
HAL Id: hal-00150965
https://hal.science/hal-00150965v1

Preprint submitted on 6 Jun 2007 (v1), last revised 7 Jun 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recursive polymorphic types and parametricity in an
operational framework

Paul-André Melliès, Jérôme Vouillon

To cite this version:
Paul-André Melliès, Jérôme Vouillon. Recursive polymorphic types and parametricity in an opera-
tional framework. 2004. �hal-00150965v1�

https://hal.science/hal-00150965v1
https://hal.archives-ouvertes.fr

Recursive polymorphic types and parametricity
in an operational framework

Paul-André Melliès and Jérôme Vouillon
Équipe Preuves, Programmes, Systèmes

CNRS and Université Paris 7
{mellies,vouillon}@pps.jussieu.fr

Abstract

We construct a realizability model of recursive polymor-
phic types, starting from an untyped language of terms and
contexts. An orthogonality relation e ⊥ π indicates when
a term e and a context π may be safely combined in the
language. Types are interpreted as sets of terms closed
by biorthogonality. Our main result states that recursive
types are approximated by converging sequences of interval
types. Our proof is based on a “type-directed” approxima-
tion technique, which departs from the “language-directed”
approximation technique developed by MacQueen, Plotkin
and Sethi in the ideal model. We thus keep the language el-
ementary (a call-by-name λ-calculus) and unstratified (no
typecase, no reduction labels). We also include a short ac-
count of parametricity, based on an orthogonality relation
between quadruples of terms and contexts.

1 Introduction

In this article, we describe how a large variety of typ-
ing constructions: recursive types, polymorphism, subtyp-
ing, product types, intersection types, union types, as well
as parametricity, may be interpreted and studied in a some-
what naı̈ve and operational framework. We choose to set
our scene slowly, starting from a brief account of recursive
types in categories of domains, then shifting gradually to
the operational model we have in mind.

Recursive types. Solving recursive equations between
types is generally done in categories. Take for instance the
equation

X = 1 +X (1)

in the category Set of sets and functions, where 1 +X de-
notes the disjoint union of X and of the singleton 1 = {∗}.
This equation has two canonical solutions, namely the set N

of natural numbers, and the set N+{∞} of natural numbers
completed by infinity. By “solution”, one means a set X
equipped with an isomorphismX ←− 1 +X , alternatively
seen as its inverse map X −→ 1 + X . Accordingly, each
of the solution sets N and N + {∞} comes equipped with a
function s and p, called “successor” and “predecessor”:

N
s
←− 1 + N N + {∞}

p
−→ 1 + N + {∞} (2)

and defined respectively as s(∗) = 0 and s(n) = n+1, and
as p(0) = ∗, p(n+ 1) = n and p(∞) =∞, for all n ∈ N.

The two solutions (2) are canonical in the following
sense. Call prefixpoint f and postfixpoint g of equation (1)
any function:

X
f
←− 1 +X and Y

g
−→ 1 + Y.

Canonicity says that, for any such f (resp. g), there exists a
unique function h (resp. k) making the diagram commute:

X 1 +X
f

oo

N

h

OO

1 + N
s

oo

1+h

OO
N + {∞}

p
// 1 + N + {∞}

Y
g

//

k

OO

1 + Y

1+k

OO

(3)

In other words, s is the “initial” prefixpoint (called inductive
solution), and p is the “terminal” postfixpoint (called coin-
ductive solution) of equation (1). What we find here is noth-
ing but the “categorification” of Knaster-Tarski’s theory of
fixpoints for a monotone function in a complete lattice. A
categorical terminology is generally adopted: the “prefix-
points” and “postfixpoints” are called T -algebras and T -
coalgebras for the functor T : Set −→ Set defined as
T (X) = 1 +X . And the diagrams of equation (3) express
that the T -algebra s is the “initial” T -algebra, and that the
T -coalgebra p is the “terminal” T -coalgebra.

Mixed variance. Equation (1) is particularly simple be-
cause the variable X occurs only in a covariant (= positive)
position. More complicated recursive equations may be also
considered, like

X = X ⇒ X (4)

where the variable X appears in a covariant as well as a
contravariant (= negative) position. This kind of equations
may be formulated in any cartesian closed category, where
X ⇒ Y denotes the usual arrow construct.

These equations of mixed variance have (in general) no
solution in the category Set. Typically, equation (4) has
only the trivial solution X = 1, while equation

X = 1 + (X ⇒ X) (5)

has no solution at all, for obvious cardinality reasons.

Scott invented Domain Theory when he realized that
equations of mixed variance like (4) and (5) could be solved
by shifting from the category Set to the category CPO

of domains (= partial orders with a least element ⊥ and
all directed limits) and continuous (= monotone and limit-
preserving) functions between them. We refer the reader
to [3] for a modern exposition of Domain Theory.

We only mention here that Freyd [13] derives this exis-
tence of solutions in CPO from a striking property of its
subcategory CPO⊥ of strict (= ⊥-preserving) functions,
called “algebraic compactness”. The property states that
the initial T -algebra and the terminal T -coalgebra coincide
for every (well-behaved) covariant endofunctor

T : CPO⊥ −→ CPO⊥.

Freyd shows that the category CPO
op
⊥ × CPO⊥ is also

algebraically compact, and reformulates in this way any
mixed variance functor on CPO⊥ as a covariant endofunc-
tor T on this category. The unique canonical fixpoint of T
is shown to be of the form (D,D′) whereD andD′ are iso-
morphic in CPO⊥. This provides the solution D ∼= D′ to
the original mixed-variance equation over CPO.

We step back to equation (1) for illustration, slightly gen-
eralized in the category CPO as equation:

X = 1⊥ + (A×X) (6)

where A denotes a fixed domain. That is, the domain X
is required to be isomorphic to the coalesced sum of the
lifted domain 1⊥ = {⊥, ∗} with the cartesian product of
the domains A and X . Just as in Set, equation (6) has an
inductive solution (= the domain of lists overA) and a coin-
ductive solution (= the domain of streams over A) in the
category CPO. But in contrast to Set, algebraic compact-
ness implies that the two solutions coincide in CPO.

The ideal model. We found instructive to recall briefly
the categorical approach to recursive types, because it is
elegant and mainstream. We shift now to a different ap-
proach to recursive types, initiated by MacQueen, Plotkin,
and Sethi in the ideal model for types [17]. The ideal model
is still domain-theoretic, but not categorical any more. This
brings us one step closer to the operational framework de-
veloped in this article.

The ideal model is built in two stages. First stage: a do-
main V of “semantic expressions” is fixed, defined in [17]
as the canonical solution in CPO of the equation:

V = T+N+(V → V)+(V×V)+(V+V)+{0}⊥ (7)

This may be read as follows: V is (isomorphic to) the coa-
lesced sum of the boolean constants T, the integers N, the
continuous functions from V to V, the product of V with it-
self, the sum of V with itself, and a “type-error” constant 0.

Or alternatively: a “semantic expression” f ∈ V is either
a boolean constant, an integer, a function between expres-
sions, a pair of expressions, a left (resp. right) injection of
an expression, the error constant 0, or the least element⊥.

Second stage: every type is interpreted as an ideal of
the domain V, that is, as a non-empty set I ⊂ V which
is (1) downward closed, and (2) closed under directed lim-
its. Notice that ideals are domains themselves. So, types
are interpreted as domains, just as in mainstream Domain
Theory. There is a major difference, though: these domains
are not only domains, they are also “subdomains” of the do-
main V. So, subtyping may be interpreted as set-theoretic
inclusion. But this has another key consequence. Defined
as the canonical solution of equation (7), the domain V is
approximated by a sequence (Vn)n∈N of domains:

V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn ⊂ Vn+1 ⊂ · · · ⊂ V

each of them image of a projection map πn : V −→ Vn.

Besides, every element x ∈ V is the least upper bound of
the directed set {πn(x) | n ∈ N} of its approximations.
This “stratification” of the domain V enables to define a
distance d(I, J) between two ideals I and J as d(I, J) = 0
when I = J , and as d(I, J) = 2−n when I 6= J , for n the
least number such that πn(I) 6= πn(J). MacQueen, Plotkin
and Sethi prove that the resulting metric space on ideals is
Cauchy-complete; and deduce that every recursive equation

X = T (X,X)

has a unique solution, as long as the functor T of mixed
variance is contractive with respect to the metric space on
ideals. Remarkably, contractibility holds for a large class of
functors T , including all our illustrating equations (4), (5)
and (6).

Towards operational semantics. The ideal model suffers
from a serious defect noted in [2] and related to the domain-
theoretic definition of V: There exist “semantic expres-
sions” f ∈ V which are not defined in the calculus, and
may distort the expected properties of types. This is illus-
trated by the term:

por − explode = λf. if f(true, Ω)
and f(Ω, true)
and not f(false, false)
then 0

else true.

where Ω denotes the diverging term Ω = (λy.y y) (λy.y y)
and 0 denotes the “type-error” constant Ω.

What should be the type of por− explode? The first
branch of the if− then− else is selected only when the
input f represents the “parallel-or” function (noted por)
which returns true when one of its arguments is true,
and false when its two arguments are false. Now, the

2

function por ∈ V is a “semantic expression” which can-
not be represented syntactically in the λ-calculus, or in any
sequential language. So, the term por− explode returns
true for every term f of type (T × T) → T in any such
language; and consequently should be typed ((T × T) →
T) → T there. Unfortunately, this type is not validated
by the ideal model, because the term por− explode inter-
preted in V returns “error” for the “semantic expression”
por of type (T×T)→ T.

This example suggests to reject the mediation of Domain
Theory, and to recast the ideal model directly inside oper-
ational semantics. The project is fascinating conceptually,
but difficult to realize technically. As we mentioned ear-
lier, the existence of recursive types in the ideal model is
deduced from the “stratification” of the domain V, and the
existence of the projection maps πn : V→ Vn. Obviously,
shifting to operational semantics requires to find an opera-
tional counterpart to the “stratification” of the domain V.
How and what? This question has attracted considerable
interest in the last decade, leading to a series of major ad-
vances in the field [2, 4, 7, 8, 9, 10, 18, 21]. Four solutions
emerged from the period, which we recall briefly now.

1. Abadi, Pierce and Plotkin [2] do not alter the domain-
theoretic definition of V (and thus keep its “stratification”)
but restrict the interpretation of types to ideals “gener-
ated” (in the order-theoretic sense) by definable elements.
Strikingly, the resulting ideal model validates that the term
por− explode has type ((T×T) → T)→ T. Other syn-
tactic variants of the ideal model are considered, obtained
in each case by restricting the interpretation to particular
classes of ideals, e.g. the so-called “abstract” and “coarse”
ideals, see [2] for details. In any of these variants, it is tech-
nically crucial that the projection maps πn : V → Vn are
definable. This requires to enrich the language (an untyped
λ-calculus) with a “typecase” operator which tests whether
a term e is a boolean, a natural, a pair, a sum, or a function,
and then returns a different result ei in each case:

cases e bool : e1

nat : e2

pair : e3

sum : e4

fun : e5

end

This idea has been influential and reappears in many later
attacks to connect operational and denotational semantics,
most notably by Smith, Mason, and Talcott [18, 21] and
Birkedal and Harper [7]. We should add that the article [2]
is also influential for its last section, where the three authors
deliver in a visionary style the principle of an ideal model
living inside operational semantics.

2. Dami [9, 10] takes up the last idea of [2] and re-
casts the ideal model inside operational semantics. Several
variants of the λ-calculus are considered, all of them en-
riched with reduction labels inspired by Lévy [16]. These

labels provide the “stratification” of the language necessary
to solve recursive equations between types.

3. Chroboczek [8] recasts the ideal model in game se-
mantics, by solving an equation similar to (7) in a cate-
gory of games. The resulting game G is “stratified”, and
recursive equations are thus solved inside G by the same
Cauchy-completeness argument as in [17]. Chroboczek ob-
serves a mismatch between his original operational seman-
tics (a call-by-name λ-calculus), and the interpretation of
this calculus in the model. He thus designs an adequate lan-
guage by enriching the original language with a “located”
(and in fact ”stratified”) notion of convergence test.

4. Appel and McAllester [4] develop a radically different
approach to the problem, in which (in contrast to 1, 2 and 3)
they do not need to enrich the original language in order to
stratify it. Their language is defined using a small-step se-
mantics. This enables to define intensional types, in which
an information on the number of steps to compute a value is
provided. Remarkably, this extra information is sufficient to
approximate the behavior of a term, and to solve recursive
equations between types.

Realizability and orthogonality. These operational ap-
proaches to recursive types have in common to alter some-
thing of the original syntax of the calculus, or to alter some-
thing of the original definition of types. Here, we want to
interpret recursive polymorphic types in operational seman-
tics, but without “stratifying” the language or the conver-
gence test (as in 1,2,3), and without “intensionalizing” the
typing (as in 4).

This is a difficult task, which requires to design a
new stratification principle in order to replace the usual
“language-directed” stratification. A clarifying step is taken
in a companion paper [22] where we reformulate the ideal
model in a more conceptual and operational way, inspired
by Krivine’s realizability [15, 11].

In a realizability model (à la Krivine), one starts from an
untyped calculus of terms and contexts, and constitutes a
typed language on top of it. The cornerstone of the theory
is a notion of orthogonality e ⊥ π which indicates when a
term e and a context π may be safely combined (no error at
runtime). Orthogonality induces a closure operator which
associates to every set U of terms the set U⊥⊥ of terms
which cannot be separated from U by a context. This set
U⊥⊥ is called the biorthogonal of U . Types are interpreted
as sets U = U⊥⊥ closed by biorthogonality, also called
truth values. The formal definition appears in Section 3.

Connecting “types” and “orthogonality” is one of the
nicest discoveries of “French” proof-theory. The idea
emerged after intense reflection on the reducibility candi-
dates method to prove strong normalization for System F .
Girard reformulates these candidates as biorthogonal sets of
terms, in his proof of cut elimination for linear logic [14].

3

The idea reappears in Parigot’s proof of Strong Normaliza-
tion for second order λµ-calculus [19]. Meanwhile, Krivine
formulates a comprehensive framework based on orthogo-
nality, in order to analyze types as specifications of terms.
Krivine demonstrates that realizability generalizes Cohen’s
forcing and induces models of classical Zermelo-Fraenkel
set theory [11, 15].

Type-directed stratification. What about recursive
types? We are looking for an operational counterpart to
“algebraic compactness” in Domain Theory. This should
ensure (for instance) that the type of lists of booleans and
the type of streams of booleans coincide in the model. Take
the set U of boolean lists (e1, ..., en) in which each term ei
is either true or false. Any such list is easily encoded in
a λ-calculus with pairs. Now, take the term:

e∞ = Y (λx.(true, x))

in which Y = λf.(λx.f xx)(λx.f xx) is the Kleene fix-
point. The term e∞ implements the infinite stream of true,
thus is element of the truth value V of boolean streams. But
e∞ is not an element of U . It is not difficult to see how-
ever that e∞ is an element of U⊥⊥. Indeed, every context
π which combines safely with all the boolean lists, com-
bines safely with all the boolean streams, including e∞. We
conclude from this and U ⊂ V that V = U⊥⊥.

The equality U⊥⊥ = V captures the essence of coinci-
dence, and we shall prove it for every recursive type (Theo-
rem 5). Note that the equality generally fails when orthog-
onality amounts to termination (e ⊥ π iff e combined to
π converges) instead of safety. Indeed, there may exist a
context π (think of a length function) which terminates on
every list and loops on every stream.

The framework described in [22] is technically enlight-
ening, but still based on a “language-directed” stratifica-
tion technique, which we reject here. We develop instead
a “type-directed” stratification technique, in which every
(possibly infinite) type τ is approximated by finite trees
called interval types. Each interval type K is interpreted
in the model as a triple (U, V, φK) where U ⊂ V are truth
values, and φK is a conversion term sending every term
e ∈ V to a term φK e ∈ U . These “type-directed” φK
replace the “language-directed” projections πn of the ideal
model. The resulting “type-directed” picture is closer to
Domain Theory, in which the solution of a recursive equa-
tion X = T (X,X) is computed as limit of a categorical
diagram defined by the type T .

Parametricity. The idea of orthogonality appears also in
Pitts’ remarkable semantics analysis of operational equiva-
lence [20]. We indicate in Section 9 (alas too briefly for lack
of space) how Pitts’ operational approach to parametricity
is reflected in our framework.

Related works. As noted earlier, the literature on types is
huge, even if one restricts one’s attention to recursive types,
subtyping, or polymorphism. We did our best to give a com-
prehensive panorama of the field in the introduction, but it
is obviously too brief, and far from exhaustive, for lack of
space. The interested reader will find complementary infor-
mation in the companion paper [22].

Outline. In the remainder of the paper, we introduce a
call-by-name calculus (Section 2) for which we formulate
an orthogonality relation between terms and stacks, in the
style of Krivine (Section 3). This defines a truth value as a
set of terms orthogonal to a set of stacks. Then, we intro-
duce our syntax of types and of interval types (Section 4).
We interpret types as truth values in two stages: first, we
interpret inductively every interval type as a pair of truth
values, with a conversion term between them (Section 5);
then, we interpret types by approximating them with inter-
val types (Section 6). We sketch how to treat intersection
and union types by moving to a nondeterministic language
(Section 7). We prove soundness of our interpretation for
a typing system with universal and existential types, and
subtyping (Section 8). Finally, we give a brief account of
parametricity (Section 9) and conclude (Section 10).

2 A simple call-by-name calculus

2.1 The terms

We start from an untyped λ-calculus with pairs and con-
ditional branch, defined by the syntax below:

e ::= x variable
| λx.e abstraction
| e e application
| (e, e) pair
| fst(e) first projection
| snd(e) second projection
| if e then e else e conditional branch
| true constant true
| false constant false

2.2 The operational semantics

We choose to apply a call-by-name evaluation strategy
between terms, which we describe using a small-step se-
mantics. The definition goes in two steps. First, we in-
troduce a class of evaluation contexts, indicating where a
symbolic transformation may be applied in a term. Then,
we specify five rewriting rules, formulated as an interaction
between a term and its evaluation context.

4

Evaluation contexts are finite lists defined by the grammar:

E ::= nil head context
| e · E application
| fst · E first projection
| snd · E second projection
| (if e, e) · E conditional branch

Every term e and evaluation context E may be combined to
generate a term denoted 〈e | E〉 and defined as follows:

〈e | nil〉 = e

〈e | e′ · E〉 = 〈e e′ | E〉
〈e | fst · E〉 = 〈fst(e) | E〉
〈e | snd · E〉 = 〈snd(e) | E〉
〈e | (if e1, e2) · E〉 = 〈if e then e1 else e2 | E〉

The reduction relation → is defined as the smallest rela-
tion between terms containing any instance of five rewriting
rules: the usual β-rule:

〈λx.e | e′ · E〉 → 〈e[x := e′] | E〉

two rules for the products:

〈(e1, e2) | fst · E〉 → 〈e1 | E〉
〈(e1, e2) | snd · E〉 → 〈e2 | E〉

and two rules for the conditional:

〈true | (if e1, e2) · E〉 → 〈e1 | E〉
〈false | (if e1, e2) · E〉 → 〈e2 | E〉

where e, e′, e1, e2 denote terms and E denotes an evaluation
context. Observe that the resulting reduction → is deter-
ministic in the sense that:

∀e, e1, e2, e→ e1 and e→ e2 ⇒ e1 = e2.

3 Realizability

3.1 The safe terms

We write →∗ for the reflexive and transitive closure of
the relation→, and say that:

• a term e reduces to a term e′ when e→∗ e′,

• a term e loops when there exists an infinite sequence
of reductions:

e→ e1 → e2 → · · ·

• a term is safe when it loops, or when it reduces to one
of the two boolean constants true or false,

• a term is unsafe when it is not safe.

An example of safe term is Ω, defined as:

Ω = (λx.x x) (λx.x x).

An example of unsafe term is 0, defined as:

0 = (true) (true).

3.2 The stacks

The terms of the language will be tested by evaluation
contexts E, as well as by two “constant” contexts Ω and 0

which we add here for convenience. We call these testing
contexts stacks, and note them π as in [15, 11].

π ::= E evaluation context
| Ω safe
| 0 unsafe

A stack π is called strict when it is an evaluation context,
safe when π = Ω and unsafe when π = 0.

We extend the definition of 〈− | E〉 to stacks in the ex-
pected way. Thus for every term e:

〈e | Ω〉
def
= Ω, 〈e | 0〉

def
= 0.

Similarly, we extend to stacks the constructors defined for
evaluation contexts in Section 2.2. This is simply done by
applying the convention below, for any terms e, e1, e2:

e · Ω = fst · Ω = snd · Ω = (if e1, e2) · Ω
def
= Ω,

e · 0 = fst · 0 = snd · 0 = (if e1, e2) · 0
def
= 0.

3.3 Orthogonality

The orthogonality relation ⊥ between terms and stacks
is defined as follows:

e ⊥ π ⇐⇒ the term 〈e | π〉 is safe.

Thus, a term e and a stack π are orthogonal when combining
them induces a term 〈e | π〉 which loops, or reduces to one
of the boolean constants true or false.

Some readers will find it unexpected to see terms like
λx.e counted among our unsafe terms. This seems to con-
tradict the accepted notion of value in functional program-
ming. Well, not really. The idea is that a term like λx.e is
unsafe until it receives an argument e′ and induces a safe
term (λx.e) e′. We write this λx.e ⊥ e′ · nil, and note that
observing boolean constants (and only them) is enough to
characterize types semantically.

Note finally that the stack Ω is orthogonal to every term,
and that the stack 0 is orthogonal to no term.

3.4 Truth values

A term e is orthogonal to a set of stacks Π when:

∀π ∈ Π, e ⊥ π.

In that way, every set of stacks Π defines a set of terms Π⊥,
called the orthogonal of Π:

Π⊥ = {e | ∀π ∈ Π : e ⊥ π}.

5

Conversely, every set of terms Λ defines a set of stacks Λ⊥,
consisting of all the stacks orthogonal to Λ:

Λ⊥ = {π | ∀e ∈ Λ : e ⊥ π}.

Taking twice the orthogonal of a set of terms Λ induces a set
of terms Λ⊥⊥ called the biorthogonal of Λ. This operation
(Λ 7→ Λ⊥⊥) defines a closure operator in the lattice of sets
of terms, ordered by inclusion. In particular, Λ ⊂ Λ⊥⊥.

A truth value U is a set of terms closed by biorthogonal-
ity, that is, satisfying U = U⊥⊥. Note that the orthogonal
Π⊥ to a given set of stacks Π is always a truth value, and
that truth values are closed under (arbitrary) intersection.

3.5 Two constructions on truth values

Suppose that U and V are two truth values. We define
the truth values U ⇒ V and U × V as follows.

The arrow construction. The truth value U ⇒ V is de-
fined as the set of terms orthogonal to the stacks e ·π where
e ∈ U and π is a stack orthogonal to V .

Lemma 1 For every truth values U, V and term e, the fol-
lowing facts are equivalent :

1. e ∈ U ⇒ V ;
2. ∀e′ ∈ U, e e′ ∈ V .

The product construction. The truth value U × V is de-
fined as the set of terms orthogonal to the stacks fst · π
where π is a stack orthogonal to U , and snd · π where π is
a stack orthogonal to V .

Lemma 2 A term is element of U ×V iff the term loops, or
reduces to a pair (e, e′) where e ∈ U and e′ ∈ V .

4 Types

4.1 Syntax of types

Types are defined in two steps. First, finite patterns
(called type patterns) are defined inductively. Then, these
patterns are assembled coinductivelyinto possibly infinite
trees (called types). This two-step construction rules out
ill-defined types, such as τ = ∀α.τ , in that case because
∀α.τ is not a pattern. Indeed, any occurrence of a type in a
pattern is below a constructor→ or ×.

We assume given a set of type variables α and a single
type constant Bool . Given a set of types τ , we define type
patterns t inductively by the grammar below.

t ::= Bool boolean type
| τ × τ pair type
| τ → τ function type
| α type variable
| > top type
| ∀α.t universal quantification
| ⊥ bottom type
| ∃α.t existential quantification

The different type constructions are standard. See Sec-
tions 5 and 6 for a precise description of their meaning.

We write t(τ1, . . . , τk) when the pattern t has leaves τ1,
. . . , τk, where each τi occurs linearly in t. The finite pat-
terns t are assembled coinductively as follows:

τ ::= t(τ1, . . . , τk) coinductively.

By coinduction, every type τ is of the form t(τ1, . . . , τk).
So, we can reason inductively on the structure of type pat-
terns, then coinductively on the structure of types. This
turns out to be very convenient. Another point is that all
the constructions→, ×, . . . , on type patterns lift in the ob-
vious way to constructions on types. This enables to write
types like τ1 → τ2, τ1 × τ2 or ∀α.τ .

Types are considered modulo renaming of their bound
variables. This does not contradict the coinductive defini-
tion of types on the alphabet of patterns since, in fact, α-
conversion is only a handy presentation of de Bruijn indices.
Note also that we don’t assume types to be regular: types
may have an infinite number of distinct subtrees.

Remark: the sum types are not treated for lack of space only.
They are very easily integrated in the framework by ex-
tending the language of terms with three operators inl(e),
inr(e), caseof(e, e1, e2), and the language of evaluation
contexts with one operator (case e1, e2) · E, with the fol-
lowing equation:

〈e | (case e1, e2) · E〉 = 〈caseof(e, e1, e2) | E〉

and the two additional rewriting rules:

〈inl(e) | (case e1, e2) · E〉 → 〈e1 e | E〉
〈inr(e) | (case e1, e2) · E〉 → 〈e2 e | E〉

4.2 Syntax of interval types

In contrast to types, which may be infinite, interval types
are finite trees, defined inductively by the grammar below.

K ::= Bool boolean type
| K ×K pair type
| K → K function type
| α type variable
| > top type
| ∀α.K universal quantification
| ⊥ bottom type
| ∃α.K existential quantification
| [⊥,>] interval

In Section 6, we will use these interval types to “approx-
imate” types, in order to interpret them. Accordingly, the
type constructions are the same as for types. The only nov-
elty is the interval type [⊥,>], which will be interpreted in
the next section (Section 5) as the largest possible “inter-
val”, bounded by the smallest and largest nonempty truth
values.

6

4.3 Types approximated by interval types

We say that an interval type K approximates a type τ ,
which we write asK v τ , when the type τ may be obtained
syntactically by replacing every leaf labelled [⊥,>] inK by
a type. For instance:

∀α.∀β.[⊥,>]⇒ [⊥,>] v ∀α.∀β.α⇒ (α⇒ β).

5 Interpretation of interval types

5.1 Adjunction

Let φ be a term and ψ be a function on stacks. One says
that ψ is the adjoint of φ when, for every term e and stack π:

φ e ⊥ π ⇐⇒ e ⊥ ψ π.

Note that the adjoint ψ is characterized by φ modulo ob-
servational equivalence, in the sense that if ψ′ is another
adjoint of φ, then, for every stack π:

{ψ π}⊥ = {ψ′ π}⊥.

This enables to use the notation φ∗ for the adjoint ψ.

5.2 Semantic intervals

A semantic interval is a triple (U, V, φ) consisting of two
nonempty truth values U and V satisfying U ⊂ V , and a
term φ ∈ U ⇒ V having an adjoint φ∗. We generally note
semantic intervals as follows:

U
φ
←− V.

The term φ is called the conversion of the semantic interval.
Recall from Section 3 that φ ∈ U ⇒ V means that:

∀e ∈ V, φ e ∈ U.

Lemma 3 The function φ∗ sends every stack π ∈ U⊥ to a
stack φ∗π ∈ V ⊥.

Remark: The adjoint φ? is here to take full advantage of
the duality between terms and stacks, saying that every ex-
istential type on terms is at the same time a universal type
on stacks. Or similarly, that every union type on terms (see
Section 7) is at the same time an intersection type on stacks.
This dual perspective is crucial, we believe, to interpret ex-
istential and union types in the presence of recursive types
(without any recourse to a “language-based” stratification).

5.3 Interpretation of interval types

We call semantic environment ρ any function from type
variables to truth values. To any such environment ρ and in-
terval type K we define a semantic interval [[K]]ρ by struc-
tural induction on K. So, all along the section, we suppose
given two interval types K and K ′ interpreted as:

[[K]]ρ = U
φ
←− V, [[K ′]]ρ = U ′

ψ
←− V ′.

One needs to prove for each construction that the interpreta-
tion defines a semantic interval. This is not really difficult.
The interested reader will find the proof in the appendix.

Arrow type: [[K → K ′]]ρ = V ⇒ U ′
φ⇒ψ
←− U ⇒ V ′

where φ⇒ ψ = λx.(ψ ◦ x ◦ φ) = λx.λy.ψ (x (φ y)).

Product type: [[K ×K ′]]ρ = U × U ′
φ×ψ
←− V × V ′

where φ× ψ = λx.(φ fst(x), ψ snd(x)).

Boolean type: [[Bool]]ρ = W
λx.x
←−W

where W is the biorthogonal of the set {true, false}.

Bottom: [[⊥]]ρ = W
λx.x
←−W

whereW is the smallest nonempty truth value, alternatively
the set of looping terms, or the biorthogonal of the singleton
{Ω}.

Top: [[>]]ρ = W
λx.x
←− W

where W is the largest truth value, that is, the set of all
terms, or alternatively, the set of all terms orthogonal to the
stack Ω.

Type variable: [[α]]ρ = W
λx.x
←−W

whereW is the truth value associated to the type variable α
by the environment ρ.

Universal type: [[∀α.K]]ρ = U
φ
←− V

where U (resp. V) is the intersection of all truth values UT
(resp. VT) such that [[K]]ρ,(α7→T) = UT

φT
←− VT for T

ranging over truth values. As usual, [[K]]ρ,(α 7→T) denotes
the interpretation of K in the environment ρ in which the
type variable α is assigned to T . The term φ is defined by
showing that φT = φT ′ for any truth values T and T ′, and
then taking φ = φT for any truth value T .

Existential type: [[∃α.K]]ρ = U
φ
←− V

where U (resp. V) is the biorthogonal of the union of
all truth values UT (resp. VT) such that [[K]]ρ,(α7→T) =

UT
φT
←− VT for T ranging over truth values. The term φ

is defined by showing that φT = φT ′ for any truth values T
and T ′, and then taking φ = φT for any truth value T .

Interval type: [[[⊥,>]]]ρ = U
Ω
←− V

where U (resp. V) is the smallest (resp. largest) nonempty
truth value. Note that the term Ω transports every term e ∈
V to the looping term Ω e ∈ U .

6 Interpretation of types

Here comes the crux of the paper: we show that every
(possibly infinite) type τ generates a converging sequence

7

of interval types, the limit of which defines the interpreta-
tion of τ in the model. The proof is based on a simula-
tion lemma (lemma 4) showing that, under some appropri-
ate conditions, the conversion terms φK associated to our
semantic intervals behave like η-conversions or reduction
labels in the λ-calculus [16].

6.1 Term expansion

A term e′ obtained from a term e by inserting conversion
terms φK is called an expansion of e. We write this e ; e′.
This may be formalized by structural induction on the term:

e ; e
e ; e

′

e ; φK e
′

e ; e
′

λx.e ; λx.e
′

e1 ; e
′

1 e2 ; e
′

2

e1 e2 ; e
′

1 e
′

2

e1 ; e
′

1 e2 ; e
′

2

(e1, e2) ; (e′

1, e
′

2)

e ; e
′

fst(e) ; fst(e′)

e ; e
′

snd(e) ; snd(e′)

e1 ; e
′

1 e2 ; e
′

2 e3 ; e
′

3

if e1 then e2 else e3 ; if e
′

1 then e
′

2 else e
′

3

where φK indexed by the interval type K denotes the con-
version of any semantic interval [[K]]ρ, for ρ an arbitrary
semantic environment.

The depth of an interval type K is defined by structural
induction:

‖K ×K ′‖ = ‖K → K ′‖ = 1 + min(‖K‖, ‖K ′‖)
‖α‖ = ‖Bool‖ = +∞
‖⊥‖ = ‖>‖ = +∞
‖∀α.K‖ = ‖∃α.K‖ = ‖K‖
‖[⊥,>]‖ = 0

We speak of an expansion of depth k when all the φK in-
troduced by expansion are indexed by interval types K of
depth greater or equal to k. In that case, we write e ;k e

′.

6.2 The simulation lemma

Lemma 4 (simulation) For every pair of terms (e, e′) such
that e →∗ e′, there exists an integer p such that whenever
e ;p+k f for a safe term f and integer k, there exists a
term f ′ satisfying:

f →∗ f ′ and e′ ;k f
′.

Proof: Sketched in the appendix. �

6.3 Interpretation of types

Let ρ denote a semantic environment. Every type τ de-
fines a set of approximating interval types K v τ , each of
them interpreted as a semantic interval

[[K]]ρ = UK
φK
←− VK .

We define

U∞
def
=

⋃

Kvτ

UK V∞
def
=

⋂

Kvτ

VK .

Obviously, U∞ ⊂ V∞. We deduce that V∞ coincides with
the biorthogonal of U∞ (theorem 5) from the property:

∀e ∈ V∞, ∀π ∈ U
⊥
∞, e ⊥ π.

Theorem 5 (coincidence) V∞ = U⊥⊥∞ .

Proof: Sketched in the appendix. �

We therefore interpret the type τ in the environment ρ as

[[τ]]ρ = V∞ = U⊥⊥∞ .

Note that the definition ensures substitution properties like

[[τ]]ρ+(α7→[[τ ′]]ρ) = [[τ [α := τ ′]]]ρ

for every types τ and τ ′, and type variable α.

7 Intersection and Union

We indicate briefly how we interpret union and intersec-
tion types in the presence of recursive types. The first step
is to define two constructs ∧ (intersection) and ∨ (union) on
truth values U, V , just in the expected way:

U ∧ V = U ∩ V, U ∨ V = (U ∪ V)⊥⊥.

Our proof technique in Sections 5 and 6 requires to define
the conversions φ∧ψ and φ∨ψ associated to the constructs
∧ and ∨ on interval types. We believe that this not pos-
sible in the operational model based on the call-by-name
λ-calculus defined in Section 2. But this may be achieved
by enriching the language with an “error-avoiding” nonde-
terministic choice operator ‖, with the additional rules:

〈e1‖e2 | E〉 → 〈e1 | E〉
〈e1‖e2 | E〉 → 〈e2 | E〉

with E an evaluation context in the sense of Section 2.2.
The conversions φ ∧ ψ and φ ∨ ψ may then be defined as
the term φ‖ψ. The existence of an adjoint for the term φ‖ψ
requires to extend our class of stacks with an operator ‖,
building stacks π1‖π2 with the obvious action on terms:

〈e | π1‖π2〉 = 〈e | π1〉 ‖ 〈e | π2〉

We clarify now the orthogonality relation ⊥ associated to
this non-deterministic calculus. A term is called safe when
it may loop, or may reduce to true or false. A term e is
orthogonal to a stack π when 〈e | π〉 is safe. For instance,
the term e = true ‖ λx.x is orthogonal to the stack π =
0 ‖ (true · nil) because the term 〈e | π〉 reduces to the
constant true. It is not difficult to see then that the adjoint
of φ‖ψ is the function which associates to every stack π the
stack φ∗π‖ψ∗π, where φ∗ (resp. ψ∗) denotes the adjoint of
the term φ (resp. ψ).

8

Var-Access
Γ(x) = τ

Γ ` x : τ

App
Γ ` e1 : τ2 → τ1

Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Abs
Γ, x : τ2 ` e : τ1

Γ ` λx.e : τ2 → τ1

Pair
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Fst
Γ ` e : τ1 × τ2

Γ ` fst(e) : τ1

Snd
Γ ` e : τ1 × τ2

Γ ` snd(e) : τ2

Constant true
Γ ` true : Bool

Constant false
Γ ` false : Bool

Conditional
Γ ` e1 : Bool

Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Fixpoint
Γ ` e : τ → τ

Γ ` Y e : τ

All-Intro
Γ, α ` e : τ

Γ ` e : ∀α.τ

All-Elim
Γ ` e : ∀α.τ

Γ ` e : τ [τ ′/α]

Exists-Intro
Γ ` e : τ [τ ′/α]

Γ ` e : ∃α.τ

Exists-Elim
Γ ` e : ∃α.τ ′

Γ, α, x : τ ′ ` 〈x | E〉 : τ
α 6∈ FV(τ) x 6∈ FV(E)

Γ ` 〈e | E〉 : τ

Sub
Γ ` e : τ ′ τ ′ <: τ

Γ ` e : τ

Figure 1. Typing rules

8 Typing judgement

We deliver a series of typing rules (figure 1) for our un-
typed calculus of Section 2. We take the usual notions of
typing environment Γ and of typing judgement Γ ` e : τ ,
and thus refer to [22] for formal definitions. Our typing
rules are also canonical, except for the elimination rule of
the existential, which is inspired by [12]. We write Γ(x) for
the type of the variable x in the environment Γ, and FV for
the set of free variables of a type or an evaluation context.

The typing system depends on a subtyping relation <:
between types, which appears in the Sub rule. The only
requisite on the relation <: is that for every two types τ, τ ′

such that τ <: τ ′, and for every semantic environment ρ,
we have the inclusion [[τ]]ρ ⊂ [[τ ′]]ρ.

Soundness follows then by the usual semantic argument:

Theorem 6 (Soundness) ` e : τ implies e ∈ [[τ]].

We conclude from this that every closed term of type Bool

is safe.

9 Parametricity and typed realizability

We explain briefly how Realizability may be adapted
to account for logical relations and parametricity. Fol-
lowing [1, 5, 6, 20] among others, we would like to in-
terpret types as saturated relations. A saturated relation
(∼1, r,∼2) over the set of terms Λ consists of a binary rela-
tion r ⊂ Λ2 and two partial equivalence relations (pers) ∼1

and∼2 over e, such that:

∀(a, b, c, d) ∈ Λ4, a ∼1 b and b r c and c ∼2 d ⇒ a r d.

We find useful to express every saturated relation
(∼1, r,∼2) as the following set of quadruples:

R = {(a, b, c, d) ∈ Λ4, a ∼1 b, b r c and c ∼2 d}.

We define an orthogonality relation ⊥sat between quadru-
ples of terms and stacks of our deterministic language of
Section 2, by writing (e1, e2, e3, e4) ⊥

sat (π1, π2, π3, π4)
precisely when

〈e1 | π1〉 =safe 〈e1 | π2〉 =safe 〈e2 | π1〉 =safe 〈e2 | π2〉
〈e3 | π3〉 =safe 〈e3 | π4〉 =safe 〈e4 | π3〉 =safe 〈e4 | π4〉

〈e2 | π2〉 =safe 〈e3 | π3〉

where e =safe e
′ means that (1) the terms e and e′ are safe

and (2a) either e and e′ reduce to the same boolean constant,
or (2b) both e and e′ loop. A key observation follows:

Lemma 7 (Saturation) Every biorthogonal set of quadru-
ples of terms is a saturated relation R.

It is then easy to construct a realizability model of recursive
types based on biorthogonal relations instead of truth val-
ues. The operators ⇒ and × are adapted to biorthogonal
relations. That is, R ⇒ S denotes the set of quadruples or-
thogonal to every quadruple (e1 ·π1, e2 ·π2, e3 ·π3, e4 ·π4)
where (e1, e2, e3, e4) ∈ R and (π1, π2, π3, π4) ∈ S

⊥. Sim-
ilarly for the productR× S of two biorthogonal relations.

Then, one interprets recursive types by approximating
them by interval types, in the lines of Sections 5 and 6. This
defines a biorthogonal relation [[[τ]]]ρ for every type τ and
semantic environment ρ from type variables to biorthogo-
nal relations. Now, suppose that the subtyping relation <:
verifies that for every two types τ <: τ ′, and for every se-
mantic environment ρ, we have the inclusion [[[τ]]]ρ ⊂ [[[τ ′]]]ρ.
We prove that:

Theorem 8 (Soundness) ` e : τ implies (e, e, e, e) ∈ [[[τ]]].

Consider two closed terms e1 and e2 typed as ` e1 : τ
and ` e2 : τ in our typing system. We say that the terms
e1, e2 are parametrically equivalent (noted e1∆τe2) when
(e1, e1, e2, e2) ∈ [[[τ]]]. And that they are contextually equiv-
alent (noted e1 ∼

τ
ctx

e2) when e e1 =safe e e2 for every

9

closed term e typed as ` e : τ → Bool in our typing sys-
tem. We prove that for every type τ :

Lemma 9 (in untyped realizability) ∆τ ⊂ ∼τ
ctx

.

This indicates that there are more parametricity tests in the
untyped realizability universe, than in the typed syntax. To
obtain equality of ∆τ and ∼τ

ctx
, we thus need to shift to a

typed setting, in which only typed terms and stacks (à la
Church) are considered. The orthogonality relation e ⊥ π

holds when the term 〈e | π〉 is well-typed and safe. The def-
inition of ∆τ is immediately adapted to this typed setting.
We establish in this way the key property stated by Pitts for
his PolyPCF (theorem 4.15 [20]), reformulated in our poly-
morphic typing system with subtyping and recursive types.

Theorem 10 (in typed realizability) ∆τ = ∼τ
ctx
.

10 Conclusion and future works

We have shown in this article how recursive polymor-
phic types, as well as subtyping, may be interpreted op-
erationally without altering the original syntax of the λ-
calculus. We have also indicated how parametricity may
be integrated smoothly in the framework. It will be interest-
ing to see in future work how the methodology scales up to
languages with effects, or to process calculi. It will also be
interesting to understand how this methodology is related to
the categorical approach to recursive types.

References

[1] M. Abadi, P.-L. Curien, and G. Plotkin. Formal paramet-
ric polymorphism. Theoretic Computer Science, 121(1 and
2):9–58, 1993.

[2] M. Abadi, B. Pierce, and G. Plotkin. Faithful ideal mod-
els for recursive polymorphic types. International Journal
of Foundations of Computer Science, 2(1):1–21, Mar. 1991.
Summary in Fourth Annual Symposium on Logic in Com-
puter Science, June, 1989.

[3] S. Abramsky and A. Jung. Domain theory. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of
Logic in Computer Science, volume 3, pages 1–168. Claren-
don Press, 1994.

[4] A. W. Appel and D. McAllester. An indexed model
of recursive types for foundational proof-carrying code.
ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 23(5):657–683, 2001.

[5] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott.
Functorial polymorphism. In G. Huet, editor, Logical
Foundations of Functional Programming, pages 315–330.
Addison-Wesley, Reading, MA, 1990.

[6] R. Bellucci, M. Abadi, and P.-L. Curien. A model for for-
mal parametric polymorphism: A per interpretation for sys-
tem r. In M. Dezani-Ciancaglini and G. Plotkin, editors,
Typed Lambda Calculi and Applications: Proc. of the 2nd
International Conference on Typed Lambda Calculi and Ap-
plications, pages 32–46. Springer, Berlin, Heidelberg, 1995.

[7] L. Birkedal and R. Harper. Constructing interpretations of
recursives types in an operational setting. Information and
Computation, 155:3–63, 1999.

[8] J. Chroboczek. Games semantics and subtyping. PhD the-
sis and LFCS report ECS-LFCS-03-432, University of Ed-
inburgh, Great Britain, 2003.

[9] L. Dami. Labelled reductions, runtime errors and op-
erational subsumption. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, ICALP, volume 1256
of Lecture Notes in Computer Science, pages 782–793.
Springer, 1997.

[10] L. Dami. Operational subsumption, an ideal model of sub-
typing. In A. D. Gordon, A. M. Pitts, and C. Talcott, editors,
Second Workshop on Higher-Order Operational Techniques
in Semantics, volume 10 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2000.

[11] V. Danos and J.-L. Krivine. Disjunctive tautologies and syn-
chronisation schemes. In Computer Science Logic’00, vol-
ume 1862 of Lecture Notes in Computer Science, pages 292–
301. Springer, 2000.

[12] J. Dunfield and F. Pfenning. Type assignment for intersec-
tions and unions in call-by-value languages. In Proc. 6th In-
ternational Conference on Foundations of Software Science
and Computation Structures (FOSSACS’03), Lecture Notes
in Computer Science. Springer–Verlag, 2003.

[13] P. J. Freyd. Algebraically complete categories. In A. Car-
boni, M. C. Pedicchio, and G. Rosolini, editors, Proceed-
ings of the 1990 Como Category Theory Conference, vol-
ume 1488 of Lecture Notes in Mathematics, pages 131–156.
Springer–Verlag, 1991.

[14] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[15] J.-L. Krivine. Typed lambda-calculus in classical zermelo-
fraenkel set theory. Archive of Mathematical Logic,
40(3):189–205, 2001.

[16] J.-J. Lévy. An algebraic interpretation of the lambda beta K-
calculus; and an application of a labelled lambda-calculus.
Theoretical Computer Science, 2(1):97–114, June 1976.

[17] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model
for recursive polymorphic types. Information and Control,
71(1-2):95–130, 1986.

[18] I. A. Mason, S. F. Smith, and C. L. Talcott. From operational
semantics to domain theory. Information and Computation,
128(1):26–47, 1996.

[19] M. Parigot. Strong normalization for second order classical
natural deduction. In 8th Annual IEEE Symposium on Logic
in Computer Science, pages 39–46, Montreal, Canada, June
1993. IEEE Computer Society Press.

[20] A. M. Pitts. Parametric polymorphism and operational
equivalence. Mathematical Structures in computer Science,
10:321–359, 2000.

[21] S. F. Smith. The coverage of operational semantics. In A. D.
Gordon and A. M. Pitts, editors, Higher Order Operational
Techniques in Semantics, Publications of the Newton Insti-
tute, pages 307–346. Cambridge University Press, 1998.

[22] J. Vouillon and P.-A. Melliès. Semantic types: A fresh look
at the ideal model for types. In Proceedings of the 31th
ACM Conference on Principles of Programming Languages,
pages 52–63, Venezia, Italia, Jan. 2004. ACM Press.

10

Appendix

Proofs of section 5

Arrow type. We prove that

V ⇒ U ′
φ⇒ψ
←− U ⇒ V ′

defines a semantic interval.
Conversion : We prove first that

(φ⇒ ψ) ∈ (U ⇒ V ′)⇒ (V ⇒ U ′). (8)

Suppose that e ∈ U ⇒ V ′. We want to prove that (φ ⇒
ψ) e ∈ V ⇒ U ′. It is enough to prove that (φ ⇒ ψ) e is
orthogonal to every stack π′ = e′ · π where e′ ∈ V and π is
orthogonal to U ′. By hypothesis,U ′ is nonempty; thus, π is
not the unsafe stack 0. On the other hand, the case when π
is the safe stack Ω is immediate. There remains to treat the
case when π is an evaluation context E. In that case,

〈(φ⇒ ψ) e | π′〉 = 〈λx.λy.ψ (x (φ y)) | e · e′ · E〉
→ 〈λy.ψ (e (φ y)) | e′ · E〉
→ 〈ψ (e (φ e′)) | E〉

There remains to show that the term ψ (e (φ e′)) is element
of U ′. But this is a consequence of lemma 1, and the joint
facts that φ ∈ V ⇒ U , that e ∈ U ⇒ V ′ and that ψ ∈
V ′ ⇒ U ′. We conclude that (φ ⇒ ψ) e ⊥ π′, and thus
property (8).
Adjoint : We define (φ⇒ ψ)∗ and prove that this is indeed
the adjoint of (φ⇒ ψ).

• (φ ⇒ ψ)∗π = π when π is the safe stack Ω. Indeed,
in that case, both (φ⇒ ψ) e ⊥ π and e ⊥ π, for every
term e.

• (φ⇒ ψ)∗π = φ e ·ψ∗E when π = e ·E for some term
e and evaluation context E. Indeed, (φ⇒ ψ) e′ ⊥ e ·E
iff ψ (e′ (φ e)) ⊥ E iff e′ (φ e) ⊥ ψ∗E iff e′ ⊥ φ e ·
ψ∗E, for e′ an arbitrary term.

• (φ ⇒ ψ)∗π = 0 otherwise. Indeed, in that case, the
term 〈(φ⇒ ψ) e | π〉 is easily shown to be unsafe.

Product type. We prove that

[[K ×K ′]] = U × U ′
φ×ψ
←− V × V ′

defines a semantic interval.
Conversion : We prove first that

(φ× ψ) ∈ (V × V ′)⇒ (U × U ′). (9)

Suppose that e ∈ V ×V ′. We want to prove that (φ×ψ) e ∈
U×U ′. This means proving that (φ×ψ) e is (1) orthogonal
to every stack fst · π where π is orthogonal to V , and also

(2) orthogonal to every stack snd ·π′ where π′ is orthogonal
to V ′. We only show point (1), since point (2) is proved in
a similar fashion. By hypothesis, V is is nonempty; thus, π
is the unsafe stack 0. On the other hand, the case when π
is the safe stack Ω is immediate. There remains to treat the
case when π is an evaluation context E. In that case,

〈(φ × ψ) e | fst · E〉 =
〈λx.(φ fst(x), ψ snd(x)) | e · fst · E〉 →
〈(φ fst(e), ψ snd(e)) | fst · E〉 →
〈φ fst(e) | E〉

Now, 〈φ fst(e) | E〉 is safe iff φ fst(e) ⊥ E iff fst(e) ⊥
φ∗E iff e ⊥ fst · φ∗E. Now, the stack φ∗E is orthogonal
to U , and e is element of V × V ′. From this and definition
of V × V ′ follows that e is orthogonal to fst · φ∗E. We
conclude that 〈φ fst(e) | E〉 is safe, and thus that (φ ×
ψ) e ⊥ fst·E. As we said, point (2) is established similarly.
We conclude that (φ× ψ) e ∈ U × U ′.
Adjoint : We define (φ × ψ)∗ and prove that this is indeed
the adjoint of (φ × ψ).

• (φ × ψ)∗π = π when π is the safe stack Ω. Indeed,
in that case, both (φ × ψ) e ⊥ π and e ⊥ π, for every
term e.

• (φ × ψ)∗π = fst · φ∗E when π = fst · E for some
evaluation context E. Indeed, (φ× ψ) e′ ⊥ fst · E iff
φ fst(e) ⊥ E iff e ⊥ fst · φ∗E, for every term e.

• similarly, (φ × ψ)∗π = snd · φ∗E when π = snd · E
for some evaluation context E.

• (φ × ψ)∗π = 0 otherwise. Indeed, in that case, the
term 〈(φ× ψ) e | π〉 is easily shown to be unsafe.

Boolean type, bottom, top, type variable. In each case,
the term λx.x is element of W ⇒ W and has the identity
function on stacks as adjoint (λx.x)∗.

Universal type. We prove that

[[∀α.K]]ρ = U
φ
←− V

defines a semantic interval. By definition, the term φ is
equal to the term φT for any truth value T . Consequently,
the term φ has an adjoint φ∗ = φT .
Conversion : There remains to prove that

φ ∈ V ⇒ U.

Suppose that e is a term in V , and that π is a stack orthogo-
nal to U . Suppose that T is a truth value. Then, the term e

is element of VT . Thus, the term φ e is element of UT . This
is true for every truth value T . Thus, the term φ e is element
of V , for every term e ∈ V . We conclude that φ ∈ V ⇒ U .

11

Existential type. We prove that

[[∀α.K]]ρ = U
φ
←− V

defines a semantic interval. By definition, the term φ is
equal to the term φT for any truth value T . Consequently,
the term φ has an adjoint φ∗ = φT .
Conversion: There remains to prove that

φ ∈ V ⇒ U.

Suppose that e is a term in V , and that π is a stack orthog-
onal to U . Suppose that T is a truth value. Then, the stack
π is orthogonal to UT . Thus, the stack φ∗π is orthogonal
to VT . This is true for every truth value T . Thus, the stack
φ∗ π is orthogonal to V . In particular, e ⊥ φ∗ π. It fol-
lows immediately that φ e ⊥ π. This is true for every term
e element of V and for every stack π orthogonal to U . We
conclude that φ ∈ V ⇒ U .

Interval type. The definition works because the term Ω e
is element of U for every term e element of V (that is: for
every term). Besides, the term Ω has an adjoint Ω∗, which
transports every stack π to the safe stack Ω.

Proofs of Section 6.2 and Section 6.3 (sketched)

Lemma 4 (simulation) For every pair of terms (e, e′) such
that e →∗ e′, there exists an integer p such that whenever
e ;p+k f for a safe term f and integer k, there exists a
term f ′ satisfying:

f →∗ f ′ and e′ ;k f
′.

Proof: (sketch) The general idea is that expanding a term
e to a term f with a conversion φK either induces an error
in f , or behaves just like an η-expansion. Typically,

〈φK2⇒K1
(e) | e′ · E〉 →∗ 〈φK1

(e (φK2
e′)) | E〉.

One important point is that no conversion Ω associated to
the interval type [⊥,>] applies inside the reduction f →∗

f ′. This would break the simulation. For that reason, we
require an expansion depth e ;p+k f larger than the prod-
uct p of the length of the shortest reduction e →∗ e′, and
of the maximum length of an evaluation context involved
in the reduction. The length of an evaluation context is the
number of application nodes e · E in its definition. �

Theorem 5 (coincidence) V∞ = U⊥⊥∞ .

Proof: (sketch) We deduce that U∞ ⊂ V∞, from the fact
that UK ⊂ VK for every interval type K v τ . The truth
value V∞ which contains U∞ contains also its biorthogo-
nal U⊥⊥∞ . This establishes that U⊥⊥∞ ⊂ V∞. We prove the
converse inclusion V∞ ⊂ U⊥⊥∞ , which may be reformulated
as the statement below:

∀e ∈ V∞, ∀π ∈ U
⊥
∞, e ⊥ π.

The orthogonal of U∞ is given by an intersection:

U⊥∞ =
⋂

Kvτ

U⊥K

So, every stack π ∈ U⊥∞ is orthogonal to UK , and every
element e ∈ V∞ is transported to a term φK e ∈ UK , for
K v τ . We conclude that

∀K v τ, φK e ⊥ π. (10)

We claim that this implies that e ⊥ π. This is immediate
when π is one of the stacks Ω or 0. We proceed by con-
tradiction when the stack π = E is strict (= an evaluation
context). Suppose that the term 〈e | E〉 is unsafe. This
means that 〈e | E〉 → e′ to a term e′ which cannot be fur-
ther reduced by→, but which is neither the constant true
nor the constant false. By lemma 4, we may choose an
integer p such that, for every K is of depth p + k, the term
f = 〈φK e | E〉 reduces to a term f ′ such that e′ ;k f

′.
It is not difficult to see that, if k is chosen larger than the
length of any evaluation context in e′, then the term f ′ is
just as unsafe as e′. We conclude that 〈φK e | E〉 is unsafe,
or equivalently that φK e is not orthogonal to E, and thus
reach a contradiction with (10). We conclude that e ⊥ π. �

12

