
HAL Id: hal-00150904
https://hal.science/hal-00150904

Submitted on 31 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Program extraction from normalization proofs
Ulrich Berger, Stefan Berghofer, Pierre Letouzey, Helmut Schwichtenberg

To cite this version:
Ulrich Berger, Stefan Berghofer, Pierre Letouzey, Helmut Schwichtenberg. Program extraction from
normalization proofs. Studia Logica, 2006, 82 (1), pp.25-49. �10.1007/s11225-006-6604-5�. �hal-
00150904�

https://hal.science/hal-00150904
https://hal.archives-ouvertes.fr

Program extraction from normalization proofs

Ulrich Berger, Stefan Berghofer,

Pierre Letouzey and Helmut Schwichtenberg

Abstract

This paper describes formalizations of Tait’s normalization proof for
the simply typed λ-calculus in the proof assistants Minlog, Coq and
Isabelle/HOL. From the formal proofs programs are machine-extracted
that implement variants of the well-known normalization-by-evaluation
algorithm. The case study is used to test and compare the program
extraction machineries of the three proof assistants in a non-trivial
setting.

1 Introduction

We formalize a version of Tait’s normalization proof for the simply typed
λ-calculus and machine-extract a program which turns out to implement the
well-known normalization-by-evaluation algorithm [6]. On paper, this has
already been done by the first author in his contribution [4] to TLCA 1993.
However – as is to be expected – the formalization turned out to be not at
all a trivial matter, so that it appears to be worthwhile to describe some of
the choices which have simplified the task considerably. On the other hand,
a full formalization of the proof is necessary for machine extraction of a
program.

Here we carry this out for the proof assistants Minlog, Coq and Isa-
belle/HOL which all have suitable program extraction machineries built in.
This provides a useful occasion to test these machineries in a non-trivial
setting and to compare the three proof assistants. The crucial questions, on
which the formalizations diverge, are how to (1) model the simply typed λ-
calculus, (2) represent in the given logical system the notions introduced in
the proof (i.p. Tait’s strong computability predicates), (3) optimize program
extraction in order to get as close as possible to normalization-by-evaluation.

The paper is organized as follows. In Section 2 we recall Tait’s approach –
via so-called strong computability predicates – to a normalization proof and
sketch the normalization-by-evaluation algorithm contained in that proof,

following [4]. Section 3 describes two Minlog formalizations. The first proves
weak normalization for λ-terms in de Bruijn notation with a Church-style
typing, the second strong normalization for λ-terms with named variables
and a Curry-style typing. In order to obtain optimized programs the for-
malizations use two versions of quantifiers, with and without computational
content. Another important detail is the fact that Tait’s notion of com-
putability of a term r, SCρ(r), is defined as ∃aSCrρ(a, r) where the relation
SCrρ(a, r) is axiomatized such that it expresses “a realizes SCρ(r)”. This
has the effect that the computational content of Lemma 2 (stating that com-
putability is closed under reverse head reduction, see Section 2) is the iden-
tity. The Coq formalization in Section 4 uses, like the first Minlog formaliza-
tion, de Bruijn notation and Church-style typing, but takes advantage of the
fact that Coq implements dependent type theory and thus is able to define
Tait’s computability predicate (in contrast, both Minlog formalization need
to describe these predicates axiomatically). This formalization is complete
in the sense that all auxiliary lemmas are proven (unlike the Minlog and Is-
abelle/HOL formalizations which take some computationally irrelevant lem-
mas as axioms). In fact, two formalizations are given, yielding programs for
the long respectively short η-normal form. The Isabelle/HOL formalization
is described in Section 5; it is based on the second Minlog approach. The
complete proof scripts are available at www.minlog-system.de in the di-
rectory examples/tait, www.lri.fr/~letouzey/download/tait.tgz and
www4.in.tum.de/~berghofe/papers/Tait/.

Related normalization algorithms have been machine-extracted from for-
mal proofs in the type-theoretic proof checker ALF (the precursor of AGDA)
[10, 9]. However, there the main ingredients of normalization-by-evaluation,
the evaluation function and its inverse ↓ (see the end of Section 2), show up
explicitely in the proofs already, while in our proof these components of the
algorithm are implicit in the logical argument and are made explicit by the
extraction only. There exist also formalized normalization proofs for systems
such as the Calculus of Constructions [1], System F [3], the typed λ-calculus
with co-products [2] and λ-calculi with various weak reduction strategies [8]
for which however no program extraction by machine has been carried out.

2 The normalization proof

In this section we recall the normalization proof based on Tait’s computabil-
ity predicates given in [4]. The informally presented proof will serve as a
template for all formalizations in this paper. At the end, we sketch the
well-known normalization-by-evaluation algorithm contained in the proof.

Simple types are built from ground types ι by ρ ⇒ σ. The set Λ of terms
is given by xσ, (λxρrσ)ρ⇒σ, (rρ⇒σsρ)σ; Λρ denotes the set of all terms of
type ρ. β-reduction, r → s, and the long normal form, nf(r), are defined
as usual. By rθ we denote the (correct) application of a substitution θ to a
term r and by θ[z 7→ t] the result of overwriting θ at z to t (if θ is missing
the identical substitution is to be inserted).

We will work with the following relations:

Nρ(r, s) :⇔ r, s are terms of type ρ and every β-reduction sequence

r → . . . ends with a term having s as its long normal form.

Aρ(r, s) :⇔ r, s are terms of type ρ and of the form r = xr1 . . . rn

and s = xs1 . . . sn with Nρi
(ri, si) for i = 1, . . . , n.

Hρ(r, s) :⇔ r, s are terms of type ρ and of the form r = (λzσ.r1)t~t

and s = r1[z 7→ t]~t where t is strongly normalizing, i.e.

SNσ(t) holds (see below).

F (r, k) :⇔ every index of a variable free in r is < k.

We define strong normalization, SN, and a variant, SA, by

SNρ(r) := ∀k.F (r, k) → ∃sNρ(r, s),

SAρ(r) := ∀k.F (r, k) → ∃sAρ(r, s).

The (somewhat strange looking) definition of SNρ(r) can be motivated by
a computational reading: using a large enough index k we can construct a
term s such that Nρ(r, s) holds. The point is that we avoid computing k

from r (see Ax1 and Ax8 below).
Tait’s strong computability predicates, SCρ, are defined by recursion on

the type ρ:

SCι(r) := SNι(r),

SCρ⇒σ(r) := ∀s.SCρ(s) → SCσ(rs).

The main proof, which consists of the traditional three lemmas below, will
make use of the following facts:

Ax1. F (r, k) → Nσ(rxk, s) → Nρ⇒σ(r, λx
ρ
ks).

Ax2. Aι(r, s) → Nι(r, s).

Ax3. Aρ(x
ρ
k, x

ρ
k).

Ax4. Aρ⇒σ(r, r1) → Nρ(s, s1) → Nσ(rs, r1s1).

Ax5. Hρ(r, s) → Nρ(s, t) → Nρ(r, t).

Ax6. SNσ(s) → Hρ((λxσ
krρ)θs, rθ[xk 7→ s]).

Ax7. Hρ→σ(r, s) → Hσ(rtρ, st).

Ax8. F (r, k) → F (rxk, k + 1).

Ax9. F (rs, k) → F (s, k).

Ax10. F (rs, k) → F (r, k).

Ax11. F (r, k) → Hρ(r, s) → F (s, k).

In the Minlog and the Isabelle/HOL formalization these facts will be taken
as axioms. This does not affect program extraction because these axioms are
all Harrop-formulas, i.e. have no strictly positive occurrence of an existential
quantifier, and hence do not have computational content. On the other hand,
in the Coq formalization Ax1-11 will be proven. Since Ax1 is not so obvious
we give an informal proof (of a generalization of it):

Lemma. If Nσ(rx, s), where x is not free in r, then Nρ⇒σ(r, λxρs).

Proof. Any reduction sequence r → . . . must be finite, since otherwise we
had an infinite reduction sequence rx → . . . contradicting the assumption
Nσ(rx, s). Hence r → . . . → r′ where r′ is in β-normal form. If r′ is of
the form λy t, then r′ =α λx ty[x], since x is not free in r′. Consequently
nf(r′) = λx nf(ty[x]) = λx s, because rx →∗ r′x → ty[x] and ty[x] is in β-
normal form. If r′ is of the form y~t, then nf(r′) = λx.nf(y~tx) = λx s, since
x is not free in y~t and rx →∗ y~tx where y~tx is β-normal.

Lemma 1. (a) SCρ(r) → SNρ(r). (b) SAρ(r) → SCρ(r).

Proof. Induction on ρ. We will drop type indices if they are not relevant or
can be inferred from the context.

Case ι. (a) holds by definition. (b). Assume SA(r), that is ∀k.F (r, k) →
∃sA(r, s). We must show SCι(r), that is ∀k.F (r, k) → ∃sN(r, s). This
follows from Ax2.

Case ρ ⇒ σ. (a). Assume SCρ⇒σ(r) and F (r, k). We must show
∃sN(r, s). By Ax3 we have SA(xk), hence SCρ(k), by IH(b). From SCρ⇒σ(r)
we conclude SCσ(rxk), and then SNσ(rxk), by IH(a). But F (rxk, k + 1), by
Ax8, hence we have N(rxk, t) for some t. Now N(r, λxks), by Ax1.

(b). Assume SAρ→σ(r) and SCρ(s). We have to show SCσ(rs). By IH(b)
it suffices to show SA(rs). So assume F (rs, k). We must show A(rs, t) for
some t. We have F (r, k), by Ax10. Using SA(r) we obtain A(r, r1) for some
r1. By Ax9 we have F (s, k) and by IH(a) we know SN(s). Therefore N(s, s1)
for some s1. Hence A(rs, r1s1), by Ax4.

Lemma 2. SCρ(r
′) → Hρ(r, r

′) → SCρ(r).

Proof. Induction on ρ. Case ι. Assume SCι(r
′), H(r, r′) and F (r, k). We

must show N(r, s) for some s. Since SCι(r
′) there is s s.t. N(r′, s), by Ax11.

For the same s we have N(r, s), by Ax5.

Case ρ ⇒ σ. Let SCρ⇒σ(r′), H(r, r′) and assume SCρ(s). We must
show SCσ(rs). From SCρ⇒σ(r′) we obtain SCσ(r′s). Hence H(rs, r′s), by
Ax7, and SCσ(rs), by IH.

Lemma 3. If r is a term of type ρ and θ a substitution such that SCσ(θ(zσ))
for all variables zσ, then SCρ(rθ).

Proof. Induction on r. Case zρ. Then SCρ(z) by assumption.

Case rs. If rs has type ρ, then r must have type σ ⇒ ρ for some σ with
s of type σ. By IH we have SCσ⇒ρ(rθ) and SCσ(sθ), hence SCρ((rs)θ).

Case λxσr. If λxσr has type ρ, then ρ = σ → τ with r of type τ .
Assume SCσ(s). By Lemma 1 (a), SN(s), hence H(((λz r)θ)s, rθ[z 7→ σ]),
by Ax6. Therefore, by Lemma 2, it suffices to show SCτ (rθ[z 7→ σ]), which
follows from the IH for r.

Theorem (Strong Normalization). For every typable term r there is a
term s such that N(r, s).

Proof. Let r have type ρ. By Lemma 1 (b), SCσ(z) for every variable zσ, by
Ax3. Hence SCρ(r) by Lemma 3, hence SN(r) by Lemma 1 (a). Choosing a
k such that F (r, k) we conclude ∃sN(r, s).

A “weak” version of the normalization theorem above is obtained by
replacing in the definition of the predicate N the word “every” by “there
exists a”, the word “ends” by “which ends” and dropping in the definition
of the predicate H the premise “SNσ(t)”. Then the facts Ax1-11 still hold
where in Ax6 the SN-premise has to be dropped. As to be expected, the
change from strong to weak normalization does not affect the extracted
programs. In the first Minlog, the Coq and the Isabelle/HOL formalization
we work with the (slightly simpler) weak version, while the second Minlog
formalization is based on the strong version.

Normalization-by-evaluation

The algorithm contained in the proof above can be briefly described as fol-
lows. Let Λρ be the (meta)type of λ-terms of (object)type ρ and define
Cι := nat ⇒ Λι, Cρ⇒σ := Cρ ⇒ Cσ. Define simultaneously functions
↓ρ : Cρ ⇒ (nat ⇒ Λρ) and ↑ρ : (nat ⇒ Λρ) ⇒ Cρ (called “reify” and “re-
flect”), by ↓ι(g) := ↑ι(g) := g and

↓ρ⇒σ(a)(k) := λx
ρ
k↓σ

(

a(↑ρ(λl xk))
)

(k+1),

↑ρ⇒σ(g)(b) := ↑σ(λl.g(l) ↓ρ(b)(l)).

Let [[rρ]]↑ denote the “value” of the term r in Cρ under the variable assign-
ment ↑(xσ) := ↑σ(λl x). Then for any k such that F (r, k) holds we have

nf(r) = ↓ρ([[r
ρ]]↑)(k).

The relations to the proof are as follows: ↓ and ↑ are the computational
content of Lemma 1 (a),(b) while the evaluation function, [[.]], is the content
of Lemma 3. The content of Lemma 2 is the identity. These relations were
established in [4] in a semi formal manner and the algorithm was extended to
higher-order rewrite systems in [5]. The challenge of this paper is to obtain
normalization-by-evaluation fully automatically by machine-extraction.

3 Minlog formalization

Minlog (www.minlog-system.de) is a proof assistant intended to reason
about computable functions of finite type using minimal logic. A major
aim of the Minlog project is the development of practically useful tools for
the machine-extraction of realistic programs from proofs. In this section we
describe two Minlog formalizations of Tait’s normalization proof: the weak
version based on typed de Bruijn terms and the strong version based on
untyped terms with named variables and a Curry-style typing.

3.1 Some background on program extraction

Before describing details of the two formalizations we provide some proof-
theoretic background on program extraction and its optimization in general
and on problems arising in this case study in particular.

Program extraction from constructive proofs

The method of program extraction used in this paper is based on modified
realizability as introduced by Kreisel [12]. In short, from every construc-
tive proof M of a non-Harrop formula A (in natural deduction or a similar
proof calculus) one extracts a program [[M]] “realizing” A, essentially, by
removing computationally irrelevant parts from the proof (proofs of Harrop
formulas have no computational content). The extracted program has some
simple type τ(A) which depends on the logical shape of the proven formula
A only. In its original form the extraction process is fairly straightforward,
but usually leads to unnecessarily complex programs. In order to obtain
better programs the proof assistants in question offer various optimizations
of program extraction. Below we describe such an optimization implemented
in Minlog [19].

Quantifiers without computational content

Besides the usual quantifiers, ∀ and ∃, Minlog has so-called non-computatio-
nal quantifiers, ∀nc and ∃nc, which allow for the extraction of simpler pro-
grams. The nc-quantifiers, which were first introduced in [4], can be viewed
as a refinement of the Set/Prop distinction in constructive type systems like
Coq or Agda. Intuitively, a proof of ∀ncxA(x) (A(x) non-Harrop) repre-
sents a procedure that assigns to every x a proof M(x) of A(x) where M(x)
does not make “computational use” of x, i.e. the extracted program [[M(x)]]
does not depend on x. Dually, a proof of ∃ncxA(x) is proof of M(x) for
some x where the witness x is “hidden”, that is, not available for computa-
tional use. Consequently, the types of extracted programs for nc-quantifiers
are τ(∀ncxρA) = τ(∃ncxρA) = τ(A) as opposed to τ(∀xρA) = ρ ⇒ τ(A)
and τ(∃xρA) = ρ × τ(A). The extraction rules are, for example in the
case of ∀nc-introduction and -elimination, [[(λx.MA(x))∀

ncxA(x)]] = [[M]] and
[[(M∀ncxA(x)t)A(t)]] = [[M]] as opposed to [[(λx.MA(x))∀xA(x)]] = [[λxM]] and
[[(M∀xA(x)t)A(t)]] = [[Mt]]. In order for the extracted programs to be correct
the variable condition for ∀nc-introduction needs to be strengthened by re-
quiring in addition the abstracted variable x not to occur in the extracted
program [[M]]. Note that for a Harrop formula A the formulas ∀ncxA and
∀xA are equivalent, similarly, ∃ncxA and ∃xA are equivalent.

The formalization of strong computability

In the previous section we defined the formulas SCρ(r) by recursion on ρ.
Therefore it is most natural to formally introduce SC as a (truly) dependent

family of predicates. This can and will be done in the Coq formalization
in Section 4 using a definition scheme called “strong elimination”. Minlog,
however, being based on first-order logic, cannot define the predicate SC
directly since the formulas SCρ(r) are of arbitrarily high logical complexity
as ρ varies. Moreover the type Cρ := τ(SCρ(r)) will depend on ρ, thus
a dependently typed programming language would be needed for program
extraction. Our solution to this problem will be to define

SCρ(r) := ∃aSCrρ(a, r)

where SCr is a new ternary predicate which is axiomatized in such a way
that SCrρ(a, r) means “a realizes SCρ(r)”. The type of the realizer a, call
it ω, has to be equipped with constructor and accessor functions expressing
that ω includes all the types Cρ. We will therefore call ω a universal type.
Since the two Minlog formalizations will work with different kinds of typed
λ-terms (Church vs. Curry) the type ω will be modeled differently as well:
in the first formalization as the sum of all Cρ, in the second as the solution
of a recursive type equation. Note that, as a side effect of the evasion of
dependent types, partial objects will be needed (indicated in Minlog by a
hat, ^). An important advantage of formalizing strong computability in the
way described above is the fact that the computational content of Lemma 2
in Section 2 will be extremely simple, namely the identity.

Linking realizability with truth

In order to make sure that the above definition of strong computability is
equivalent to the one in Section 2 we will work in a theory where each formula
is equivalent to its realizability. Normally, this is achieved by the Axioms of
Choice and Independence of Premises [21]

(AC) ∀x∃y A(x, y) → ∃f∀x A(x, f(x)), where A(x, y) is arbitrary,

(IP) (A → ∃x B(x)) → ∃x.A → B(x), where A is a Harrop formula.

In the presence of nc-quantifiers one needs in addition a Uniformity Principle
for the universal nc-quantifier

(UNC) ∀ncx∃y A(x, y) → ∃y∀ncx A(x, y), where A(x, y) is arbitrary.

It easy to see that all three principles are realized by identity functions.

3.2 Normalization for terms in de Bruijn notation

We now describe a Minlog formalization of the (weak) normalization proof
based on typed de Bruijn terms. We first introduce a variant of de Bruijn
terms [11] with typed λ-abstraction, then describe the formalization of the
normalization proof, and finally discuss the extracted program (which is a
collection of Minlog terms).

Simply typed terms in de Bruijn notation

Terms (in de Bruijn notation) r, s, t are built from variables n – viewed as
indices – by application rs and typed abstraction λρr. A context is a list ~ρ

of types. The type of a term r in a context ~ρ is defined by

Typ[](n) := ι,

Typρ::~ρ (0) := ρ,

Typρ::~ρ (n + 1) := Typ~ρ (n),

Typ~ρ (rs) := Valtyp(Typ~ρ (r)),

Typ~ρ (λρr) := (ρ ⇒ Typρ::~ρ (r)).

The correctness of a term r in a context ~ρ is defined by

Cor~ρ (n) := (n < Lh(~ρ)),

Cor~ρ (rs) := Cor~ρ (r) ∧ Cor~ρ (s) ∧ Typ~ρ (r)=(Typ~ρ (s)⇒Valtyp(Typ~ρ (r))),

Cor~ρ (λρr) := Corρ::~ρ (r).

The typing judgement ~ρ ` r : ρ saying that in context ~ρ the term r has type
ρ can now be defined by

(~ρ ` r : ρ) := Cor~ρ (r) ∧ Typ~ρ (r) = ρ.

Lifting r↑l of a term r from index l is defined by

n↑l :=

{

n if n < l

n + 1 otherwise
and

(rs)↑l := r↑ls↑l,

(λρr)↑l := λρr↑l+1.

We write r↑ for r↑0. Substitution r[~r] of the first Lh(~r) variables in a term
r by the terms ~r is defined by

n[] := n,

0[r :: ~r] := r,

(n + 1)[r :: ~r] := n[~r],

(rs)[~r] := r[~r]s[~r],

(λρr)[~r] := λρr[0 :: ~r ↑].

We let Λ denote the set of all terms and define the abstraction of the
k-th variable by

λx
ρ
k r := λρr[1, . . . , k, 0].

Note that the set Λ also contains terms that do not type check.

Formalization

We begin with a description of the formal language.

Types. We have simple types (closed under products, function spaces
and the list-type construction) over the base types boole, nat, type, term, ω.
While the base types boole, nat, type are introduced (in the proof system
Minlog) as free algebras, ω is a type constant representing the infinite disjoint
sum of all types Cρ where Cι := nat ⇒ term, Cρ⇒σ := Cρ ⇒ Cσ, (see the
end of Section 3.1). The type ω can be interpreted semantically by Scott
Domains, or Information Systems [13].

Constants. Besides standard functions for natural numbers and lists we
have function symbols for constructing, testing and manipulating types and
terms (objects of type type and term). There are also “administrative”
constants which should be thought as defined from the canonical injections
inρ : Cρ ⇒ ω and a projections in−1

ρ : ω ⇒ Cρ as follows:

P : ω ⇒ type, P (inρ(u)) := ρ,
ModL: ω ⇒ N ⇒ Λ, ModL := in−1

ι ,
HatL:

(

N ⇒ Λ
)

⇒ ω, HatL := inι,
Mod: ω ⇒ ω ⇒ ω, Mod

(

inρ⇒σ(u)
)

:= inσ ◦ u ◦ in−1
ρ ,

Hatρ,σ :
(

ω ⇒ ω
)

⇒ ω, Hatρ,σ(h) := inρ⇒σ(in−1
σ ◦ h ◦ inρ).

The functions P and Mod are undefined (= ⊥) at arguments different to the
ones shown.

Terms. Typed λ-terms over the types and constants above.

Predicate constants. Besides standard predicates, like equality at any
type, we have predicate constants of the following arities (“types” is short-
hand for “list type”):

N, A, H : (types, type, term, term),
F : (types, type, term, nat),

SCr: (types, type, ω, term).

The extra argument “types” is due to the fact that typing takes place in
a context. The role of the predicate SCr was explained in Section 3.1; its
meaning is expressed by the axioms below.

Formulas are built from the language above as usual, except that in
addition to the ordinary quantifiers, ∀,∃, we have the nc-quantifiers, ∀nc,∃nc.

Axioms. Besides the usual logical axioms and induction axioms for the
free algebras involved (boole, nat, type, term) we have the axioms Ax1-11 of
Section 2, where typing judgements have to be added at appropriate places
and the SN-hypothesis of Ax6 has to be dropped.

Furthermore, we have axioms for P , Hat and Mod,

P
(

Hatρ,σ(h)
)

= (ρ ⇒ σ),

P (a) = ι → HatL(ModL(a)) = a,

ModL(HatL(g)) = g,

P (a) = ρ ∧ P (h(a)) = σ → Mod
(

Hatρ,σ(h)
)

(a) = h(a),

and for SCr,

SCrι
~ρ(a, r) ↔ (~ρ ` r : ι) ∧ P (a) = ι ∧ (∀k.F ι

~ρ(r, k) → N ι
~ρ(r, ModL(a, k))),

SCrρ⇒σ
~ρ (a, r) ↔ (~ρ ` r : ρ ⇒ σ) ∧ P (a) = (ρ ⇒ σ) ∧

(∀~σ, b, s.SCrρ
~ρ,~σ(b, s) → SCrσ

~ρ,~σ(Mod(a, b), rs)).

We define SC and SN by

SCρ
~ρ(r) := ∃aSCrρ

~ρ(a, r), SNρ
~ρ(r) := ∀k.F

ρ
~ρ (r, k) → ∃sN

ρ
~ρ (r, s).

The definition of SC is in harmony with the informal definition in Section 2,
since, using the axioms (AC), (IP) and (UNC), one easily proves

Lemma (SC-Lemma).

∀nc~ρ, r. SCι
~ρ(r) ↔ (~ρ ` r : ι) ∧ SNι

~ρ(r),

∀nc~ρ, r, ρ, σ. SCρ⇒σ
~ρ (r) → (~ρ ` r : ρ⇒σ) ∧ (∀nc~σ, s.SCρ

~ρ,~σ(s) → SCσ
~ρ,~σ(rs)).

∀nc~ρ, r∀ρ, σ. SCρ⇒σ
~ρ (r) ← (~ρ ` r : ρ⇒σ) ∧ (∀nc~σ, s.SCρ

~ρ,~σ(s) → SCσ
~ρ,~σ(rs)).

The formalizations of Lemmas 1, 2, 3, and the Normalization Theorem
of Section 2 read as follows:

Lemma 1.

∀ρ∀nc~ρ, r. (~ρ ` r : ρ) →
(

SCρ
~ρ(r) → SNρ

~ρ(r)
)

∧
(

SAρ
~ρ(r) → SCρ

~ρ(r)
)

.

Proof. Induction on ρ, as in Section 2.

Lemma 2. ∀ncρ, ~ρ, r, r′. (~ρ ` r : ρ) → SCρ
~ρ(r

′) → H
ρ
~ρ (r, r′) → SCρ

~ρ(r).

Proof. The lemma follows from the slightly stronger statement

SCrρ
~ρ(a, r′) → H

ρ
~ρ (r, r′) → SCrρ

~ρ(a, r),

which is proven by induction on ρ. Note that the induction proves a Harrop
formula. Therefore the “∀ncρ” in the statement of the lemma is correct.

Lemma 3. ∀r, ~ρ∀nc~σ, ρ,~s. (~ρ ` r : ρ) → SC~ρ
~σ(~s) → SCρ

~σ(r[~s]).

Proof. By induction on r using Lemmas 1 and 2, as in Section 2. SC~ρ
~σ(~s)

means Lh(~ρ) = Lh(~s) ∧ ∀i < Lh(~ρ). SCρi

~σ (si).

Theorem (Normalization). ∀~ρ, r∀ncρ. (~ρ ` r : ρ) → ∃sN
ρ
~ρ (r, s).

Proof. By Lemmas 1, 3, as in Section 2. Note that ρ can be computed from
~ρ and r, therefore “∀ncρ” is correct.

Extracted program (Minlog)

Types of variables: n: nat, rho: type, r: term, a: omega

p: (omega=>nat=>term)@@((nat=>term)=>omega)

q: list type=>list omega=>omega

rhos: list type, rs: list term, as: list omega, g: nat=>term

Normalization Theorem

[rhos0,r1]

left(cLemmaOne(Typ rhos0 r1))

(cLemmaThree r1 rhos0(cSCrsSeq rhos0(Nil type)))

Lh rhos0

Lemma 1

(Rec type=>(omega=>nat=>term)@@((nat=>term)=>omega))

(ModIota@([g3]OmegaInIota(cACL g3)))

([rho3,rho4,p5,p6]

([a7,n8]

Abs rho3

(Sub(left p6(Mod a7(right p5([n9]Var n8)))(Succ n8))

((Var map Seq 1 n8):+:(Var 0):)))@

([g7]

Hat rho3 rho4

((cAC omega omega)

([a9]

(cUNC omega)

((cUNC omega)((cIP omega)

(right p6([n10]g7 n10(left p5 a9 n10)))))))))

The base case consists of administrative functions only. In the step case,
if we disregard the administrative functions and write it out as recursion

equations, renaming according to the table

rho3 rho4 left p5 right p5 left p6 right p6

ρ σ ↓ρ ↑ρ ↓σ ↑σ

we obtain exactly the defining equations for the functions ↓ and ↑ sketched
in Section 2. From Lemma 2 we extract the identity, and from Lemma 3,

(Rec term=>list type=>list omega=>omega)

([n3,rhos4](ListRef omega)n3)

([r3,r4,q5,q6,rhos7,as8]Mod(q5 rhos7 as8)(q6 rhos7 as8))

([rho3,r4,q5,rhos6,as7]

Hat rho3(Typ(rho3::rhos6)r4)

((cAC omega omega)

([a9](cUNC omega)((cUNC omega)((cIP omega)

(q5(rho3::rhos6)(a9::as7)))))))

which (disregarding administrative functions) is the evaluation functional
[[.]].

3.3 Strong normalization for terms with named variables

Now we describe the second Minlog formalization. After introducing infor-
mally untyped terms, substitutions and typing judgements we discuss the
formalization and the extracted program, pointing out the main differences
to the first Minlog formalization.

Simple types for untyped λ-terms

Terms r, s, t are built from variables x, y, z, . . . by application rs and ab-
straction λx.r (all untyped). A context is a function from variables to types.
The typing judgement Γ ` r : ρ saying that in context Γ the term r has type
ρ is defined as usual. A substitution is a function θ from variables to terms.
We will not need to formalize bound renaming since it will suffice to define
the behaviour of substitution in the uncritical cases only, i.e. yθ = θ(y),
(rs)θ = (rθ)(sθ).

Formalization

The formal language is very similar to the first Minlog formalization. We
only describe the major changes.

Types. We have the same types as in Section 3.2, however, the universal
type ω will now be equipped with functions expressing that it is a solution
to the recursive domain equation

ω = (nat ⇒ term) + (ω ⇒ ω).

It is well-known how to solve such kind of type equations semantically. For
example, a construction using information systems is described in [13].

Constants. We have the expected functions associated with the data
type of untyped λ-terms, a function symbol for applying a substitution to a
term and, the expected embeddings and projections for ω as a solution to
the domain equation above:

HatL: (nat ⇒ term) ⇒ ω,

Hat: (ω ⇒ ω) ⇒ ω,

ModL: ω ⇒ nat ⇒ term,

Mod: ω ⇒ ω ⇒ ω.

Predicate constants. We have again N, A, H, F and SCr, however with
simpler arities, and in addition a predicate constant ` for typing judgements:

N, A, H : (term, term),

F : (nat, term),

SCr: (ω, type, term),

` : (nat ⇒ type, term, type).

However, the (informal) definition of N needs to be changed since for un-
typed terms the notion of a long normal form does not make sense. The new
definition of the predicate N is:

N(r, s) :⇔ every β-reduction sequence r → . . . ends with a term

to which s η-reduces.

It is easy to see that the axioms (i.p. Ax1) are still valid under this new
interpretation.

Axioms. The axioms Ax1-11 are as in Section 2 except that all type
arguments are removed. In addition we have axioms for typing judgements:

(Γ ` x : σ) → σ = Γ(x).

(Γ ` rs : σ) → ∃ncρ.(Γ ` r : ρ ⇒ σ) ∧ (Γ ` s : ρ).

(Γ ` λz r : ρ) → (ρ = σ ⇒ τ) ∧ (Γ[z 7→ σ] ` r : τ).

The axioms concerning ω are

ModL(HatL(g)) = g,

Mod
(

Hat(h))
)

= h,

and the defining axioms for SCr are

SCrι(a, r) ↔ ∀k.F (r, k) → N(r, ModL(a, k)),

SCrρ⇒σ(a, r) ↔ ∀b, s.SCrρ(b, s) → SCrσ(Mod(a, b), rs).

Note that, despite the type argument ρ, the formula SCρ(r) does not include
a typing statement for r. As before we define SCρ(r) := ∃aSCrρ(a, r).

Lemma (SC-Lemma).

∀nc.SCι(r) ↔ SN(r),

∀ncρ, σ, r. SCρ⇒σ(r) ↔ ∀ncs.SCρ(s) → SCσ(rs).

Below, we only list the precise formulations of the lemmas and the nor-
malization theorem. We do not comment on proofs as they are very similar
to the proofs in the previous formalization, except that contexts and substi-
tutions are handled differently and there is less involvement of types.

Lemma 1. ∀ρ∀ncr.
(

SCρ(r) → SN(r)
)

∧
(

SA(r) → SCρ(r)
)

.

Lemma 2. ∀ncr, r′, ρ.SCρ(r
′) → H(r, r′) → SCρ(r).

Lemma 3. ∀r ∀ncΓ, θ, ρ. (Γ ` r : ρ) → ∀z SCΓ(z)(θ(z)) → SCρ(rθ).

Theorem (Strong Normalization). ∀r, Γ, ρ.(Γ ` r : ρ) → SN(r).

Extracted program (Minlog)

Types of variables: n: nat, rho: type, r: term, a: Scott(=D),

p: (Scott=>nat=>term)@@((nat=>term)=>Scott),

q: (nat=>Scott)=>Scott

rhos: nat=>type, rs: nat=>term, as: nat=>Scott

Normalization Theorem

[r0,rhos1,rho2]

left(cLemmaOne rho2)

(cLemmaThree r0([n4]right(cLemmaOne(rhos1 n4))([n5]Var n4)))

Lemma 1

(Rec type=>(Scott=>nat=>term)@@((nat=>term)=>Scott))

(ModL@cLemmaSCIotaFold)

([rho3,rho4,p5,p6]

([a7,n8]

Abs n8(left p6(Mod a7(right p5([n9]Var n8)))(Succ n8)))@

([rs7]Hat(cAC([a9]right p6([n10]rs7 n10(left p5 a9 n10))))))

From Lemma 2 we again extract the identity, and from Lemma 3:

(Rec term=>(nat=>Scott)=>Scott)

([n2,as3]as3 n2)

([r2,r3,q4,q5,as6]Mod(q4 as6)(q5 as6))

([n2,r3,q4,as5]Hat(cAC([a7]q4([n8][if (n8=n2) a7 (as5 n8)]))))

4 Coq formalization

Coq is a proof assistant based on an higher-order type theory [20]. It in-
cludes an extraction mechanism, due originally to Christine Paulin [17, 18].
Recently, this mechanism has been deeply redesigned by the third author
[14, 15], in order to remove important limitations.

4.1 Extraction in Coq

The foundations of Coq extraction are quite different from Minlog’s use
of Harrop formulas and nc-quantifiers. In Coq, the user decides for each
new inductive datatype whether it is computationally relevant or not. For
instance, the type nat of unary numbers is relevant, and hence placed into
the universe Set of relevant types. On the opposite, the logical propositions
True and False, defined in Coq as inductive types, are placed into the
universe Prop of computationally irrelevant objects. This system is quite
simple. In particular, when stating and proving facts, the user has no further
extraction-related action to perform. The system simply verifies, via its
typing rules, that the constructions of computationally relevant objects never
depend on irrelevant ones.

This system is clearly not as flexible as Minlog extraction. For instance,
because of its typing, a nat argument will always be considered relevant
and kept. But objects of a same type may well be sometimes relevant and
sometimes used only for filling logical annotations. For instance, considering
lemma 1 and 3 above, the term argument r is relevant only in the latter. One
should notice that such situations are not so common, and that the Prop/Set
distinction of Coq, despite its lack of flexibility, is normally sufficient in most
applications.

4.2 Higher-order logic in action

Distinctions between Coq and Minlog do not only concern extraction. Dur-
ing the formalization, the definition of the SC predicate has been a critical
point of divergence. We have seen earlier that formalizing SC in Minlog

requires a precise understanding of the domain theory involved. Thanks to
the higher-order nature of Coq logic, we can actually define SC:

Fixpoint SC (ρ:type)(r:term) {struct ρ} : Type :=

match ρ with

| Iota ⇒ SN Iota r

| Arrow ρ σ ⇒∀s:term, SC ρ s → SC σ (App r s)

end.

Here, we cannot define SC as an inductive predicate, since it would be
non-positive and hence rejected by Coq. The alternative approach is then
to see SC as a recursive function. After a case analysis on the type ρ, the
two defining equations of SC are used, the second one being recursive over
subterms of ρ. This kind of definition, where a new type or predicate is
built via the elimination of a term such as ρ, is known as strong elimination.
This approach is quite simple and safe: instead of using axioms for each new
predicates, we rely on the correctness of Coq’s typing rules.

The only delicate point with strong elimination concerns the typability
of the extracted code. Using such a dependently typed construct can indeed
lead to extracted code that can only be typed in a functional language with
dependent types as well. Here, both before and after extraction, an object
of type SC can be either a function or not, depending on the value of ρ.
Since programming languages with dependent types are not widely spread,
we propose some workarounds. A first solution is to use a type-free language
like Scheme. Another possibility now offered by the Coq extraction is to use
ML-like typing as long as possible and insert some unsafe type coercions
when needed: Obj.magic in Ocaml and unsafeCoerce in Haskell. A more
detailed description of this mechanism can be found in [15]. Finally, there
is a last solution currently not proposed by the Coq extraction: we could
here use an encoding based on a sum type like the type D of the Isabelle
formalization (Section 5). Indeed, this solution leads to ML-typable code,
but this is at the cost of additional operations (constructors and destructors
like Hat and Mod in Section 3) that are useless from the operational point
of view.

4.3 Organization of this formalization

The Coq formalization follow the same choices as the first Minlog formal-
ization in Section 3.2. The first part of this work starts with some results
about λ-terms in de Bruijn notation: substitution, typing, etc. Then comes

the core of the normalization proof: Lemmas 1, 2, 3 and the main theorem.
This part is done in a modular way, thanks to the Coq module system. More
precisely, this generic core is a functor, i.e. a structure that transforms a
module implementing correctly predicates N , A, ... into a module containing
a complete normalization proof.

Independently, we provide two implementations of these predicates and
their properties. The first corresponds to the meaning of N given in Sect. 3.2,
that is weak β-normalization and then η-expansion. Then, a second imple-
mentation has been done, with η-reduction instead of expansion in N , and
with a small change on the abstraction function abstr. As noted in [4], the
previous generic core can then be used unchanged, Finally, the two imple-
mentations are plugged with the core and then extracted, producing two
programs which respectively compute the η-long β-normal form and the βη-
normal form.

It should be emphasized that this formalization is complete: no axiom
remains at the time of extraction. Having at least one complete implemen-
tation is crucial. For instance, proving Ax1 with de Bruijn notation has in
fact been a really delicate matter, and has implied some major changes in
the main part of the proof, like the use of typing contexts everywhere.

4.4 Optimizing the extracted program

The first formalized proof of normalization has been done in a direct, Coq-
natural way. But the obtained extracted program, although working, was
not so satisfactory. In fact, this was to be expected, since Coq extraction
currently uses typing information to discover irrelevant parts in proofs. For
instance, while sharing the same type term, the second argument r of lemma
1 is not relevant and leads to dead code after extraction, whereas the first
argument r of Lemma 3 is relevant. In Minlog, the distinction between
these two r arguments is done by using either the normal ∀ or the non-
computational ∀nc, leading to shorter and more efficient extracted code.

Recently, Bas Spitters and the third author proposed a method to emu-
late in Coq, at least partially, this ∀nc construction of Minlog [16]. The idea
is to provide an injection nc that goes from the informative universe Set

into the extraction-irrelevant universe Prop. Using this injection, any in-
formative datatype like term has now an irrelevant counterpart (nc term).
The nc injection itself can be built without modifying of the Coq system.
But proving properties of injected objects is currently tedious, and requires
in particular the use of an technical axiom. While this axiom seems consis-
tent and harmless for extraction, it is nevertheless unnatural in Coq, since

it contradicts the unprovable but popular principle of proof irrelevance.

Anyway, we managed to produce a second version of our formalization
taking advantage of this nc construct, with only limited changes, thanks to a
specialized tactic written using the rich Ltac macro language of Coq. Finally,
the program extracted from this refined version is quite better. Many dead
code parts are indeed removed, and some benchmarking shows a speedup of
at least 40% and a memory usage decreased by more than 20%.

4.5 What Coq cannot do yet

The improved code obtained in the last section is still not perfect. Let us
consider for instance the Ocaml extraction of Lemma 2.

let rec two t h =

match t with

| Iota → Obj.magic (fun k → Obj.magic h k)

| Arrow (t1, t2) →
Obj.magic (fun x → two t2 (Obj.magic h x))

From an operational point of view, the type coercions Obj.magic could be
ignored. One can then notice the use of some strange abstractions over
anonymous variable and applications to arbitrary constants . These
are the remnants of some proof abstractions and arguments. In order to
support safely the whole Coq system, the new Coq extraction [15] may
have to leave such remnants instead of removing them completely. Then,
in an optimization phase, lots of these remnants are simplified. But the
implemented optimizations currently fail to remove and in the above
code.

In fact, in addition to this cleaning up, a more drastic optimization
could be performed here. In the two Minlog formalizations, the program
extracted from Lemma 2 is the identity function, due to the introduction
of SC via its realizability. Here indeed, when looking closely at the code
above, the result of this function is always extensionally equivalent to its
second argument. However, taking advantage of this fact is currently out of
the reach of Coq’s extraction mechanism, which normally produces extracted
terms that are faithful to the structure of the original term. Except for some
local optimizations, the only difference between the original and extracted
code is the pruning of logical parts, and a term built by induction like two

will always give a recursive function. After manually implementing these
remarks in the extracted code, we have noticed a new improvement of about

40% in speed and 20% in memory. The nc encoding clearly improves the
efficiency of the extracted code, but remains slower than the perfect code.

More recently, we noticed that our nc encoding in Coq cannot be used
in any situation. We indeed tried to switch to named λ-terms instead of de
Bruijn notation, following Section 3.3. But then our nc showed its limitation.
In fact, it is still based on typing information, and not on an occur-check
of irrelevant variables in the extracted code like in Minlog. In particular,
in the lemma 3 of Section 3.3 the simple type ρ can be considered to be
without content in Minlog, while in Coq having ρ of type (nc type) forbids
the application of ρ to the SC predicate, since it expects a first argument of
type type. We hope to be able in the future to implement a more complete,
transparent and user-friendly nc mechanism in Coq. However, this would
require a modification of the system, unlike our current light nc encoding.

5 Isabelle/HOL formalization

In this section, we will compare the Coq and Minlog formalizations of the
normalization proof with a formalization in the theorem prover Isabelle/HOL,
which also has a program extraction facility due to the second author [7].
The formalization described here is based on the one described in Section 3.3.
The LaTeX code for this section was generated by Isabelle automatically.

The datatypes of types and terms are defined as expected. The judge-
ment stating that t has type τ in context %s is denoted by %s ` t : τ . The
definition of the typing judgement is as usual. In contrast to Minlog, Is-
abelle/HOL allows the definition of predicates by recursion over datatypes
(also called “strong elimination” in Coq jargon). Thus, we can simply define
SC by recursion over the datatype type:

consts SC :: type ⇒ trm ⇒ bool
primrec
SC-Atom: SC Iota r = SN r

SC-Fun: SC (%⇀σ) r = (∀ s. (SC % s) −→ (SC σ (r¨s)))

However, when it comes to extracting a program from a proof involving
SC, we face a similar problem as in the Coq formalization: Since predicates
in a proof become types in the extracted program, predicates such as SC
defined by recursion on datatypes give rise to programs using dependent
types. Such programs can neither be expressed inside Isabelle/HOL, nor
can they easily be translated to functional programming languages such as
ML. In order to get a program which is typable in a functional programming
language without dependent types, we realize the formula SC τ t by a

datatype D with two constructors Term and Func (corresponding to the
universal type ω and the functions HatL and Hat). The former corresponds
to the case where τ is a base type, whereas the latter corresponds to the
case where τ is a function type. In ML, one would define the datatype D as
follows:

datatype D = Term of nat -> trm | Func of trm -> D -> D

This datatype is beyond the scope of Isabelle/HOL, since D occurs nega-
tively in the argument type of Func. It is interesting to note that in the logic
HOLCF, which is a conservative extension of HOL with LCF, one can actu-
ally define the above datatype, provided that the type of partial continuous
functions is used instead of the type of total functions. For the moment, we
just assert the existence of type D, together with suitable constructors:

typedecl D

consts
Term :: (nat ⇒ trm) ⇒ D
Func :: (trm ⇒ D ⇒ D) ⇒ D
destTerm :: D ⇒ nat ⇒ trm

destFunc :: D ⇒ trm ⇒ D ⇒ D

Here, destTerm and destFunc are destructors inverting the correspond-
ing constructors of the datatype D. These can be implemented using pat-
tern matching. We can now assign realizing terms to the two characteristic
equations for SC. Since we can view an equation between propositions as a
conjunction of two implications, the equations for SC are realized by pairs,
of which the first component is a destructor, and the second component is a
constructor:

realizers
SC-Atom: λ t . (destTerm, Term)

SC-Fun: λ % σ t . (destFunc, Func)

The proof of strong normalization is composed of the following parts:

lemma One : ∀ r . (SC % r −→ SN r) ∧ (SA r −→ SC % r)
lemma Two : ∀ r r ′. SC % r ′ −→ H r r ′ −→ SC % r
lemma Three : ∀ %s ϑ %. %s ` r : % −→ (∀ z . SC (%s z) (ϑ z)) −→ SC % (r ·ϑ)

lemma Norm: ∀ %s % r . %s ` r : % −→ (∀ k . F r k −→ (∃ s. N r s))

The computationally relevant predicates SN and SA are defined by

SN r ≡ ∀ k . F r k −→ (∃ s. N r s)
SA r ≡ ∀ k . F r k −→ (∃ s. A r s)

The programs extracted from the above theorems have the types

One: type ⇒ trm ⇒ (D ⇒ nat ⇒ trm) × ((nat ⇒ trm) ⇒ D)
Two: type ⇒ trm ⇒ trm ⇒ D ⇒ D
Three: trm ⇒ (name ⇒ type) ⇒ (name ⇒ trm) ⇒

type ⇒ (name ⇒ D) ⇒ D
Norm: (name ⇒ type) ⇒ type ⇒ trm ⇒ nat ⇒ trm

They are defined as follows:

One ≡
type-rec (λx . (destTerm, Term))
(λx xa H Ha xb.

(λHb x .

λ[] x].fst (Ha (xb ¨ ´] x))
(destFunc Hb (´] x) (snd (H (´] x)) (λxa. ´] x)))
(Suc x) ,

λHb. Func (λs Hc. snd (Ha (xb ¨ s)) (λx . Hb x ¨ fst (H s) Hc x))))

Two ≡
type-rec (λx xa H . Term (destTerm H))
(λtype1 type2 H Ha r r ′ Hb.

Func (λs H . Ha (r ¨ s) (r ′ ¨ s) (destFunc Hb s H)))

Three ≡
trm-rec (λname x xa xb H . H name)
(λx xa H Ha xb xc xd Hb.

destFunc (H xb xc (app-type-elim xb x xa xd ⇀ xd) Hb) (xa · xc)
(Ha xb xc (app-type-elim xb x xa xd) Hb))

(λname trm H %s ϑ % Ha.

let (x , y) = abs-type-elim %

in Func
(λs Hb.

Two y ((λ[name].trm · ϑ) ¨ s) (trm · update ϑ name s)
(H (update %s name x) (update ϑ name s) y

(λz . case name-eq-dec name z of Left ⇒ Hb
| Right ⇒ Ha z))))

Norm ≡
λ%s % r .

fst (One % r)
(Three r %s subst-id % (λx . snd (One (%s x) (´x)) (λxa. ´x)))

Due to the lack of non-computational quantifiers in Isabelle, the above pro-
grams contain typing information for the term to be normalized, which is
unnecessary for the computation. In particular, the extracted programs use
auxiliary functions corresponding to the elimination rules

var-type-elim: %s ` ´x : % =⇒ % = %s x
abs-type-elim: Γ ` λ[x].t : % =⇒

∃σ σ ′. % = σ ⇀ σ ′ ∧ update Γ x σ ` t : σ ′

app-type-elim: Γ ` r ¨ s : % =⇒ ∃σ. Γ ` r : σ ⇀ % ∧ Γ ` s : σ

for the typing judgement. It turns out that all typing information can be
omitted from function Three. This may seem a bit surprising, since Three
calls function Two, which is defined by recursion on types. However, as al-
ready noticed in the Minlog and Coq previous formalizations, Two is actu-
ally just a complicated formulation of the identity function and can therefore
be omitted. Unfortunately, Isabelle’s program extraction framework cannot
detect this automatically.

6 Conclusion

This case study turned out to be extremely useful for testing and compar-
ing the proving and program extraction machineries of Minlog, Coq and Is-
abelle/HOL, and it led to numerous cross-fertilizations between the systems.
The problems that had to be solved in connection with the representation
of data, the formalization of reasoning and the optimization of program ex-
traction pointed us to many possible ways of extending and improving the
systems.

A general observation made in this case study is the fact that in order to
obtain useful extracted programs, not only an optimized extraction process is
needed, but also the possibility to express computational information at the
logical level. For example, the virtue of the nc-quantifiers is not only their
simplifying effect on the extraction process, but also their ability to make
computational independencies visible in the specification and the proof.

References

[1] T. Altenkirch. Proving strong normalization of CC by modifying real-
izability semantics. In H. Barendregt and T. Nipkow, editors, Types for
Proofs and Programs. International Workshop TYPES ’93. Nijmegen,
The Netherlands, May 1993, volume 806 of LNCS, pages 3–18. Springer
Verlag, 1994.

[2] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization
by evaluation for typed lambda calculus with coproducts. In LICS ’01:

Proceedings of the 16th Annual IEEE Symposium on Logic in Com-
puter Science, page 303, Washington, DC, USA, 2001. IEEE Computer
Society.

[3] T. Altenkirch, M. Hofmann, and T. Streicher. Reduction-free normali-
sation for a polymorphic system. In 11th Annual IEEE Symposium on
Logic in Computer Science, pages 98–106, 1996.

[4] U. Berger. Program extraction from normalization proofs. In M. Bezem
and J.F. Groote, editors, Typed Lambda Calculi and Applications, vol-
ume 664 of LNCS, pages 91–106. Springer Verlag, 1993.

[5] U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evalu-
ation. In B. Möller and J.V. Tucker, editors, Prospects for Hardware
Foundations, volume 1546 of LNCS, pages 117–137. Springer Verlag,
1998.

[6] U. Berger and H. Schwichtenberg. An inverse of the evaluation func-
tional for typed λ–calculus. In R. Vemuri, editor, Proceedings of the
Sixth Annual IEEE Symposium on Logic in Computer Science, pages
203–211. IEEE Computer Society Press, Los Alamitos, 1991.

[7] S. Berghofer. Proofs, Programs and Executable Specifications in Higher
Order Logic. PhD thesis, Institut für Informatik, TU München, 2003.

[8] M. Biernacka, O. Danvy, and K. Stovring. Program extraction from
proofs of weak head normalization. In Preliminary proceedings of MFPS
XXI, Birmingham, UK, pages 105–123, 2005.

[9] C. Coquand. From semantics to rules: A machine assisted analysis.
In E. Börger, Y. Gurevich, and K. Meinke, editors, Computer Science
Logic, 7th Workshop, Swansea 1993, volume 832 of LNCS, pages 91–
105. Springer Verlag, 1994.

[10] T. Coquand and P. Dybjer. Intuitionistic model constructions and nor-
malization proofs. Mathematical Structures in Computer Science, 7:73–
94, 1997.

[11] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Math., 34:381–392, 1972.

[12] G. Kreisel. Interpretation of analysis by means of constructive function-
als of finite types. In A. Heyting, editor, Constructivity in Mathematics,
pages 101–128. North–Holland, Amsterdam, 1959.

[13] K. G. Larsen and G. Winskel. Using information systems to solve re-
cursive domain equations. Information and Computation, 91:232–258,
1991.

[14] P. Letouzey. A New Extraction for Coq. In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs, Second International Work-
shop, TYPES 2002, volume 2646 of Lecture Notes in Computer Science.
Springer-Verlag, 2003.

[15] P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de
programmes dans l’assistant Coq. PhD thesis, Univ. Paris-Sud, 2004.

[16] P. Letouzey and B. Spitters. Implicit and noncomputational arguments
using monads, 2005. Submitted for publication, available at http://

www.lri.fr/~letouzey/download/Letouzey_Spitters_05.pdf.

[17] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the Cal-
culus of Constructions. In Sixteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, Austin, January 1989. ACM Press.

[18] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the
system Coq. J. Symbolic Computation, 11:1–34, 1993.

[19] H. Schwichtenberg. Minimal logic for computable functionals, 2004.

[20] The Coq Development Team. The Coq Proof Assistant Reference Man-
ual – Version 8.0, February 2004. Available at http://coq.inria.fr/.

[21] A. S. Troelstra, editor. Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics.
Springer Verlag, 1973.

