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We present the development of a machine-checked implementation of Stålmarck's algorithm. First, we prove the correctness and the completeness of an abstract representation of the algorithm. Then, we give an effective implementation of the algorithm that we prove correct.

A The predicate for one-step propagation

→ & p-q : ∀p, q, r: rZ . ∀S: State. p ∼ S -q ⇒ S → p:=q & r (q, )+(r , ⊥)+S | → & p-r : ∀p, q, r: rZ .

Introduction

When formalizing an algorithm inside a prover, every single step has to be justified. The result is a presentation of the algorithm where no detail has been omitted. Mechanizing the proofs of correctness and completeness is the main goal of this formalization. Whenever such proofs are intricate and involve a large amount of case exploration, mechanized proofs may be an interesting complement to the ones on paper. Also, there is often a gap between an algorithm and its actual implementation. Bridging this gap formally and getting a reasonably efficient certified implementation is a valuable exercise.

In this paper we explain how this has been done for Stålmarck's algorithm [START_REF] Sheeran | A tutorial on Stålmarck's proof procedure for propositional logic[END_REF] using the Coq prover [START_REF] Huet | The Coq Proof Assistant: A Tutorial: Version 6[END_REF]. This algorithm is a tautology checker. It is patented and has been successfully applied in industry. As it includes a number of heuristics, what we formalize is an abstract version of the algorithm. We prove different properties of the algorithm including correctness and completeness. We also cover two ways of ensuring that the result of an implementation is correct. We define execution traces and prove that these traces can be used to check that a formula is a tautology in a more elementary way. We also derive a certified implementation.

The paper is structured as follows. The algorithm is presented in Section 2. The formalization of the algorithm is described in Section 3. The notion of trace is introduced in Section 4. Finally the implementation is given in Section 5.

The algorithm

Stålmarck's algorithm is a tautology checker. It deals with boolean formulae, i.e. expressions formed with the two constants (true), ⊥ (false), the unary symbol ¬ (negation), the binary symbols & (conjunction), # (disjunction), → (implication), = (equivalence), and a set of variables (v i ) i∈N . For example, the
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Fig. 1. Annotated tree-like representation of the formula following formula is a boolean expression containing four variables v 1 , v 2 , v 3 and v 4 :

((v 1 → v 2 ) & (v 3 → v 4 )) → ((v 1 & v 3 ) → (v 2 & v 4 ))
It is also a tautology. This means that the formula is valid (true) for any value of its variables. The first step of the algorithm is to reduce the number of binary symbols using the following equalities:

A # B = ¬(¬A & ¬B) A → B = ¬(A & ¬B) ¬¬A = A
With this transformation, we obtain an equivalent formula containing only conjunctions, equalities and negations. By applying this transformation on our example, we get:

¬((¬(v 1 & ¬v 2 ) & ¬(v 3 & ¬v 4 )) & ((v 1 & v 3 ) & ¬(v 2 & v 4 )))
The algorithm manipulates data structures called triplets. To handle negation, variables are signed: ±v i . A triplet is a group of three signed variables and a connector (either & or =), meaning that the first variable has the value of the result of applying the connector to the other two variables. The two kinds of triplets are written as v i := ±v j & ± v k and v i := ±v j = ±v k . Every reduced boolean expression has a corresponding list of triplets. If we consider the tree representation of the formula and annotate every binary tree with a fresh new variable as in Figure 1, taking every binary node of the annotated tree to form a triplet gives us the list of triplets representing the formula. In our example, we get the following list:

v 5 := v 1 & -v 2 (1) v 6 := v 3 & -v 4 (2) v 7 := -v 5 & -v 6 (3) v 8 := v 1 & v 3 (4) v 9 := v 2 & v 4 (5) v 10 := v 8 & -v 9 (6) v 11 := v 7 & v 10 (7) 
The value of the formula is the value of -v 11 . The algorithm works by refutation. It assumes that the formula is false and tries to reach a contradiction by propagation. There is a set of rules for each kind of triplets that defines how to do this propagation. For the triplet v i := v j & v k we have nine rules:

if v i =-v j , propagate v j = and v k = ⊥ & i-j if v i =-v k , propagate v j = ⊥ and v k = & i-k if v j = v k , propagate v i = v k & jk if v j =-v k , propagate v i = ⊥ & j-k if v i = , propagate v j = and v k = & i if v j = , propagate v i = v k & j if v j = ⊥, propagate v i = ⊥ & j⊥ if v k = , propagate v i = v j & k if v k = ⊥, propagate v i = ⊥ & k⊥
For the triplet v i := v j = v k we have twelve rules:

if v i = v j , propagate v k = = ij if v i =-v j , propagate v k = ⊥ = i-j if v i = v k , propagate v j = = ik if v i =-v k , propagate v j = ⊥ = i-k if v j = v k , propagate v i = = jk if v j =-v k , propagate v i = ⊥ = j-k if v i = , propagate v j = v k = i if v i = ⊥, propagate v j =-v k = i⊥ if v j = , propagate v i = v k = j if v j = ⊥, propagate v i =-v k = j⊥ if v k = , propagate v i = v j = k if v k = ⊥, propagate v i =-v j = k⊥
In our case, this simple mechanism of propagation is sufficient to establish that the formula is a tautology. We start with the state where v 11 = (-v 11 = ⊥) and apply the following rules:

v 11 = , we get v 7 = and v 10 = by & i on (7) v 7 = , we get v 5 = ⊥ and v 6 = ⊥ by & i on (3) v 10 = , we get v 8 = and v 9 = ⊥ by & i on (6) v 8 = , we get v 1 = and v 3 = by & i on (4) v 1 = , we get v 5 = -v 2 by & j on (1) v 2 = , we get v 9 = v 4 by & j on (5) v 3 = , we get v 6 = -v 4 by & j on (2) 
The last equation is a contradiction since we know that v 6 = ⊥ and v 4 = v 9 = ⊥. Note that the order in which propagation rules are selected is arbitrary. Most of the time the propagation alone is not sufficient to conclude. In that case the dilemma rule can be applied. This rule works as depicted in Figure 2. Given a state S, it takes two arbitrary variables v i and v j and creates two In the second branch it adds the equation v i = -v j to get S 2 . On each of these branches, the propagation is applied to obtain S 3 and S 4 respectively. Then the result of the dilemma rule is the intersection S of S 3 and S 4 that contains all the equations that are valid independently of the relation between v i and v j . If one of the branches gives a contradiction, the result is the final state of the other branch. If we obtain a contradiction on both branches, a contradiction is reached. The dilemma rule is iterated on all pairs of variables taking the state resulting from the previous application as the initial state of the next one, till no new information is gained or a contradiction is reached. If no contradiction is reached, the same process is applied using four variables creating four branches

(v i = v j , v k = v l ), (v i = v j , v k = -v l ), (v i = -v j , v k = v l ) and (v i = -v j , v k = -v l )
). If the iteration on four variables is not sufficient to conclude, we can proceed using 6 then 8, . . . , then 2 * n variables. This gives us a generalized schema of the dilemma rule as depicted in Figure 3. The nice property of this algorithm is that the dilemma rule with four variables v i , v j , v k and v l with the restriction that v j = v l = is sufficient to find most of the tautologies occurring in formal verification.

Triplets

To define triplets in Coq we first need a notion of signed variables. For this, we introduce the type rZ with two constructors on nat: + and -. We also take the convention that is represented by +0 and ⊥ by -0. On rZ, we define the usual operations: complement (-), absolute value (||) and an order < such that i < j if and only if |i| < |j|.

A triplet is a set of three signed variables and a binary operation. We define the new type triplet with the only constructor Triplet:

Inductive triplet : Set := Triplet : rBoolOp → rZ → rZ → rZ → triplet
where rBoolOp is an enumerate type containing the two elements rAnd and rEq. In the following we use the usual pretty-printing convention for triplets: (Triplet rAnd i j k) and (Triplet rEq i j k) are written as i := j & k and i := j = k respectively. In order to define an evaluation on triplets, we first need to define an evaluation on rZ as:

Definition rZEval : (nat → bool ) → rZ → bool := λf: nat → bool . λr: rZ . Cases r of (+ n) =⇒ (f n) | (-n) =⇒ ¬(f n) end.
For the triplet we simply check that the first variable is equal to the result of applying the boolean operation to the other two variables:

Definition tZEval : (nat → bool ) → triplet → bool := λf: nat → bool . λt: triplet . Cases t of (Triplet r v 1 v 2 v 3 ) =⇒ (rZEval v 1 ) = ((rBoolOpFun r) (rZEval v 2 ) (rZEval v 3 )) end.
where the function rBoolOpFun maps elements of rBoolOp into their corresponding boolean operation.

As the algorithm manipulates a list of triplets, we introduce the notion of realizability: a valuation realizes a list of triplets if the evaluation of each triplet in the list gives true:

Definition realizeTriplets : (nat → bool ) → (list triplet) → Prop := λf: (nat → bool ). λL: (list triplet). ∀t: triplet. t in L ⇒ (tZEval f t) = .
Another interesting notion is the one of valid equation with respect to a list of triplets. An equation i = j is valid if for every valuation f that realizes a list of triplets L, f gives the same value for i and j:

Definition validEquation : (list triplet) → rZ → rZ → Prop := λL: (list triplet). λp, q: rZ . ∀f : (nat → bool ). (realizeTriplets f L) ⇒ (f 0) = ⇒ (rZEval f p) = (rZEval f q).
The condition (f 0) = is here to keep the convention that (+ 0) represents . Not every list of triplets corresponds to a boolean expression. To express the notion of tautology on triplets we simply ask for the top variable of the generated list to be evaluated to true: Definition tTautology : Expr → Prop := λe: Expr .

Cases (makeTriplets e) of (l, s) =⇒ (validEquation l s ) end.

where Expr is the type representing boolean expressions and makeTriplets is the function that computes the list of triplets corresponding to a given expression and its top variable. With this definition, we have the following theorem:

Theorem TautoEquivtTauto: ∀e: Expr . (tautology e) ⇐⇒ (tTautology e).

where the predicate tautology defines the usual notion of tautology on boolean expressions.

States

All the operations of checking and adding equations are done with respect to a state. We have chosen to represent states as lists of pairs of signed variables.

Definition State: Set := (list rZ * rZ ).

The inductive predicate ∼ defines when two variables are equal: The logic of Coq is constructive. This means that the theorem ∀P: Prop. P ∨ ¬P is not valid. But instances of this theorem can be proved. In particular we have:

Inductive ∼ : State → rZ →
Theorem stateDec: ∀S: State. ∀a, b: rZ . a ∼ S b ∨ ¬(a ∼ S b).
The property of being a contradictory state is defined as:

Definition contradictory: State → Prop := λS: State. ∃a: rZ . a ∼ s -a.
Note that from the definition of ∼, it follows that in a contradictory state all equalities are valid. Inclusion and equality on states are defined as:

Definition ⊂ : State → State → Prop := λS 1 , S 2 : State. ∀a, b: rZ . a ∼ S1 b ⇒ a ∼ S2 b. Definition ≡ : State → State → Prop := λS 1 , S 2 : State. S 1 ⊂ S 2 ∧ S 2 ⊂ S 1 .
A valuation realizes a state if all the equations of the state are valid:

Definition realizeState : (nat → bool ) → State → Prop := λf: nat → bool . λS: State. ∀a, b: rZ . (a, b) in S ⇒ (rZEval f a) = (rZEval f b).
We also need to define two basic functions on states: intersection and union. The union of two states is simply the state given by the concatenation of the two lists. In the following we use the notation (a, b)+S to denote [(a, b)] ∪ S.

The intersection of two states is not the intersection of their lists 1 . The function that computes the intersection of S 1 and S 2 first generates the list of all non-trivial equations of S 1 , i.e. all pairs (a,b) such that a ∼ S1 b and (a = b). Then, it removes from this list the equations that are not valid in S 2 . The resulting list represents S 1 ∩ S 2 .

One-step propagation

We formalize the one-step propagation as an inductive predicate → whose definition is given in Appendix A. Note that S 1 → t S 2 only means that there exists a rule that produces S 2 from S 1 using the triplet t. Because → is defined as a predicate, no particular strategy of rule application is assumed. The relation → is compatible with the equality as defined in Section 3.2:

Theorem →≡Ex : ∀S 1 , S 2 , S 3 : State. ∀t: triplet. S 1 → t S 2 ⇒ S 1 ≡ S 3 ⇒ ∃S 4 : State. S 3 → t S 4 ∧ S 4 ≡ S 2 .
Also a propagation only adds equations:

Theorem →∪Ex : ∀S 1 , S 2 : State. ∀t: triplet. S 1 → t S 2 ⇒ ∃S 3 : State. S 2 ≡ S 3 ∪ S 1 .
A corollary of this last theorem is that progatation always produces a bigger state:

Theorem →Incl : ∀S 1 , S 2 : State. ∀t: triplet. S 1 → t S 2 ⇒ S 1 ⊂ S 2 .
In a similar way we can prove that the relation behaves as a congruence:

Theorem →CongruentEx : ∀S 1 , S 2 , S 3 : State. ∀t: triplet. S 1 → t S 2 ⇒ ∃S 4 : State. (S 3 ∪ S 1 ) → t S 4 ∧ S 4 ≡ (S 3 ∪ S 2 ).
This gives us as a corollary that the relation is monotone:

Theorem →MonotoneEx : ∀S 1 , S 2 , S 3 : State. ∀t: triplet. S 1 → t S 3 ⇒ S 1 ⊂ S 2 ⇒ ∃S 4 : State. S 2 → t S 4 ∧ S 3 ⊂ S 4 .
Another interesting property is that the relation is confluent:

Theorem →ConflEx : ∀t 1 , t 2 : triplet. ∀S 1 , S 2 , S 3 : State. S 1 → t1 S 2 ⇒ S 1 → t2 S 3 ⇒ ∃S 4 , S 5 : State. S 2 → t2 S 4 ∧ S 3 → t1 S 5 ∧ S 4 ≡ S 5 .
Note that to establish these properties we do not use the particular equations that are checked or added. All relations with a shape similar to the one of → would have these properties.

The first semantic property that we have proved is that preserving the realizability for the one-step propagation is equivalent in some sense to evaluating the triplet to :

Theorem realizeStateEvalEquiv : ∀f: nat → bool . ∀S 1 , S 2 : State. ∀t: triplet. (f 0 ) = ⇒ (realizeState f S 1 ) ⇒ S 1 → t S 2 ⇒ ((realizeState f S 2 ) ⇐⇒ (tEval f t) = ).
Another key semantic property is that no matter which rule is applied, the resulting state is the same:

Theorem →Eq: ∀t: triplet. ∀S 1 , S 2 , S 3 : State. S 1 → t S 2 ⇒ S 1 → t S 3 ⇒ S 2 ≡ S 3 .
Moreover, a triplet is essentially useful only once:

Theorem →Invol : ∀t: triplet. ∀S 1 , S 2 , S 3 , S 4 : State. S 1 → t S 2 ⇒ S 2 ⊂ S 3 ⇒ S 3 → t S 4 ⇒ S 3 ≡ S 4 .
The proofs of the above theorems are not very deep and mostly involve exploring the twenty-one possible rules of one-step propagation.

Propagation

The propagation consists in iterating the one-step propagation. We take the reflexive transitive closure of → t :

Inductive → * : State → (list triplet) → State → Prop := → * Ref : ∀S 1 , S 2 : State. ∀L: (list triplet ). S 1 ≡ S 2 ⇒ S 1 → * L S 2 | → * Trans : ∀S 1 , S 2 , S 3 : State. ∀L: (list triplet). ∀t: triplet. t in L ⇒ S 1 → t S 2 ⇒ S 2 → * L S 3 ⇒ S 1 → * L S 3 .
All the properties of the one-step propagation can be lifted to the propagation. The exception is the theorem about realizability which has a simple implication since the propagation might use a strict subset of the list of triplets:

Theorem realizeStateEval * : ∀f: nat → bool . ∀S 1 , S 2 : State. ∀L: (list triplet ). (f 0 ) = ⇒ (realizeState f S 1 ) ⇒ S 1 → * L S 2 ⇒ (realizeTriplets f L) ⇒ (realizeState f S 2 ).
Finally the property that a triplet is useful only once is captured by:

Theorem → * TermEx : ∀L: (list triplet ). ∀S 1 , S 2 : State. S 1 → * L S 2 ⇒ (S 1 ≡ S 2 ) ∨ (∃t: triplet. ∃S 3 : State. t in L ∧ S 1 → t S 3 ∧ S 3 → * L-[t] S 2 ).
where L -[t] denotes the list obtained by removing t from L.

The dilemma rule

As we did for propagation, the dilemma rule is non-deterministic and modeled by a predicate. Also, we allow an arbitrary (but finite) number of splits:

Inductive → d : State → (list triplet) → State → Prop := → d Ref : ∀S 1 , S 2 : State. ∀L: (list triplet ). S 1 → * L S 2 ⇒ S 1 → d L S 2 | → d Split : ∀a, b: rZ . ∀S 1 , S 2 , S 3 , S 4 : State. ∀L: (list triplet ). ∀t: triplet. (a, b)+S 1 → d L S 2 ⇒ (a, -b)+S 1 → d L S 3 ⇒ S 2 ∩ S 3 ≡ S 4 ⇒ S 1 → d L S 4 .
The relation → d is compatible with the equality:

Theorem → d ≡ : ∀S 1 , S 2 , S 3 , S 4 : State. ∀L: (list triplet). S 1 → d L S 2 ⇒ S 3 ≡ S 1 ⇒ S 4 ≡ S 2 ⇒ S 3 → d L S 4 .
The same theorems about inclusion also hold: 

Theorem → d ∪Ex : ∀S 1 ,
∩ S 2 ) ∪ S 3 ⊂ (S 1 ∪ S 3 ) ∩ (S 2 ∪ S 3 ) and not (S 1 ∩ S 2 ) ∪ S 3 ≡ (S 1 ∪ S 3 ) ∩ (S 2 ∪ S 3
), the relation is not a congruence. A simple way to recapture this congruence would be to define → d as:

Inductive → d : State → (list triplet) → State → Prop := → d Ref : ∀S 1 , S 2 : State. ∀L: (list triplet ). S 1 → * L S 2 ⇒ S 1 → d L S 2 | → d Split : ∀a, b: rZ . ∀S 1 , S 2 , S 3 , S 4 : State. ∀L: (list triplet ). ∀t: triplet. (a, b)+S 1 → d L S 2 ⇒ (a, -b)+S 1 → d L S 3 ⇒ S 1 ⊂ S 4 ⊂ (S 2 ∩ S 3 ) ⇒ S 1 → d L S 4
. but this would mean considering the merging of the two branches as a nondeterministic operation, so we prefer our initial definition. Even though the relation is not a congruence, it is monotone:

Theorem → d Monotone: ∀L: (list triplet ). ∀S 1 , S 2 , S 3 : State. S 1 → d L S 3 ⇒ S 1 ⊂ S 2 ⇒ ∃S 4 : State. S 2 → d L S 4 ∧ S 3 ⊂ S 4
. and it is also confluent:

Theorem → d Confluent: ∀L: (list triplet ). ∀S 1 , S 2 , S 3 : State. S 1 → d L S 2 ⇒ S 1 → d L S 3 ⇒ ∃S 4 : State. S 2 → d L S 4 ∧ S 3 → d L S 4 .
The last property we have proved about the dilemma rule is that it preserves realizability:

Theorem realizeStateEval d : ∀f: nat → bool . ∀S 1 , S 2 : State. ∀L: (list triplet ). (f 0 ) = ⇒ (realizeState f S 1 ) ⇒ S 1 → d L S 2 ⇒ (realizeTriplets f L) ⇒ (realizeState f S 2 ).

Stålmarck's algorithm

Stålmarck's algorithm is the reflexive transitive closure of the dilemma rule:

Inductive → s : State → (list triplet) → State → Prop := → s Ref : ∀S 1 , S 2 : State. ∀L: (list triplet). S 1 ≡ S 2 ⇒ S 1 → s L S 2 | → s Trans : ∀S 1 , S 2 , S 3 : State. ∀L: (list triplet). S 1 → d L S 2 ⇒ S 2 → s L S 3 ⇒ S 1 → s L S 3 .
As for → d we get the standard properties: 

Theorem → s ≡ : ∀S 1 ,
(f 0 ) = ⇒ (realizeState f S 1 ) ⇒ S 1 → s L S 2 ⇒ (realizeTriplets f L) ⇒ (realizeState f S 2 ).
Only the last property is relevant for the correctness of the algorithm. From the theorem realizeStateEval s , the following property is easily derived: This is proved by showing that if e is a tautology, we obtain a contradiction by applying the dilemma rule on all the variables in the list of triplets. The program extracted from the constructive proof of the theorem stålmarckComplete would then not be faster than the one that computes the truth table.

Trace

Our relation → s contains all possible execution paths. The choice of the rules, the choice of the triplets and the choice of the variables for the dilemma rule are not explicitly given. A natural question arises on what an explicit implementation should produce to provide a certificate that it has reached a contradiction. Of course, a complete trace of the execution (states, rules, triplets, variables) is a valid certificate. In fact, we can do much better and keep only the triplets that have been used and the variables on which the dilemma rule has been applied. We define our notion of trace as:

Inductive Trace: Set := emptyTrace : Trace | tripletTrace : triplet → Trace | seqTrace : Trace → Trace → Trace | dilemmaTrace : rZ → rZ → Trace → Trace → Trace.
The semantics is given by the following predicate that evaluates a trace:

Inductive evalTrace: State → Trace → State → Prop := emptyEval : ∀S 1 , S 2 : State. S 1 ≡ S 2 ⇒ (evalTrace S 1 emptyTrace S 2 ) | tripletEval : ∀S 1 , S 2 : State. ∀t: triplet. S 1 → t S 2 ⇒ (evalTrace S 1 (tripletTrace t) S 2 ) | seqEval : ∀S 1 , S 2 , S 3 : State. ∀T 1 , T 2 : Trace. (evalTrace S 1 T 1 S 2 ) ⇒ (evalTrace S 2 T 2 S 3 ) ⇒ (evalTrace S 1 (seqTrace T 1 T 2 ) S 3 ) | dilemmaEval : ∀S 1 , S 2 , S 3 , S 4 : State. ∀a, b: rZ . ∀T 1 , T 2 : Trace. (evalTrace (a, b)+S 1 T 1 S 2 ) ⇒ (evalTrace (a, -b)+S 1 T 2 S 3 ) ⇒ S 2 ∩ S 3 ≡ S 4 ⇒ (evalTrace S 1 (dilemmaTrace a b T 1 T 2 ) S 4 ).
The fact that a trace determines a unique computation up to state equality is asserted by the following theorem:

Theorem evalTraceEq: ∀S 1 , S 2 , S 3 , S 4 : State. ∀T: Trace. (evalTrace S 1 T S 2 ) ⇒ (evalTrace S 3 T S 4 ) ⇒ S 1 ≡ S 3 ⇒ S 2 ≡ S 4 .
Conversely it is possible to get a trace from any non-deterministic computation:

Theorem stålmarckExTrace: ∀S 1 , S 2 : State. ∀L: (list triplet). S 1 → s L S 2 ⇒ ∃T: Trace. (evalTrace S 1 T S 2 ) ∧ T in L.
The second condition requires all the triplets in the trace T to be in L.

Implementation

Because of space limitation, we are only going to sketch the different components of the implementation. In particular, we do not make explicit the rules of sign using the notation ±v to denote either +v or -v.

Memory

We represent non-contradictory states using functional arrays. Appendix B lists the different axioms we are using in our development. The size of the array is maxN , the natural number that exceeds by at least one all the variables in the list of triplets. The type of the elements of the array is defined as follows:

Inductive vM : Set := ref : rZ → vM | class : (list rZ ) → vM
The value of the location i depends on the smallest element a such that +i ∼ a. Checking equality Given a memory m, it is easy to build a function min m that returns for any element a of rZ the smallest b such that a ∼ m b. To check the equality between a and b in m, it is then sufficient to compare (min m a) and (min m b).

Adding an equation Given a memory m, it is also easy to build a function l m that returns for any element a of rZ the ordered list of all the elements b such that a ∼ m b. The result of an addition to a memory is a triple (Mem, bool , (list rZ)). Since a memory can only represent a non-contradictory state, the boolean is set to true if the addition of the equation gives a contradiction, to false otherwise. The absolute values of the elements of the list are the locations of the arrays that have been modified by the update. 

Propagation

The implementation of the one-step propagation is a composition of checking equalities and adding equations. It has the type Mem → triplet →(Mem, bool, (list rZ)). To do the propagation, we need to define a way to select triplets. As the difference lists give the variables whose values have been modified, triplets containing these variables are good candidate for applying onestep propagation. The type of the propagation function is Mem → (list rZ ) → (Mem, bool , (list rZ )). The difference lists resulting from the application of the one-step propagation are then recursively used for selecting triplets. This way of propagating terminates since we cannot add infinitely many equations to a memory.

Dilemma

We have implemented only the instances of the dilemma rule that are of practical use: dilemma1, the dilemma with (a, ) for an arbitrary a, and dilemma2, the dilemma with ((a, ), (b, )) for arbitrary a and b. To perform the first one, we use three memories, one for each branch and one to compute the intersection. For the second one we use an extra memory. The first memory m 1 is used to compute each branch iteratively. The intermediate result is stored in the second memory m 2 . At the end of each iteration we compute the intersection of m 1 and m 2 using the third memory m 3 . We then switch m 2 and m 3 and use the last memory to reset m 1 and m 3 before proceeding to the next branch. Note that a dilemma with any number of variables could be implemented in the same way using four memories.

Stålmarck

At this stage, we have to decide the strategy to pick up variables for the application of the dilemma rules. Our heuristics are very simple and could be largely improved. We first add the initial equation and propagate. If no contradiction is reached, we iterate the application of the function dilemma1 using minimal variables starting from +1 to +maxN . We perform this operation till a contradiction is reached or no more information is gained. In the second case, we do a double iteration with a, b such that 0 < a < b < maxN using the function dilemma2. Implementing this nave strategy is straightforward and gives us the function doStal for which we have proved the following property: Note that it is the only property that we have proved for our implementation and clearly it is not sufficient. An algorithm that always returns ⊥ would satisfy the above property. While our implementation is not complete since we use dilemma rules only up to four variables, we could prove some liveness property. This is feasible and would require to formalize the notion of n-hard formulae as described in [START_REF] Sheeran | A tutorial on Stålmarck's proof procedure for propositional logic[END_REF].

Benchmark

Once the implementation has been proved correct in Coq, the extraction mechanism [START_REF] Paulin-Mohring | Synthesis of ML programs in the system Coq[END_REF] enables us to get a functional Ocaml [START_REF] Leroy | Objective Caml[END_REF] program. The result is 1400 lines long. To be able to run such a program, we need to provide an implementation of the arrays that satisfies the axioms of Appendix B. A first possibility is to use balanced trees to implement functional arrays. A second possibility is to use tagged arrays, since we have taken a special care in the implementation in order to be able to use destructive arrays. The tag in the array prohibits illegal accesses. For example, the set function for such arrays looks like: If the program terminates without exception, the result is correct. Table 4 gives some execution times on standard examples taken from [START_REF] Harrison | Stålmarck's algorithm as a HOL derived rule[END_REF]. For each problem, we give which level of dilemma rules is needed, the number of variables, the number of connectives and compare three versions of the algorithm: the algorithm is directly hand-coded in Ocaml with slightly different heuristics, our certified version with balanced trees and with tagged arrays. The time includes parsing the formula and generating triplets. Even though the performance of an implementation largely depends on the heuristics, our certified version seems comparable with the hand-coded one and the one presented by John Harrison in [START_REF] Harrison | Stålmarck's algorithm as a HOL derived rule[END_REF]. However, we are aware that in order to get a realistic implementation, much more work on optimizations and heuristics has to be done.

Conclusion

We hope that what we have presented shows that current theorem proving technology can be effectively used to reason about algorithms and their implementations. We have presented a formalization of Stålmarck's algorithm that includes formal proofs of the main properties of the algorithm. Then, we have proposed a format of execution traces and proved that it is adequate. Such certificates are important in practice. They represent a simple way of increasing the confidence in the correctness of specific results. Prover Technology that commercializes a tool based on Stålmarck's algorithm has defined its own format of traces [START_REF] Jonasson | Proof logging, definition of the log format[END_REF]. John Harrison [START_REF] Harrison | Stålmarck's algorithm as a HOL derived rule[END_REF] also presents a tactic based on Stålmarck's method for HOL [START_REF] Michael | Introduction to HOL : a theorem proving environment for higher-order logic[END_REF] using traces: the search is handled by a program that generates traces, then, the prover uses these traces to build safe derivations of theorems. Finally, the effort for deriving a certified implementation is orthogonal to the one on traces since the correctness of results is ensured once and for all. The benchmarks given in Section 5.5 show that our implementation is relatively efficient and can be proposed as a reference implementation.

From the point of view of theorem proving, the most satisfying aspect of this work is the formalization of the algorithm. It is a relatively concise development of 3200 lines including 80 definitions and 200 theorems. The proof of correctness of the implementation is less satisfying. Proving the basic operations (addition and intersection) took 2/3 of the effort and represents more than 6000 lines of Coq. This does not reflect the effective difficulty of the task. The main reason why deriving these basic operations has been so tedious is that most of the proofs involves a fair amount of case-splitting. For example, proving properties of the addition often requires to take into account the signs and the relative value of the components of the equation. We have neither managed to abstract our theorems enough nor got enough automation so that we do not have to operate on the different cases manually. Moreover, the fact that we handle imperative features such as arrays in a functional way is a bit awkward. We plan in a near future to use improvements such those presented in [START_REF] Filliâtre | Proof of Imperative Programs in Type Theory[END_REF] to reason directly on imperative programs inside Coq. Finally while the overall experience is quite positive, we strongly believe that for this kind of formalization to become common practice, an important effort has to be done in order to make proofs scripts readable by non-specialists. In that respect, recent efforts such as [START_REF] Coscoy | Extracting text from proofs[END_REF][START_REF] Syme | Three Tactic Theorem Proving[END_REF][START_REF] Wenzel | A Generic Interpretative Approach to Readable Formal Proof Documents[END_REF][START_REF] Zammit | On the Implementation of an Extensible Declarative Proof Language[END_REF] seem very promising.
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 23 Fig. 2. The dilemma rule

  rZ → Prop := ∼Ref : ∀a: rZ . ∀S: State. a ∼ S a | ∼In : ∀a, b: rZ . ∀S: State. (a, b) in S ⇒ a ∼ S b | ∼Sym : ∀a, b: rZ . ∀S: State. a ∼ S b ⇒ b ∼ S a | ∼Inv : ∀a, b: rZ . ∀S: State. a ∼ S b ⇒ -a ∼ S -b | ∼Trans : ∀a, b, c: rZ . ∀S: State. a ∼ S b ⇒ b ∼ S c ⇒ a ∼ S c | ∼Contr : ∀a, b, c: rZ . ∀S: State. a ∼ S -a ⇒ b ∼ S c.

  Theorem stålmarckValidEquation: ∀L: (list triplet ). ∀a, b: rZ . ∀S: State. [(a, -b)] → s L S ⇒ (contradictory S) ⇒ (validEquation L a b). Once we have this theorem, we can glue together all the theorems about tautology to get the correctness: Theorem stålmarckCorrect: ∀e: Expr . ∀S: State. Cases (makeTriplets e) of (l, s) =⇒ [(s, ⊥)] → s l S ⇒ (contradictory S) ⇒ (Tautology e) end. Another property that has been formalized is the completeness of the algorithm: Theorem stålmarckComplete: ∀e: Expr . (Tautology e) ⇒ ∃S: State. Cases (makeTriplets e) of (l, s) =⇒ [(s, ⊥)] → s l S ∧ (contradictory S) end.

  If i = |a|, the location i contains the value (ref a). Otherwise, it contains the value (class L), where L is the ordered list of the elements b such that +i ∼ b and |b| = i. All the constraints about the different values of the array are concentrated in the predicate WellFormed: Definition Mem: Set := {r : (Array maxN vM )| (WellFormed maxN r)}.

  To perform the addition of a = b to m, we first compare (min m a) and (min m b). If (min m a) = (min m b), the result is (m, ⊥, []). If (min m a) = -(min m b), the result is (m, , []). If (min m a) < (min m b), the result is (m , ⊥, [(min m a)] ∪ (l m b)) where m is obtained from m by setting the locations corresponding to the elements of (l m b) to (ref ± (min m a)) and the location |(min m a)| to (class (±(l m a)∪±(l m b))). The case where (min m b) < (min m a) is symmetric to the previous one. Intersection The function that computes the intersection takes three memories m 1 , m 2 , m 3 and two lists d 1 , d 2 under the hypothesis that m 1 ⊂ m 2 , m 1 ⊂ m 3 , d 1 is the difference list between m 1 and m 2 , and d 2 is the difference list between m 1 and m 3 . It returns a 4-tuple (m 1 , m 2 , m 3 , d ) such that m 1 = m 2 ∩ m 3 , m 1 ≡ m 2 ≡ m 3 and d is the difference list between m 1 and m 1 . It proceeds by successive additions to m 1 of equations a i = b i where the a i are the elements of d 1 ∩ d 2 and the b i are the smallest element such that a i ∼ m2 b i and a i ∼ m3 b i .

  Theorem doStalCorrect: ∀e: Expr . (doStal e) = ⇒ (Tautology e).

  ∀S 1 , S 2 , S 3 : State. S 1 → s L S 2 ⇒ S 1 → s L S 3 ⇒ ∃S 4 : State. S 2 → s L S 4 ∧ S 3 → s L S 4 .

	Theorem realizeStateEval

S 2 , S 3 , S 4 : State. ∀L: (list triplet). S 1 → s L S 2 ⇒ S 3 ≡ S 1 ⇒ S 4 ≡ S 2 ⇒ S 3 → s L S 4 . Theorem → s ∪Ex : ∀S 1 , S 2 : State. ∀L: (list triplet ). S 1 → s L S 2 ⇒ ∃S 3 : State. S 2 ≡ S 3 ∪ S 1 . Theorem → s Incl : ∀S 1 , S 2 : State. ∀L: (list triplet). S 1 → s L S 2 ⇒ S 1 ⊂ S 2 . Theorem → s Monotone: ∀L: (list triplet ). ∀S 1 , S 2 , S 3 : State. S 1 → s L S 3 ⇒ S 1 ⊂ S 2 ⇒ ∃S 4 : State. S 2 → s L S 4 ∧ S 3 ⊂ S 4 . Theorem → s Confluent: ∀L: (list triplet ). s : ∀f: nat → bool . ∀S 1 , S 2 : State. ∀L: (list triplet ).

For example, given the lists [(1,

2);[START_REF] Coscoy | Extracting text from proofs[END_REF][START_REF] Filliâtre | Proof of Imperative Programs in Type Theory[END_REF]] and [(1, 3)], their intersection as states is [(1, 3)] while their intersection as lists is [].

-r ⇒ S → p:=q & r (q, ⊥)+(r , )+S :=q & r (p, r )+S | → & q-r : ∀p, q, r: rZ . ∀S:

→ =pq : ∀p, q, r: rZ . ∀S: State. p ∼ S q ⇒ S → p:=q=r (r , )+S | → = p-q : ∀p, q, r: rZ . ∀S: State. p ∼ S -q ⇒ S → p:=q=r (r , ⊥)+S | → =pr : ∀p, q, r: rZ . ∀S: State. p ∼ S r ⇒ S → p:=q=r (q, )+S | → = p-r : ∀p, q, r: rZ . ∀S: State. p ∼ S -r ⇒ S → p:=q=r (q, ⊥)+S | → =qr : ∀p, q, r: rZ . ∀S: State. q ∼ S r ⇒ S → p:=q=r (p, )+S | → = q-r : ∀p, q, r: rZ . ∀S: State. q ∼ S -r ⇒ S → p:=q=r (p, ⊥)+S | → = p : ∀p, q, r: rZ . ∀S: State. p ∼ S ⇒ S → p:=q=r (q, r ))+S | → = p⊥ : ∀p, q, r: rZ . ∀S: State. p ∼ S ⊥ ⇒ S → p:=q=r (q, -r )+S | → = q : ∀p, q, r: rZ . ∀S: State. q ∼ S ⇒ S → p:=q=r (p, r )+S | → = q⊥ : ∀p, q, r: rZ . ∀S: State. q ∼ S ⊥ ⇒ S → p:=q=r (p, -r )+S | → = r : ∀p, q, r: rZ . ∀S: State. :=q=r (p, -q)+S .