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Abstract. We present the development of a machine-checked implemen-
tation of St̊almarck’s algorithm. First, we prove the correctness and the
completeness of an abstract representation of the algorithm. Then, we
give an effective implementation of the algorithm that we prove correct.

1 Introduction

When formalizing an algorithm inside a prover, every single step has to be jus-
tified. The result is a presentation of the algorithm where no detail has been
omitted. Mechanizing the proofs of correctness and completeness is the main
goal of this formalization. Whenever such proofs are intricate and involve a large
amount of case exploration, mechanized proofs may be an interesting comple-
ment to the ones on paper. Also, there is often a gap between an algorithm and
its actual implementation. Bridging this gap formally and getting a reasonably
efficient certified implementation is a valuable exercise.

In this paper we explain how this has been done for St̊almarck’s algorithm [10]
using the Coq prover [6]. This algorithm is a tautology checker. It is patented and
has been successfully applied in industry. As it includes a number of heuristics,
what we formalize is an abstract version of the algorithm. We prove different
properties of the algorithm including correctness and completeness. We also
cover two ways of ensuring that the result of an implementation is correct. We
define execution traces and prove that these traces can be used to check that
a formula is a tautology in a more elementary way. We also derive a certified
implementation.

The paper is structured as follows. The algorithm is presented in Section 2.
The formalization of the algorithm is described in Section 3. The notion of trace
is introduced in Section 4. Finally the implementation is given in Section 5.

2 The algorithm

St̊almarck’s algorithm is a tautology checker. It deals with boolean formulae,
i.e. expressions formed with the two constants > (true), ⊥ (false), the unary
symbol ¬ (negation), the binary symbols & (conjunction), # (disjunction), 7→
(implication), = (equivalence), and a set of variables (vi)i∈N. For example, the
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Fig. 1. Annotated tree-like representation of the formula

following formula is a boolean expression containing four variables v1, v2, v3 and
v4:

((v1 7→ v2) & (v3 7→ v4)) 7→ ((v1 & v3) 7→ (v2 & v4))

It is also a tautology. This means that the formula is valid (true) for any value
of its variables. The first step of the algorithm is to reduce the number of binary
symbols using the following equalities:

A # B = ¬(¬A &¬B)
A 7→ B = ¬(A &¬B)

¬¬A = A

With this transformation, we obtain an equivalent formula containing only con-
junctions, equalities and negations. By applying this transformation on our ex-
ample, we get:

¬((¬(v1 &¬v2) &¬(v3 &¬v4)) & ((v1 & v3) &¬(v2 & v4)))

The algorithm manipulates data structures called triplets. To handle negation,
variables are signed: ±vi. A triplet is a group of three signed variables and a
connector (either & or =), meaning that the first variable has the value of the
result of applying the connector to the other two variables. The two kinds of
triplets are written as vi := ±vj & ± vk and vi := ±vj = ±vk. Every reduced
boolean expression has a corresponding list of triplets. If we consider the tree
representation of the formula and annotate every binary tree with a fresh new
variable as in Figure 1, taking every binary node of the annotated tree to form
a triplet gives us the list of triplets representing the formula. In our example, we
get the following list:

v5 := v1 & −v2 (1)
v6 := v3 & −v4 (2)
v7 := −v5 & −v6 (3)
v8 := v1 & v3 (4)
v9 := v2 & v4 (5)
v10 := v8 & −v9 (6)
v11 := v7 & v10 (7)



The value of the formula is the value of −v11. The algorithm works by refuta-
tion. It assumes that the formula is false and tries to reach a contradiction by
propagation. There is a set of rules for each kind of triplets that defines how to
do this propagation. For the triplet vi := vj & vk we have nine rules:

if vi=−vj , propagate vj = > and vk = ⊥ &i−j

if vi=−vk, propagate vj = ⊥ and vk = > &i−k

if vj= vk, propagate vi = vk &jk

if vj=−vk, propagate vi = ⊥ &j−k

if vi= >, propagate vj = > and vk = > &i>

if vj= >, propagate vi = vk &j>

if vj= ⊥, propagate vi = ⊥ &j⊥

if vk= >, propagate vi = vj &k>

if vk= ⊥, propagate vi = ⊥ &k⊥

For the triplet vi := vj = vk we have twelve rules:

if vi= vj , propagate vk= > =ij

if vi=−vj , propagate vk= ⊥ =i−j

if vi= vk, propagate vj= > =ik

if vi=−vk, propagate vj= ⊥ =i−k

if vj= vk, propagate vi= > =jk

if vj=−vk, propagate vi= ⊥ =j−k

if vi= >, propagate vj= vk =i>

if vi= ⊥, propagate vj=−vk =i⊥

if vj= >, propagate vi= vk =j>

if vj= ⊥, propagate vi=−vk =j⊥

if vk= >, propagate vi= vj =k>

if vk= ⊥, propagate vi=−vj =k⊥

In our case, this simple mechanism of propagation is sufficient to establish that
the formula is a tautology. We start with the state where v11 = > (−v11 = ⊥)
and apply the following rules:

v11=>, we get v7 = > and v10 = > by &i> on (7)
v7 =>, we get v5 = ⊥ and v6 = ⊥ by &i> on (3)
v10=>, we get v8 = > and v9 = ⊥ by &i> on (6)
v8 =>, we get v1 = > and v3 = > by &i> on (4)
v1 =>, we get v5 = −v2 by &j> on (1)
v2 =>, we get v9 = v4 by &j> on (5)
v3 =>, we get v6 = −v4 by &j> on (2)

The last equation is a contradiction since we know that v6 = ⊥ and v4 = v9 = ⊥.
Note that the order in which propagation rules are selected is arbitrary.

Most of the time the propagation alone is not sufficient to conclude. In that
case the dilemma rule can be applied. This rule works as depicted in Figure 2.
Given a state S, it takes two arbitrary variables vi and vj and creates two
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separates branches. In one branch, it adds the equation vi = vj to get S1.
In the second branch it adds the equation vi = −vj to get S2. On each of
these branches, the propagation is applied to obtain S3 and S4 respectively.
Then the result of the dilemma rule is the intersection S ′ of S3 and S4 that
contains all the equations that are valid independently of the relation between
vi and vj . If one of the branches gives a contradiction, the result is the final
state of the other branch. If we obtain a contradiction on both branches, a
contradiction is reached. The dilemma rule is iterated on all pairs of variables
taking the state resulting from the previous application as the initial state of
the next one, till no new information is gained or a contradiction is reached.
If no contradiction is reached, the same process is applied using four variables
creating four branches (vi = vj , vk = vl), (vi = vj , vk = −vl), (vi = −vj , vk = vl)
and (vi = −vj , vk = −vl)). If the iteration on four variables is not sufficient to
conclude, we can proceed using 6 then 8, . . . , then 2 ∗ n variables. This gives
us a generalized schema of the dilemma rule as depicted in Figure 3. The nice
property of this algorithm is that the dilemma rule with four variables vi, vj ,
vk and vl with the restriction that vj = vl = > is sufficient to find most of the
tautologies occurring in formal verification.



3 Formalization of the algorithm

3.1 Triplets

To define triplets in Coq we first need a notion of signed variables. For this, we
introduce the type rZ with two constructors on nat: + and -. We also take the
convention that > is represented by +0 and ⊥ by -0. On rZ, we define the usual
operations: complement (−), absolute value (||) and an order < such that i < j

if and only if |i| < |j|.
A triplet is a set of three signed variables and a binary operation. We define

the new type triplet with the only constructor Triplet:

Inductive triplet :Set :=
Triplet : rBoolOp → rZ → rZ → rZ → triplet

where rBoolOp is an enumerate type containing the two elements rAnd and
rEq. In the following we use the usual pretty-printing convention for triplets:
(Triplet rAnd i j k) and (Triplet rEq i j k) are written as i := j & k and
i := j = k respectively.

In order to define an evaluation on triplets, we first need to define an evalu-
ation on rZ as:

Definition rZEval : (nat → bool) → rZ → bool :=
λf: nat → bool . λr: rZ .

Cases r of

(+ n) =⇒ (f n)
| (- n) =⇒ ¬(f n)

end.

For the triplet we simply check that the first variable is equal to the result of
applying the boolean operation to the other two variables:

Definition tZEval : (nat → bool) → triplet → bool :=
λf: nat → bool . λt: triplet .

Cases t of

(Triplet r v1 v2 v3) =⇒
(rZEval v1) = ((rBoolOpFun r) (rZEval v2) (rZEval v3))

end.

where the function rBoolOpFun maps elements of rBoolOp into their correspond-
ing boolean operation.

As the algorithm manipulates a list of triplets, we introduce the notion of
realizability: a valuation realizes a list of triplets if the evaluation of each triplet
in the list gives true:

Definition realizeTriplets : (nat → bool) → (list triplet) → Prop :=
λf: (nat → bool). λL: (list triplet). ∀t: triplet . t in L ⇒ (tZEval f t) = >.

Another interesting notion is the one of valid equation with respect to a list of
triplets. An equation i = j is valid if for every valuation f that realizes a list of
triplets L, f gives the same value for i and j:



Definition validEquation : (list triplet) → rZ → rZ → Prop :=
λL: (list triplet). λp, q: rZ . ∀f : (nat → bool ).

(realizeTriplets f L) ⇒ (f 0) = > ⇒ (rZEval f p) = (rZEval f q).

The condition (f 0) = > is here to keep the convention that (+ 0) represents >.
Not every list of triplets corresponds to a boolean expression. To express the

notion of tautology on triplets we simply ask for the top variable of the generated
list to be evaluated to true:

Definition tTautology : Expr → Prop :=
λe: Expr .

Cases (makeTriplets e) of

(l, s) =⇒ (validEquation l s >)
end.

where Expr is the type representing boolean expressions and makeTriplets is the
function that computes the list of triplets corresponding to a given expression
and its top variable. With this definition, we have the following theorem:

Theorem TautoEquivtTauto:
∀e: Expr . (tautology e) ⇐⇒ (tTautology e).

where the predicate tautology defines the usual notion of tautology on boolean
expressions.

3.2 States

All the operations of checking and adding equations are done with respect to a
state. We have chosen to represent states as lists of pairs of signed variables.

Definition State:Set := (list rZ ∗ rZ ).

The inductive predicate ∼ defines when two variables are equal:

Inductive ∼ :State → rZ → rZ → Prop :=
∼Ref : ∀a: rZ . ∀S: State. a ∼S a

| ∼In : ∀a, b: rZ . ∀S: State. (a, b) in S ⇒ a ∼S b
| ∼Sym : ∀a, b: rZ . ∀S: State. a ∼S b ⇒ b ∼S a
| ∼Inv : ∀a, b: rZ . ∀S: State. a ∼S b ⇒ −a ∼S −b
| ∼Trans : ∀a, b, c: rZ . ∀S: State. a ∼S b ⇒ b ∼S c ⇒ a ∼S c
| ∼Contr :∀a, b, c: rZ . ∀S: State. a ∼S −a ⇒ b ∼S c.

The logic of Coq is constructive. This means that the theorem ∀P : Prop. P ∨¬P

is not valid. But instances of this theorem can be proved. In particular we have:

Theorem stateDec:∀S: State. ∀a, b: rZ . a ∼S b ∨ ¬(a ∼S b).

The property of being a contradictory state is defined as:

Definition contradictory : State → Prop := λS: State. ∃a: rZ . a ∼s −a.

Note that from the definition of ∼, it follows that in a contradictory state all
equalities are valid. Inclusion and equality on states are defined as:



Definition ⊂ : State → State → Prop :=
λS1 ,S2 : State. ∀a, b: rZ . a ∼S1

b ⇒ a ∼S2
b.

Definition ≡ :State → State → Prop := λS1 ,S2 : State.S1 ⊂ S2 ∧ S2 ⊂ S1 .

A valuation realizes a state if all the equations of the state are valid:

Definition realizeState : (nat → bool) → State → Prop :=
λf: nat → bool . λS: State. ∀a, b: rZ . (a, b) in S ⇒ (rZEval f a) = (rZEval f b).

We also need to define two basic functions on states: intersection and union. The
union of two states is simply the state given by the concatenation of the two
lists. In the following we use the notation (a, b)+S to denote [(a, b)] ∪ S.

The intersection of two states is not the intersection of their lists1. The
function that computes the intersection of S1 and S2 first generates the list of
all non-trivial equations of S1, i.e. all pairs (a,b) such that a ∼S1

b and (a 6= b).
Then, it removes from this list the equations that are not valid in S2. The
resulting list represents S1 ∩ S2.

3.3 One-step propagation

We formalize the one-step propagation as an inductive predicate → whose defi-
nition is given in Appendix A. Note that S1 →t S2 only means that there exists
a rule that produces S2 from S1 using the triplet t. Because → is defined as a
predicate, no particular strategy of rule application is assumed. The relation →
is compatible with the equality as defined in Section 3.2:

Theorem →≡Ex :
∀S1 ,S2 ,S3 : State. ∀t: triplet .

S1 →t S2 ⇒ S1 ≡ S3 ⇒ ∃S4 : State.S3 →t S4 ∧ S4 ≡ S2 .

Also a propagation only adds equations:

Theorem →∪Ex :
∀S1 ,S2 : State. ∀t: triplet .S1 →t S2 ⇒ ∃S3 : State.S2 ≡ S3 ∪ S1 .

A corollary of this last theorem is that progatation always produces a bigger
state:

Theorem →Incl :
∀S1 ,S2 : State. ∀t: triplet .S1 →t S2 ⇒ S1 ⊂ S2 .

In a similar way we can prove that the relation behaves as a congruence:

Theorem →CongruentEx :
∀S1 ,S2 ,S3 : State. ∀t: triplet .

S1 →t S2 ⇒ ∃S4 : State. (S3 ∪ S1 ) →t S4 ∧ S4 ≡ (S3 ∪ S2 ).

This gives us as a corollary that the relation is monotone:

1 For example, given the lists [(1, 2); (2, 3)] and [(1, 3)], their intersection as states is
[(1, 3)] while their intersection as lists is [].



Theorem →MonotoneEx :
∀S1 ,S2 ,S3 : State. ∀t: triplet .

S1 →t S3 ⇒ S1 ⊂ S2 ⇒ ∃S4 : State.S2 →t S4 ∧ S3 ⊂ S4 .

Another interesting property is that the relation is confluent:

Theorem →ConflEx :
∀t1 , t2: triplet . ∀S1 ,S2 ,S3 : State.S1 →t1 S2 ⇒ S1 →t2 S3 ⇒
∃S4 ,S5 : State.S2 →t2 S4 ∧ S3 →t1 S5 ∧ S4 ≡ S5 .

Note that to establish these properties we do not use the particular equations
that are checked or added. All relations with a shape similar to the one of →
would have these properties.

The first semantic property that we have proved is that preserving the real-
izability for the one-step propagation is equivalent in some sense to evaluating
the triplet to >:

Theorem realizeStateEvalEquiv :
∀f: nat → bool . ∀S1, S2: State. ∀t: triplet .

(f 0 ) = > ⇒ (realizeState f S1 ) ⇒ S1 →t S2

⇒ ((realizeState f S2 ) ⇐⇒ (tEval f t) = >).

Another key semantic property is that no matter which rule is applied, the re-
sulting state is the same:

Theorem →Eq :
∀t: triplet . ∀S1 ,S2 ,S3 : State.S1 →t S2 ⇒ S1 →t S3 ⇒ S2 ≡ S3 .

Moreover, a triplet is essentially useful only once:

Theorem →Invol :
∀t: triplet . ∀S1 ,S2 ,S3 ,S4 : State.

S1 →t S2 ⇒ S2 ⊂ S3 ⇒ S3 →t S4 ⇒ S3 ≡ S4 .

The proofs of the above theorems are not very deep and mostly involve exploring
the twenty-one possible rules of one-step propagation.

3.4 Propagation

The propagation consists in iterating the one-step propagation. We take the
reflexive transitive closure of →t:

Inductive →∗ :State → (list triplet) → State → Prop :=
→∗Ref : ∀S1 ,S2 : State. ∀L: (list triplet).S1 ≡ S2 ⇒ S1 →∗

L S2

| →∗Trans : ∀S1 ,S2 ,S3 : State. ∀L: (list triplet). ∀t: triplet .
t in L ⇒ S1 →t S2 ⇒ S2 →∗

L S3 ⇒ S1 →∗
L S3 .

All the properties of the one-step propagation can be lifted to the propagation.
The exception is the theorem about realizability which has a simple implication
since the propagation might use a strict subset of the list of triplets:



Theorem realizeStateEval ∗:
∀f: nat → bool . ∀S1, S2: State. ∀L: (list triplet).

(f 0 ) = > ⇒ (realizeState f S1 ) ⇒ S1 →∗
L S2

⇒ (realizeTriplets f L) ⇒ (realizeState f S2 ).

Finally the property that a triplet is useful only once is captured by:

Theorem →∗TermEx :
∀L: (list triplet). ∀S1, S2: State.S1 →∗

L S2 ⇒
(S1 ≡ S2 ) ∨ (∃t: triplet . ∃S3 : State. t in L ∧ S1 →t S3 ∧ S3 →∗

L−[t] S2 ).

where L − [t] denotes the list obtained by removing t from L.

3.5 The dilemma rule

As we did for propagation, the dilemma rule is non-deterministic and modeled
by a predicate. Also, we allow an arbitrary (but finite) number of splits:

Inductive →d :State → (list triplet) → State → Prop :=
→dRef : ∀S1 ,S2 : State. ∀L: (list triplet).S1 →∗

L S2 ⇒ S1 →d
L S2

| →dSplit : ∀a, b: rZ . ∀S1 ,S2 ,S3 ,S4 : State. ∀L: (list triplet). ∀t: triplet .
(a, b)+S1 →d

L S2 ⇒ (a,−b)+S1 →d
L S3 ⇒ S2 ∩ S3 ≡ S4 ⇒ S1 →d

L S4 .

The relation →d is compatible with the equality:

Theorem →d≡ :
∀S1 ,S2 ,S3 ,S4: State. ∀L: (list triplet).

S1 →d
L S2 ⇒ S3 ≡ S1 ⇒ S4 ≡ S2 ⇒ S3 →d

L S4 .

The same theorems about inclusion also hold:

Theorem →d∪Ex :
∀S1 ,S2 : State. ∀L: (list triplet).S1 →d

L S2 ⇒ ∃S3 : State.S2 ≡ S3 ∪ S1 .

Theorem →d Incl :
∀S1 ,S2 : State. ∀L: (list triplet).S1 →d

L S2 ⇒ S1 ⊂ S2 .

Unfortunately as we only have (S1 ∩ S2) ∪ S3 ⊂ (S1 ∪ S3) ∩ (S2 ∪ S3) and not
(S1 ∩S2)∪S3 ≡ (S1 ∪S3)∩ (S2 ∪S3), the relation is not a congruence. A simple
way to recapture this congruence would be to define →d as:

Inductive →d :State → (list triplet) → State → Prop :=
→dRef : ∀S1 ,S2 : State. ∀L: (list triplet).S1 →∗

L S2 ⇒ S1 →d
L S2

| →dSplit : ∀a, b: rZ . ∀S1 ,S2 ,S3 ,S4 : State. ∀L: (list triplet). ∀t: triplet .
(a, b)+S1 →d

L S2 ⇒ (a,−b)+S1 →d
L S3 ⇒ S1 ⊂ S4 ⊂ (S2 ∩ S3 ) ⇒ S1 →d

L S4 .

but this would mean considering the merging of the two branches as a non-
deterministic operation, so we prefer our initial definition. Even though the re-
lation is not a congruence, it is monotone:



Theorem →dMonotone:
∀L: (list triplet). ∀S1 ,S2 ,S3 : State.

S1 →d
L S3 ⇒ S1 ⊂ S2 ⇒ ∃S4 : State.S2 →d

L S4 ∧ S3 ⊂ S4 .

and it is also confluent:

Theorem →dConfluent :
∀L: (list triplet). ∀S1 ,S2 ,S3 : State.

S1 →d
L S2 ⇒ S1 →d

L S3 ⇒ ∃S4 : State.S2 →d
L S4 ∧ S3 →d

L S4 .

The last property we have proved about the dilemma rule is that it preserves
realizability:

Theorem realizeStateEvald :
∀f: nat → bool . ∀S1, S2: State. ∀L: (list triplet).

(f 0 ) = > ⇒ (realizeState f S1 ) ⇒ S1 →d
L S2

⇒ (realizeTriplets f L) ⇒ (realizeState f S2 ).

3.6 St̊almarck’s algorithm

St̊almarck’s algorithm is the reflexive transitive closure of the dilemma rule:

Inductive →s :State → (list triplet) → State → Prop :=
→sRef : ∀S1 ,S2: State. ∀L: (list triplet).S1 ≡ S2 ⇒ S1 →s

L S2

| →sTrans :∀S1 ,S2 ,S3: State. ∀L: (list triplet).
S1 →d

L S2 ⇒ S2 →s
L S3 ⇒ S1 →s

L S3 .

As for →d we get the standard properties:

Theorem →s≡ :
∀S1 ,S2 ,S3 ,S4: State. ∀L: (list triplet).

S1 →s
L S2 ⇒ S3 ≡ S1 ⇒ S4 ≡ S2 ⇒ S3 →s

L S4 .

Theorem →s∪Ex :
∀S1 ,S2 : State. ∀L: (list triplet).S1 →s

L S2 ⇒ ∃S3 : State.S2 ≡ S3 ∪ S1 .

Theorem →sIncl :
∀S1 ,S2 : State. ∀L: (list triplet).S1 →s

L S2 ⇒ S1 ⊂ S2 .

Theorem →sMonotone:
∀L: (list triplet). ∀S1 ,S2 ,S3 : State.

S1 →s
L S3 ⇒ S1 ⊂ S2 ⇒ ∃S4 : State.S2 →s

L S4 ∧ S3 ⊂ S4 .

Theorem →sConfluent :
∀L: (list triplet). ∀S1 ,S2 ,S3 : State.

S1 →s
L S2 ⇒ S1 →s

L S3 ⇒ ∃S4 : State.S2 →s
L S4 ∧ S3 →s

L S4 .



Theorem realizeStateEval s :
∀f: nat → bool . ∀S1 ,S2 : State. ∀L: (list triplet).

(f 0 ) = > ⇒ (realizeState f S1 ) ⇒ S1 →s
L S2

⇒ (realizeTriplets f L) ⇒ (realizeState f S2 ).

Only the last property is relevant for the correctness of the algorithm. From the
theorem realizeStateEval s , the following property is easily derived:

Theorem st̊almarckValidEquation:
∀L: (list triplet). ∀a, b: rZ . ∀S: State.

[(a,−b)] →s
L S ⇒ (contradictory S) ⇒ (validEquation L a b).

Once we have this theorem, we can glue together all the theorems about tautol-
ogy to get the correctness:

Theorem st̊almarckCorrect :
∀e: Expr . ∀S: State.

Cases (makeTriplets e) of

(l, s) =⇒ [(s,⊥)] →s
l S ⇒ (contradictory S) ⇒ (Tautology e)

end.

Another property that has been formalized is the completeness of the algorithm:

Theorem st̊almarckComplete:
∀e: Expr . (Tautology e) ⇒ ∃S: State.

Cases (makeTriplets e) of

(l, s) =⇒ [(s,⊥)] →s
l S ∧ (contradictory S)

end.

This is proved by showing that if e is a tautology, we obtain a contradiction by
applying the dilemma rule on all the variables in the list of triplets. The program
extracted from the constructive proof of the theorem st̊almarckComplete would
then not be faster than the one that computes the truth table.

4 Trace

Our relation →s contains all possible execution paths. The choice of the rules, the
choice of the triplets and the choice of the variables for the dilemma rule are not
explicitly given. A natural question arises on what an explicit implementation
should produce to provide a certificate that it has reached a contradiction. Of
course, a complete trace of the execution (states, rules, triplets, variables) is a
valid certificate. In fact, we can do much better and keep only the triplets that
have been used and the variables on which the dilemma rule has been applied.
We define our notion of trace as:

Inductive Trace:Set :=
emptyTrace :Trace

| tripletTrace : triplet → Trace
| seqTrace :Trace → Trace → Trace
| dilemmaTrace :rZ → rZ → Trace → Trace → Trace.



The semantics is given by the following predicate that evaluates a trace:

Inductive evalTrace: State → Trace → State → Prop :=
emptyEval : ∀S1 ,S2 : State.S1 ≡ S2 ⇒ (evalTrace S1 emptyTrace S2 )

| tripletEval : ∀S1 ,S2 : State. ∀t: triplet .
S1 →t S2 ⇒ (evalTrace S1 (tripletTrace t) S2 )

| seqEval : ∀S1 ,S2 ,S3 : State. ∀T1 ,T2 : Trace.

(evalTrace S1 T1 S2 ) ⇒ (evalTrace S2 T2 S3 )
⇒ (evalTrace S1 (seqTrace T1 T2 ) S3 )

| dilemmaEval : ∀S1 ,S2 ,S3 ,S4: State. ∀a, b: rZ . ∀T1 ,T2 : Trace.

(evalTrace (a, b)+S1 T1 S2 ) ⇒ (evalTrace (a,−b)+S1 T2 S3 )
⇒ S2 ∩ S3 ≡ S4 ⇒ (evalTrace S1 (dilemmaTrace a b T1 T2 ) S4 ).

The fact that a trace determines a unique computation up to state equality is
asserted by the following theorem:

Theorem evalTraceEq :
∀S1 ,S2 ,S3 ,S4: State. ∀T: Trace.

(evalTrace S1 T S2 ) ⇒ (evalTrace S3 T S4 ) ⇒ S1 ≡ S3 ⇒ S2 ≡ S4 .

Conversely it is possible to get a trace from any non-deterministic computation:

Theorem st̊almarckExTrace:
∀S1 ,S2 : State. ∀L: (list triplet).

S1 →s
L S2 ⇒ ∃T: Trace. (evalTrace S1 T S2 ) ∧ T in L.

The second condition requires all the triplets in the trace T to be in L.

5 Implementation

Because of space limitation, we are only going to sketch the different components
of the implementation. In particular, we do not make explicit the rules of sign
using the notation ±v to denote either +v or -v.

5.1 Memory

We represent non-contradictory states using functional arrays. Appendix B lists
the different axioms we are using in our development. The size of the array is
maxN , the natural number that exceeds by at least one all the variables in the
list of triplets. The type of the elements of the array is defined as follows:

Inductive vM :Set :=
ref : rZ → vM

| class : (list rZ ) → vM

The value of the location i depends on the smallest element a such that +i ∼ a.
If i 6= |a|, the location i contains the value (ref a). Otherwise, it contains the
value (class L), where L is the ordered list of the elements b such that +i ∼ b

and |b| 6= i. All the constraints about the different values of the array are con-
centrated in the predicate WellFormed:



Definition Mem :Set := {r : (Array maxN vM )| (WellFormed maxN r)}.

Checking equality Given a memory m, it is easy to build a function minm

that returns for any element a of rZ the smallest b such that a ∼m b. To check
the equality between a and b in m, it is then sufficient to compare (minm a) and
(minm b).

Adding an equation Given a memory m, it is also easy to build a function lm
that returns for any element a of rZ the ordered list of all the elements b such that
a ∼m b. The result of an addition to a memory is a triple (Mem , bool , (list rZ)).
Since a memory can only represent a non-contradictory state, the boolean is set
to true if the addition of the equation gives a contradiction, to false otherwise.
The absolute values of the elements of the list are the locations of the arrays
that have been modified by the update. To perform the addition of a = b to m,
we first compare (minm a) and (minm b). If (minm a) = (minm b), the result
is (m,⊥, []). If (minm a) = −(minm b), the result is (m,>, []). If (minm a) <

(minm b), the result is (m′,⊥, [(minm a)] ∪ (lm b)) where m′ is obtained from
m by setting the locations corresponding to the elements of (lm b) to (ref ±
(minm a)) and the location |(minm a)| to (class (±(lm a)∪±(lm b))). The case
where (minm b) < (minm a) is symmetric to the previous one.

Intersection The function that computes the intersection takes three memories
m1, m2, m3 and two lists d1, d2 under the hypothesis that m1 ⊂ m2, m1 ⊂ m3,
d1 is the difference list between m1 and m2, and d2 is the difference list between
m1 and m3. It returns a 4-tuple (m′

1, m
′
2, m

′
3, d

′) such that m′
1 = m2 ∩ m3,

m′
1 ≡ m′

2 ≡ m′
3 and d′ is the difference list between m1 and m′

1. It proceeds by
successive additions to m1 of equations ai = bi where the ai are the elements of
d1 ∩ d2 and the bi are the smallest element such that ai ∼m2

bi and ai ∼m3
bi.

5.2 Propagation

The implementation of the one-step propagation is a composition of check-
ing equalities and adding equations. It has the type Mem → triplet →(Mem,
bool, (list rZ)). To do the propagation, we need to define a way to select
triplets. As the difference lists give the variables whose values have been mod-
ified, triplets containing these variables are good candidate for applying one-
step propagation. The type of the propagation function is Mem → (list rZ ) →
(Mem , bool , (list rZ )). The difference lists resulting from the application of the
one-step propagation are then recursively used for selecting triplets. This way
of propagating terminates since we cannot add infinitely many equations to a
memory.



5.3 Dilemma

We have implemented only the instances of the dilemma rule that are of practical
use: dilemma1, the dilemma with (a,>) for an arbitrary a, and dilemma2, the
dilemma with ((a, >), (b, >)) for arbitrary a and b. To perform the first one, we
use three memories, one for each branch and one to compute the intersection.
For the second one we use an extra memory. The first memory m1 is used to
compute each branch iteratively. The intermediate result is stored in the second
memory m2. At the end of each iteration we compute the intersection of m1 and
m2 using the third memory m3. We then switch m2 and m3 and use the last
memory to reset m1 and m3 before proceeding to the next branch. Note that a
dilemma with any number of variables could be implemented in the same way
using four memories.

5.4 St̊almarck

At this stage, we have to decide the strategy to pick up variables for the appli-
cation of the dilemma rules. Our heuristics are very simple and could be largely
improved. We first add the initial equation and propagate. If no contradiction
is reached, we iterate the application of the function dilemma1 using minimal
variables starting from +1 to +maxN . We perform this operation till a contra-
diction is reached or no more information is gained. In the second case, we do
a double iteration with a, b such that 0 < a < b < maxN using the function
dilemma2. Implementing this nave strategy is straightforward and gives us the
function doStal for which we have proved the following property:

Theorem doStalCorrect :
∀e: Expr . (doStal e) = > ⇒ (Tautology e).

Note that it is the only property that we have proved for our implementation
and clearly it is not sufficient. An algorithm that always returns ⊥ would sat-
isfy the above property. While our implementation is not complete since we use
dilemma rules only up to four variables, we could prove some liveness property.
This is feasible and would require to formalize the notion of n-hard formulae as
described in [10].

5.5 Benchmark

Once the implementation has been proved correct in Coq, the extraction mech-
anism [9] enables us to get a functional Ocaml [8] program. The result is 1400
lines long. To be able to run such a program, we need to provide an implemen-
tation of the arrays that satisfies the axioms of Appendix B. A first possibility is
to use balanced trees to implement functional arrays. A second possibility is to
use tagged arrays, since we have taken a special care in the implementation in
order to be able to use destructive arrays. The tag in the array prohibits illegal
accesses. For example, the set function for such arrays looks like:



Problem dilemma variables connectives hand-coded balanced trees tagged arrays

puz030 1 1 25 221 0.04 s 0.07 s 0.05 s
syn072 1 1 30 518 0.04 s 0.17 s 0.14 s
dk17 be 1 63 327 1.58 s 2.76 s 1.89 s

ssa0432 003 1 435 2363 6.38 m 47 s 42 s
jnh211 1 100 3887 9.47 m 9.36 m 9.14 m

aim50.1.6no.1 2 50 238 2.38 m 31.98 s 21.55 s
counter be 2 18 290 11.62 s 6.76 s 4.24 s
misg be 2 108 279 1.07 m 1.18 m 52.74 s
dubois20 2 60 479 7.59 m 7.95 s 5.98 s
add2 be 2 144 407 4.00 m 1.44m 1.13 m

Fig. 4. Some benchmarks on a Pentium 450

let set tar m v = match tar with

(ar,tag) -> if ((!tag) = true) then

(tag := false; Array.set ar m v;(ar,ref(true)))

else raise Prohibited_access;;

If the program terminates without exception, the result is correct. Table 4 gives
some execution times on standard examples taken from [5]. For each problem,
we give which level of dilemma rules is needed, the number of variables, the num-
ber of connectives and compare three versions of the algorithm: the algorithm is
directly hand-coded in Ocaml with slightly different heuristics, our certified ver-
sion with balanced trees and with tagged arrays. The time includes parsing the
formula and generating triplets. Even though the performance of an implemen-
tation largely depends on the heuristics, our certified version seems comparable
with the hand-coded one and the one presented by John Harrison in [5]. How-
ever, we are aware that in order to get a realistic implementation, much more
work on optimizations and heuristics has to be done.

6 Conclusion

We hope that what we have presented shows that current theorem proving tech-
nology can be effectively used to reason about algorithms and their implementa-
tions. We have presented a formalization of St̊almarck’s algorithm that includes
formal proofs of the main properties of the algorithm. Then, we have proposed
a format of execution traces and proved that it is adequate. Such certificates are
important in practice. They represent a simple way of increasing the confidence
in the correctness of specific results. Prover Technology that commercializes a
tool based on St̊almarck’s algorithm has defined its own format of traces [7]. John
Harrison [5] also presents a tactic based on St̊almarck’s method for HOL [4] us-
ing traces: the search is handled by a program that generates traces, then, the
prover uses these traces to build safe derivations of theorems. Finally, the effort
for deriving a certified implementation is orthogonal to the one on traces since



the correctness of results is ensured once and for all. The benchmarks given
in Section 5.5 show that our implementation is relatively efficient and can be
proposed as a reference implementation.

From the point of view of theorem proving, the most satisfying aspect of this
work is the formalization of the algorithm. It is a relatively concise development
of 3200 lines including 80 definitions and 200 theorems. The proof of correctness
of the implementation is less satisfying. Proving the basic operations (addition
and intersection) took 2/3 of the effort and represents more than 6000 lines of
Coq. This does not reflect the effective difficulty of the task. The main reason
why deriving these basic operations has been so tedious is that most of the proofs
involves a fair amount of case-splitting. For example, proving properties of the
addition often requires to take into account the signs and the relative value of the
components of the equation. We have neither managed to abstract our theorems
enough nor got enough automation so that we do not have to operate on the
different cases manually. Moreover, the fact that we handle imperative features
such as arrays in a functional way is a bit awkward. We plan in a near future to
use improvements such those presented in [3] to reason directly on imperative
programs inside Coq. Finally while the overall experience is quite positive, we
strongly believe that for this kind of formalization to become common practice,
an important effort has to be done in order to make proofs scripts readable
by non-specialists. In that respect, recent efforts such as [2, 11–13] seem very
promising.
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A The predicate for one-step propagation

Inductive →= :State → triplet → State :=
→&

p-q
: ∀p, q , r: rZ . ∀S: State. p ∼S -q ⇒ S →p:=q & r (q ,>)+(r ,⊥)+S

| →&
p-r

:∀p, q , r: rZ . ∀S: State. p ∼S -r ⇒ S →p:=q & r (q ,⊥)+(r ,>)+S

| →&qr
: ∀p, q , r: rZ . ∀S: State. q ∼S r ⇒ S →p:=q & r (p, r)+S

| →&
q-r

: ∀p, q , r: rZ . ∀S: State. q ∼S -r ⇒ S →p:=q & r (p,⊥)+S

| →&p>
: ∀p, q , r: rZ . ∀S: State. p ∼S > ⇒ S →p:=q & r (q ,>)+(r ,>)+S

| →&q>
: ∀p, q , r: rZ . ∀S: State. q ∼S > ⇒ S →p:=q & r (p, r)+S

| →&q⊥
: ∀p, q , r: rZ . ∀S: State. q ∼S ⊥ ⇒ S →p:=q & r (p,⊥)+S

| →&r>
: ∀p, q , r: rZ . ∀S: State. r ∼S > ⇒ S →p:=q & r (p, q)+S

| →&r⊥
: ∀p, q , r: rZ . ∀S: State. r ∼S ⊥ ⇒ S →p:=q & r (p,⊥)+S

| →=pq
:∀p, q , r: rZ . ∀S: State. p ∼S q ⇒ S →p:=q=r (r ,>)+S

| →=
p-q

: ∀p, q , r: rZ . ∀S: State. p ∼S -q ⇒ S →p:=q=r (r ,⊥)+S

| →=pr
: ∀p, q , r: rZ . ∀S: State. p ∼S r ⇒ S →p:=q=r (q ,>)+S

| →=
p-r

:∀p, q , r: rZ . ∀S: State. p ∼S -r ⇒ S →p:=q=r (q ,⊥)+S

| →=qr
:∀p, q , r: rZ . ∀S: State. q ∼S r ⇒ S →p:=q=r (p,>)+S

| →=
q-r

: ∀p, q , r: rZ . ∀S: State. q ∼S -r ⇒ S →p:=q=r (p,⊥)+S

| →=p>
: ∀p, q , r: rZ . ∀S: State. p ∼S > ⇒ S →p:=q=r (q , r))+S

| →=p⊥
: ∀p, q , r: rZ . ∀S: State. p ∼S ⊥ ⇒ S →p:=q=r (q , -r)+S

| →=q>
: ∀p, q , r: rZ . ∀S: State. q ∼S > ⇒ S →p:=q=r (p, r)+S

| →=q⊥
: ∀p, q , r: rZ . ∀S: State. q ∼S ⊥ ⇒ S →p:=q=r (p, -r)+S

| →=r>
: ∀p, q , r: rZ . ∀S: State. r ∼S > ⇒ S →p:=q=r (p, q)+S

| →=r⊥
: ∀p, q , r: rZ . ∀S: State. r ∼S ⊥ ⇒ S →p:=q=r (p, -q)+S .

B Axioms for arrays

Parameter get: ∀n: nat. ∀A: Set. ∀Ar: (Array n A). ∀m: nat. ∀H: m < n. A.
Parameter set: ∀n: nat. ∀A: Set. ∀Ar: (Array n A). ∀m: nat. ∀H: m < n.

∀v: A. (Array n A).
Parameter gen: ∀n: nat. ∀A: Set. ∀f: nat → A. (Array n A).
Axiom setDef1: ∀n: nat. ∀A: Set. ∀Ar: (Array n A). ∀m: nat. ∀H: m < n.

∀v: A. (get n A (set n A Ar m H v) m H) = v.
Axiom setDef2: ∀n: nat. ∀A: Set. ∀Ar: (Array n A). ∀m1, m2: nat.

∀H1: m1 < n. ∀H2: m2 < n. ∀H: m < n. ∀v: A. m1 6= m2 ⇒
(get n A (set n A Ar m1 H1 v) m2 H2) = (get n A Ar m2 H2).



Axiom genDef : ∀n: nat. ∀A: Set. ∀m: nat. ∀f: nat → A. ∀H: m < n.

(get n A (gen n A f) m H) = (f m).
Axiom getIrr: ∀n: nat. ∀A: Set. ∀Ar: (Array n A). ∀m1, m2: nat.

∀H1: m1 < n. ∀H2: m2 < n. m1 = m2 ⇒
(get n A Ar m1 H1) = (get n A Ar m2 H2).

Axiom setIrr: ∀n: nat. ∀A: Set. ∀Ar: (Array n A). ∀m1, m2: nat.

∀H1: m1 < n. ∀H2: m2 < n. ∀v: A. m1 = m2 ⇒
(set n A Ar m1 H1 v) = (set n A Ar m2 H2 v).


