
(
E(|X1|2 1(|X1|≥ǫ/2)) + E(|X2|2 1(|X2|≥ǫ/2))

)
. (A.4)

Indeed, we have

E(|X1|2 1(|X1+X2|≥ǫ)) ≤ E(|X1|2 1(|X1|≥ǫ/2)) + E(|X1|2 1(|X1|<ǫ/2,|X2|≥ǫ/2))

≤ E(|X1|2 1(|X1|≥ǫ/2)) + (ǫ2/4)P(|X2| ≥ ǫ/2)

≤ E(|X1|2 1(|X1|≥ǫ/2)) + E(|X2|2 1(|X2|≥ǫ/2)).

The same bound starting with X2 leads (A.4).
Write Zi = X i

1 + X i
2, with X i

1 = (1/
√

N)(|yi|2 − 1)bii. Then for ǫ > 0,

N∑

i=1

E(|X i
1|2 1(|Xi

1|≥ǫ)) ≤ a2
E((|y1|2 − 1)2 1(||x1|2−1|≥

√
Nǫ/a)) → 0 (A.5)

as N → ∞, by dominated convergence theorem.
We have

E|
∑

j<i

yjbij |4 = E(|y1|4
∑

j<i

|bij |4) + 2E(
∑

∗
|bij1 |2|bij2 |2) + E(|y2

1 |2
∑

∗
b2
ij1 b̄

2
ij2)

≤ E|y1|4E[max
j

(B2)jj(B
2)ii] + (2 + E|y2

1 |2)E[(B2)2ii]

≤ a4
[
E|y1|4 + 2 + E|y2

1 |2
]

where the sum
∑
∗

is over {j1 < i, j2 < i, j1 6= j2}. Therefore E|X i
2|4 = o(N−1) so that for any ǫ > 0,

N∑

i=1

E(|X i
2|2 1(|Xi

2|≥ǫ)) ≤ (1/ǫ2)

N∑

i=1

E|X i
2|4 → 0 as N → ∞. (A.6)

Thus, by (A.5), (A.6) and (A.4), {Zi} satisfies (A.3).

Now, we shall verify condition (A.2). We have

N∑

i=1

Ei−1Z
2
i = (1/N)

N∑

i=1

{
(E|y1|4 − 1)b2

ii + Eȳ2
1(
∑

j<i

yjbij)
2 + Ey2

1(
∑

j<i

ȳj b̄ij)
2 (A.7)

+2E(|y1|2ȳ1)bii

∑

j<i

yjbij + 2E(|y1|2y1)bii

∑

j<i

ȳj b̄ij + 2(
∑

j<i

yjbij)(
∑

j<i

ȳj b̄ij)

}
.

Let BL denote the strictly lower triangular part of B. We have

E[(1/N)

N∑

i=1

bii

∑

j<i

yjbij ] = 0

and using Cauchy-Schwarz

E|(1/N)

N∑

i=1

bii

∑

j<i

yjbij |2
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= E|(1/N)

N−1∑

j=1

yj

∑

i>j

biibij |2 = (1/N2)E(

N−1∑

j=1

∑

i>j

biibij

∑

i>j

bi ibij) = (1/N2)E(
∑

ii

biibi i(BLB∗
L)ii)

≤ E
[
(max

i
bii)

2(1/n)(
∑

ii

|(BLB∗
L)ii|2)1/2

]
= E

[
(max

i
bii)

2(1/N)Tr((BLB∗
L)2)1/2

]

≤ E
[
(max

i
bii)

2(1/
√

N)‖BL‖2
]
.

We apply the following bound (due to R. Mathias, see [Mt]): ‖BL‖ ≤ γN‖B‖, where γN = O(lnN)
and the bound ||B|| ≤ a to conclude that

1/N

N∑

i=1

bii

∑

j<i

yjbij
P−→ 0

as N → ∞.
Then (recall that Ey2

1 = 0 when y1 is complex), (A.7) can be written as

N∑

i=1

Ei−1Z
2
i = (1/N)

N∑

i=1

[(E|y1|4 − 1)b2
ii + t(

∑

j<i

yjbij)(
∑

j<i

ȳj b̄ij)] + oi.p(1)

= (1/N)

N∑

i=1

(E|y1|4 − 1)b2
ii + t(1/N)Y ∗

NB∗
LBLYN + oi.p(1) (A.8)

where t = 4 when y1 real, and is 2 when y1 is complex.
Besides, from Lemma 2.7 in [B-S1] (recalled in Theorem 5.1) we have

E|(1/N)(Y ∗
NB∗

LBLYN − TrB∗
LBL)|2 ≤ (1/N2)E(Tr(B∗

LBL)2) ≤ KE‖B‖4 ln4 N

N
→ 0

as N → ∞. So, as

TrB∗
LBL =

∑

j<i

|bij |2 = (1/2)(TrB2 −
∑

i

b2
ii)

(A.8) implies that condition (A.2) holds with

v2 = (E|y1|4 − 1 − t/2)a2
1 + (t/2)a2.

Thus, by Theorem A.1, we deduce that (1/
√

N)(Y ∗
NBYN−TrB) converges in distribution to a Gaussian

variable with mean zero and variance v2. 2

References
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Poincaré (2007).
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