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Abstract. We provide a monadic view on implicit and noncomputa-
tional arguments. This allows us to treat Berger’s non-computational
quantifiers in the Coq-system. We use Tait’s normalization proof and
the concatenation of vectors as case studies for the extraction of pro-
grams. With little effort one can eliminate noncomputational arguments
from extracted programs. One thus obtains extracted code that is not
only closer to the intended one, but also decreases both the running time
and the memory usage dramatically. We also study the connection be-
tween Harrop formulas, lax modal logic and the Coq type theory.
Keywords: Program extraction, implicit arguments, monads, lax modal
logic, Coq type theory.

1 Introduction

We use a monad, which we call nc, to deal with implicit and noncomputa-
tional arguments. One motivation for this research is a question already posed
by Berger [9]: is it possible to use the Prop/Set distinction in the Coq-system [10]
to treat the non-computational quantifiers which are present in the minlog sys-
tem [28]? The Coq proof assistant is based on the Calculus of (co)inductive con-
structions and provides an mechanism to extract programs from constructive
proofs [25, 16, 17]. To eliminate noncomputational content from such programs
Coq has two sorts Prop and Set. Types in the former sort are considered non-
computational and thus are not extracted. Types in the latter sort are considered
computationally relevant and thus are extracted. Another approach, followed by
Berger in [9], is to propose different quantifiers with or without computational
content. The same idea is also present in the works of Hayashi [14] or Krivine
and Parigot [15, 24]. We try here to embed these technics within Coq.

The main reason for eliminating implicit arguments from extracted programs
is to improve the efficiency both in terms of speed and memory usage. At the
same time, the readability of the code is also increased, which is important for
understanding it and increasing, even more, the trust in the correctness of the
program.
? This author was supported by the Netherlands Organization for Scientific Research
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The article is organized as follows. In section 2 we discuss implicit arguments
in extracted programs by considering the example of concatenation of vectors.
In section 3 we discuss how to implement the monad nc in Coq. In section 4 we
discuss the limitation of this approach when one uses noncomputational quanti-
fiers and how to get around these problems. This is then used in the extraction
of a program from Tait’s normalization proof. Finally, in section 6 we view the
sort Prop as the nc-stable types and we connect this to Harrop formulas and lax
modal logic.

2 Implicit arguments

By implicit arguments we mean arguments that are used to assign types to terms,
but that are not used in the computation. This interpretation is similar to, but
different from, the implicit arguments in Coq. In Coq arguments are implicit
if they can be inferred by the type checker. As an example we now consider
vectors, that is, lists annotated with their length. In this case the length is an
implicit argument. There are several ways to treat the implicit arguments: using
a copy of the unary natural numbers nat in Prop, using the monad nc, or using
a combination of both. In the first approach we can still use Coq’s conversion
to do most of the work for us, but we need to duplicate parts of the library
for natural numbers. In the second approach we can reuse all our old results,
moreover, this approach also works for data types that are not inductive. The
third approach is a middleway.

Fortunately, for nat, the unary natural numbers, both approaches are equiv-
alent. However, proving this equivalence is slightly complicated by the fact that
the automatically generated induction principles of Coq are too weak. To be
explicit, when we define

Inductive natnc : Prop :=
| Onc : natnc
| Snc : natnc → natnc.

the generated induction principle is not dependent. We fix this by

Scheme natnc_ind’ := Induction for natnc Sort Prop.

Now we define nc by

Inductive nc (A:Set) : Prop := nc_i : A → nc A.

It is not difficult to prove that the types nc nat and natnc are isomorphic,
that is there are functions f, g such (f (g n))=n and (g (f n))=n, for all n.
Here = denotes the Leibniz equality. It should be noted that it is not possible
to prove that Onc and (Snc Onc) are different, in fact, they are equal under the
proof-irrelevant interpretation of the Coq universe.

We will later show that nc is (almost) a monad.
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2.1 vectors

Consider the following definition of vectors, seen as lists annotated with their
length:

Inductive listn (A:Set) : nat → Set :=
| niln : listn A 0
| consn : ∀n, A → listn A n → listn A (S n).

This definition allows us to define, for example, a safe tail operation whose type
is ∀A n, listn A (S n) → listn A n. This definition of tail does not need
the use of exceptions. It is easy to define concatenation with the informative
type ∀A n m, listn A n → listn A m → listn A (n+m). This illustrates an
advantage of dependently typed programming in preserving certain invariants in
the type. However, now consider the following example.

Definition example : listn bool 4 :=
concat
(list2listn (true::false::nil)) (list2listn (false::true::nil))

Here list2listn is the obvious map from lists to vectors. The obtained ex-
tracted Ocaml code still contains all the typing information.

let example =
concat (length (Cons (True, (Cons (False, Nil)))))
(length (Cons (False, (Cons (True, Nil)))))
(list2listn (Cons (True, (Cons (False, Nil)))))
(list2listn (Cons (False, (Cons (True, Nil)))))

2.2 vectors with inductively generated noncomputational argument

In this approach we use the noncomputational copy of the natural numbers
natnc instead of the ordinary natural numbers in the definition of listn above.
The proofs are almost verbatim the same as the non-implicit ones. One only
needs to replace Set by Prop occasionally.

In this case we obtain the following extracted code, which is the one one
would expect.

let example =
concat (list2listn (Cons (True, (Cons (False, Nil)))))
(list2listn (Cons (False, (Cons (True, Nil)))))

2.3 vectors using nc

Using nc nat instead of natnc, one obtains the same short extracted code as
before, however the proofs need to be modified a little since we have to do some
of conversions manually. Using a tactic described in the next section, writing
these proofs is considerably simplified.
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2.4 vectors, a hybrid approach

In this last approach we still use nc, but prove that the noncomputational in-
ductive type natnc and the noncomputational versions of + and successor S are
equivalent to the ones that are lifted using nc. Then we use a tactic to rewrite
with this equivalence so that Coq will do the conversions for us.

A similar treatment can be made by the use of views [29][20].

Inductive Natind : (nc nat) → Prop :=
| Oncind : Natind (nc_i 0)
| Sncind:∀n:nc nat, Natind n → Natind (S’ n).

Definition natind : ∀n:nc nat, Natind n.

Here S’ is a noncomputational version of the successor. One still needs to rede-
fine the inductively defined functions, like +, which is a rather straightforward
process. Then once one arrives at a non-computational goal, one uses a case anal-
ysis, where only one constructor is possible, to ’open up’ the variables of type
(nc nat) to obtain a variable of type nat and makes the conversion algorithm
do its work.

In conclusion, there we have a variety of possibilities all of which require some
work, but all are rather straightforward to use.

3 Nc is a Monad

Monads allow to extend pure functional programs with impure features, like ex-
ceptions, side effects, I/O, etc., in a flexible way. They have become the standard
way of adding these features in the Haskell functional programming language.
Here we use a monadic extension to extend type theory with non-computational
arguments. It is easy to check that nc is a monad. In fact, we have defined a
general module for monads with the Kleisli presentation of a monad — that is,
using the presentation of a monad using Unit and Bind. We followed the pre-
sentation of monads in Haskell described by Wadler in [30]. We recall, using the
Coq syntax, the definition of a monad.

Module Type Monad.
Parameter M : Type → Type.
Parameter Unit : ∀A:Type, A → M A.
Parameter Bind : ∀A B:Type, M A → (A → M B) → M B.
Infix "bind":=Bind (at level 50, left associativity).

Hypothesis Bind_ext: ∀A B:Type, ∀f g:A→M B, ∀a:M A,
f==g → (a bind f)=(a bind g).

Hypothesis Leftunit: ∀A B:Type, ∀a:A, ∀k:A→M B,
(Unit a) bind k = k a.

Hypothesis Rightunit: ∀A:Type, ∀m:M A,
m bind (Unit (A:=A)) = m.

Hypothesis Associative: ∀A B C:Type, ∀m, ∀k:A→M B, ∀h:B→M C,
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m bind (k bind h) = m bind k bind h.
End Monad.

Here f==g is a notation for the extensional equality: ∀a, (f a)=(g a).
Using functors between modules we have also provided the alternative pre-

sentation of monads using Unit, Map and Join1. We have implemented a general
tactic to rewrite with the usual identities for monads. Of course, this tactic can
also be used for any other monad, like the option and list monads. Design-
ing this tactic was slightly more complicated than one would expect. First, Coq
lacks η-conversion. Second, a priori, we could have tried to use the built-in au-
torewrite tactic. However, currently autorewrite does not support rewriting
with equalities other than the Leibniz equality, or rewriting in the hypothesis.
Fortunately, since the submission of this paper, the first problem has been ad-
dressed by Claudio Sacerdoti Coen in the development version of Coq. Building
on this work a small patch by Lionel Mamane and the second author solves the
second problem. The automatic instantiation of tactics seems to be an advantage
of using modules over using dependent type records, a rival approach for modu-
larity in type theory. Although we do not want to go into the general theory of
Coq-modules, we will consider one example. To define Map for the monad nc one
applies the functor Monad_prop, which defines the derived monad properties, to
the module ncmonad, which defines the monad nc.

Module nc_prop := Monad_prop ncmonad.

After importing nc_prop Map is available.
There is a minor issue regarding the type hierarchy. It seems most natural

to define nc as a map from Set to Prop, unfortunately in this case we can not
define Join, since it is not even well-typed. In order to characterize Prop using
the bijection in section 6.2 we define nc to be a map from Type to Prop, in which
case Join is definable. A related issue arose in the LEGO formalization of terms
as monads [4].

When developing proofs in Coq, it is sometimes necessary to copy proofs that
exist in Type and convert them to ‘equivalent’ proofs in Prop. In this case it is
sometimes convenient to map an implication A→B in Type to an implication (nc
A)→(nc B), which is in Prop, and use the equivalences of nc sigT and exists
and of nc {A}+{B} and A∨B. That is, we use mappings like2:

Definition sig_ex:∀X:Type, ∀P:X→Prop,
nc (sigT P) → ∃n, P n.

Here again we use the fact that nc applied to an inductive type is isomorphic
to the copy of this inductive type in Prop. Using the rewrite tactic for setoid
equality for the setoid (Prop,↔) it is possible to automate this.

1 See [30], or any other text on monads, for more information on the merits of these
different presentations

2 In this code the type of n can be infered and thus may be ommitted in the new Coq
(v.8.0) syntax.
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Of course, it is not possible in general to translate all statements in Type in
such a straightforward way. For instance, consider the ‘axiom of choice’ which is
provable at the Type level, but not at the Prop level. When trying to translate
this statement to the Prop-level using nc, one finds that

nc (∀x:X, P x) → ∀x:X, (nc (P x))

is not provable3. In section 6 we will see how this is related to general consider-
ations of lax modal logic.

4 Non-computational quantifiers

The monadic construction for implicit arguments we developed above works well
for functions, as we showed in the list example, but unfortunately, it does not
seem to be easily extendable to predicates and relations. Let P:A→Prop and
suppose that we want to make A implicit. Since predicates are contravariant, we
need a map f:nc A → A to obtain a predicate P’:nc A → Prop. In general,
such a map does not exist. Fortunately, we can solve this problem if we allow
ourselves to use an axiom.

Axiom ProofRelevance : ∀(A:Set)(a b:A),
nc_i a = nc_i b → a = b.

By using the Propositions-as-Types interpretation, i.e. seeing Prop as a clone of
Set it seems likely that this axiom is consistent: in this model nc_i would just
correspond to the identity. For this identification of Prop and Set to be correct,
we should use the impredicative version of Set. However, since our axiom can
be safely added to the impredicative Coq, it can certainly be added safely to its
predicative variant, which is a subsytem. In addition, being in Prop, the axiom
has no computational content, it can be safely added when we are only interested
in extracting programs. It should be noted that ProofRelevance is restricted to
the sort Set instead of Type. This latter version would be much stronger (for
instance consider A being Prop or Set), and its consistency quite uncertain.
Finally, it should be noted that ProofRelevance clearly contradicts the axiom of
Proof Irrelevance, ∀A:Prop, ∀p q:A, p=q which is for instance a consequence of
the excluded middle for the sort Prop.

For a type A, the universal quantifier without computational content is simply
a usual universal quantifier, but over nc A:

Notation "’forallnc’ x : A , p" := (∀x:(nc A),p).

Concerning the existential quantifier, we define a new inductive type. Its head
is logical but the body is informative:

Inductive existsnc_t (A:Prop)(P:A→Type) : Type :=
existsnc_I : ∀x:A, P x → existsnc_t A P.

3 In fact, when replacing ncwith the squash operator in an extensional type theory
with a such an operator this equivalent to the axiom of choice, see [5]
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Then the actual existential is a use of this type:

Notation "’existsnc’ x : A , p" := (existsnc_t (nc A) (fun x⇒p)).

Let us now express properties using these Prop-encoded objects. If we have a
predicate P depending on a type A, and an object a being in nc A, we cannot
write directly P a. Instead, we propose a new construction letnc a’:=a in P
a’ that relates a with an object in A. Here is the definition of this construction:

Notation "’letnc’ x := y ’in’ p" := (∀x, nc x = y → p).

The name letnc is motivated by the similarity with the usual notation let
x:=y in p for (y bind (fun x ⇒ p)). It’s worthwhile to point out that the
following analogue of the Leftunit rule holds.

∀A:Set, ∀P:A→Prop, ∀y,
(letnc x:=nc y in (P x))↔(P y).

It seems to be difficult to state any sensible such variants for the Rightunit and
Associative rules.

5 A formalization of Tait’s normalization proof

The original motivation for the use of non-computational quantifiers in Coq
was a case study on formalizing a normalization proof à la Tait proposed by
Berger [9]. In this work, Berger showed that a normalization proof for the simply-
typed λ-calculus can lead by extraction to the well-known “Normalization By
Evaluation” algorithm. But at that time, the proof was only made on paper,
and the extraction done “manually”. In a recent effort, Schwichtenberg, Berger,
Berghofer and the first author have formalized this proof both in Minlog and
Coq and Isabelle4, and then performed automatic extractions. A more complete
description of these parallel formalizations can be found in [8]. Here, we will focus
on a point only shortly mentionned in [8]: using non-computational quantifiers
in Coq is crucial for the final extracted program to have the right shape.

5.1 Strong computability

In this normalization proof, the key point is to use a“Strongly Computable” (SC)
predicate, defined by induction over simple types:

– In the case of a base type (called here Iota), being strongly computable
amounts to being strongly normalizable.

– An object r of an arrow type is strongly computable whenever for all strongly
computable argument s, the application (App r s) is still strongly com-
putable.

4 In http://www.lri.fr/~letouzey/download/tait.tgz can be found the source files
of the Coq formalization. Some details of the present description are simplified, for
instance contexts and typing judgments are omitted when non-essential.
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This SC predicate can be defined in a straightforward way in Coq:

Fixpoint SC (ρ:type)(r:nc term) {struct ρ} : Type :=
match ρ with
| Iota ⇒ SN Iota r
| Arrow ρ σ ⇒ ∀s:nc term, SC ρ s → SC σ (App’ r s)
end.

Note that the previous definition has been adapted to use nc for its second
argument, the term r, and for the internal quantification over the term s. In a
consistent manner, App’ is the application App over terms, which we extend to
a noncomputational variant in the usual monadic way.

This adaptation to nc can be justified in the following way. On the compu-
tational level, if we forget the dependencies, SC can be seen as a union between
a recursive arrow type SC→SC and a base type SN. The role of the SC arguments
are hence quite different: the type ρ is used to determine the current side of the
union, whereas the term r just provides some annotations that precise the mean-
ing of the predicate. Finally, the first argument is crucially used when computing
with objects of type SC, whereas the second argument will only be used in proof
parts. As a consequence, using nc for the second argument leads to cleaner and
shorter extracted program, as noted by Berger [9].

5.2 Adapting proofs to the nc version

The main part of the normalization proof consists of three lemmas and the final
result. Thanks to the Coq module system, this core of the normalization proof
forms an autonomous part of 300 lines. It is well separated from the rest of the
formalization that consists mainly in results about λ-terms: 3 000 lines dedicated
to substitution, typing, βη-conversion, etc. The glue between the auxiliary and
the core parts is an interface providing some predicates like SN and a few require-
ments for these predicates. The core proofs relies only on these requirements5,
that are designed to have no computational content – they were Harrop formulas
in the original paper [9], and are Prop statements in Coq. Hence all the compu-
tational content of the normalization proof is concentrated in the three lemmas
and final theorem.

In a first step, we have built proofs for these three lemmas in the regular
Coq way, without using any nc. For instance, the simplest of the three lemmas
has the following statement, where H is the predicate denoting one step of head
β-reduction:

Lemma two : ∀(ρ:type)(r r0:term), SC ρ r0 → H ρ r r0 → SC ρ r.

5 In addition, this small core is also quite independent from the chosen representation
for λ-terms. We were familiar with de Bruijn indices, and hence used them, but this
core can be easily adapted to other encodings (HOAS, nominal, ...). For instance,
Berger used a named approach for his Minlog development presented in [8].
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In a second time, we have adapted this 300-line core to nc. We have already seen
above the nc version of SC. Concerning the lemma two, we had to change the
reference to the H predicate, that still expects non-nc arguments. For that, we
use the letnc construct seen earlier:

Lemma two : ∀(ρ:type)(r r0:nc term), SC ρ r0 →
(letnc r’:=r in letnc r0’:=r0 in H ρ r’ r0’) → SC ρ r.

Concerning the adaptation of proofs to nc, some changes have to be made. Since
our nc can be seen as a wrapping, some encoding and decoding has to be per-
formed. Fortunately, we actually managed to lessen the burden by designing
a custom tactic called nc. In front of a Prop subgoal, we are free to use nc
objects at will, and this nc tactic translates all nc objects to their non-nc coun-
terparts, leaving a nc-free subgoal. This process sometimes involves the use of
the ProofRelevance axiom seen earlier.

In addition to placing some nc tactics, the only other changes in proofs
concern the use of nc-translated functions like app’ instead of the regular append
function app on lists. First, these translated functions cannot be reduced by Coq
as simply as their original versions, we need to perform a nc decoding in order
for the reduction to occur. Secondly, the library lemmas such as the append
associativity are not compatible with the nc version, leaving us with the need
for another decoding or for a translated lemma. Fortunately, the number of
such problems during the nc adaptation has been rather low. Over the 300 lines
of the proofs, we changed or added only 57 lines, of which only 10 are not
straightforward instances of our nc tactic.

5.3 Comparison of the extracted codes

After this translation to nc, we can now compare the extracted code obtained
with the original and modified settings. And without much surprise, the refined
version is similar to the first one, but shorter. As an example, we continue to
study the shortest lemma two. In the original extracted code for two, we have
framed the code that will later correspond to nc and disappears in the refined
version:

(** val two : type0 → term → term → SC → SC **)

let rec two t r r’ h =
match t with
| Iota → Obj.magic (fun k _ → Obj.magic h k __)
| Arrow (t1, t2) →

Obj.magic (fun s x →
two t2 (App (r, s)) (App (r’, s)) (Obj.magic h s x))

The nc-refined version looks as follows:

(** val two : type0 → SC → SC **)
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let rec two t h =
match t with
| Iota → Obj.magic (fun k _ → Obj.magic h k __)
| Arrow (t1, t2) →

Obj.magic (fun _ x → two t2 (Obj.magic h __ x))

In this second version, the extracted code is now really similar to Berger’s man-
ually extracted code, but not exactly identical:

– First, one may notice the presence of Obj.magic functions in the code. From
the execution point of view, we can disregard these functions: they only
influence the typing, while their value is the identity function. In particular,
when extracting to the (untyped) Scheme language, these functions are not
there any more. We will comment the need for such functions for Ocaml in
the next section.

– Secondly, the code contains abstractions over the anonymous variable _ and
applications to a constant __. These are the remnants of some logical ab-
stractions and arguments that have been detected and collapsed during ex-
traction, but not removed. In order to support safely the whole Coq system,
the new Coq extraction may indeed have to leave such remnants instead
of removing them completely. The justification of this fact and the precise
implementation of the constant __ can be found in [17]. Otherwise, in a first
approximation, one may see __ as arbitrary code, for instance the unit value
(). In fact, lots of these remnants generated by extraction are simplified
during an optimization phase. For instance, (fun _ → t) __ becomes t.
But in the above code, such a local optimization is not enough: simplifying
the logical remnants would mean changing the semantics of the second ar-
gument of two. This may be done, but is not supported yet by the current
extraction. By doing it, we would meet Berger’s version for two:

let rec two t h =
match t with
| Iota → fun k → h k
| Arrow (t1, t2) → fun x → two t2 (h x)

– In fact, for this particular example of lemma two, there is a last refinement
proposed by Berger. By looking closely at this function, we can see recur-
sively that every call (two t h) is in fact extensionally equivalent to the
second argument h. This function two is in fact the identity! However, tak-
ing advantage of this fact is currently out of the reach of Coq’s extraction
mechanism, which normally produces extracted terms that are faithful to
the structure of the original term. Normally, the only difference between the
original and extracted code is the pruning of logical parts, and a term built
by induction like two will give a recursive function. The extraction includes
a few optimizations that are able to modify locally the structure of the ex-
tracted code, for instance if all branches of a match are equal, but these
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optimizations cannot help here. In minlog, the identity function and lemma
two can be related via the internal realizability and some axioms, but this
approach cannot be followed in Coq.

We have finally made some tests for measuring the efficiency of the obtained
codes. The benchmark chosen was the computation of exponential by applying
a church numeral to another one, hence generating several β-reductions. As a
rough estimate, the speed gain induced by the nc version is at least 40%, whereas
the needed memory is reduced by at least 20%. But these figures may vary signif-
icantly according to the particular computation asked. For instance, computing
220 takes only 20.2s and 147Mo instead of 28.3s and 187Mo on a 1.8Ghz Pentium
4, which is close to the mentioned 40% and 20% ratios. But computing 304 shows
a much wider gap: 11.2s and 80Mo instead of 19.3s and 249Mo, hence 70% and
3x ratios! Smaller computations can even show 2x speed-up, but in a general way
speed-up tends to decrease slightly when computations become larger. Finally,
we have also compared with a third version, the ideal one described in the pre-
vious paragraph, obtained by manual modification of the nc version. Compared
with purely extracted nc version, the speed-up is around 50%, with a a new
20% memory decrease. Using nc and the current extraction of Coq hence does
not generate perfect code, but it clearly improves the situation compared with
normal extraction.

5.4 Typing issues

In this paragraph unrelated with nc we describe briefly the role of Obj.magic in
the extracted code. As we have already seen, the dependent predicate SC may
either be the SN type or an arrow type. Hence it cannot be translated directly
to a normal ML type. Our solution is to approximate it using an arbitrary type.
Indeed, on the execution level, it is not an error to consider objects of “type”
SC that can be either functions or not, since the Coq original typing prevent
for example non-function to be applied. The extraction automatically detects
the typing conflicts at the ML level and insert unsafe type coercions Obj.magic
to force Ocaml compiler to accept this untyped but correct function. A more
detailed description of this mechanism can be found in [17]. Another solution
would be to use an encoding via a ML sum type:

type SC = SC_Iota of SN | SC_Arrow of SC → SC

But then every use of SC objects should be adapted with constructors and de-
constructors of this type. Indeed, this solution leads to ML-typable code, but
this is at the cost of additional operations that are useless from the operational
point of view. In addition, there are similar but more complex situations in Coq
where such a typable encoding is not available. Hence the extraction sticks to
the untyped version, using the Obj.magic trick to please the Ocaml compiler.
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6 Prop and the monad nc

In this section we use the observation that nc is a monad to highlight a similarity
between the Coq type theory and two different type theoretical interpretations
of constructive mathematics. Two common interpretations are the propositions
as types interpretation and the proposition as squash-types6 interpretation. The
latter one is used for instance in topos theory, see [5]. In both of these interpre-
tations the propositions are the types stable under a monad, or modal operator.
In the former case it is the identity monad, in the latter the squash-monad.
Such monadic structure can also be used for the j-reinterpretations, of which
the double negation translation and the A-translations are examples, we elabo-
rate on this in the conclusions. Here we show that the Coq type theory has such
a monadic structure.

6.1 Lax predicate logic

A nice way of understanding monads is through the connection with lax modal
logic, see [23]. There is a precise Curry-Howard correspondence between in-
tuitionistic propositional logic with a modal operator, Moggi’s computational
lambda calculus and CL-models. In fact, there is a three-way correspondence
between term calculus, categorical models and logic [7].

Definition 1. A CL-model is a CCC with finite co-products and a strong monad.

Theorem 1. [Moggi] CL-models provide a sound and complete interpretation
of the computational lambda calculus.

There is a similar connection [13] between lax natural deduction proofs and
λΣΠ

c , a variant of the computational lambda calculus where one adds first-order
sums and products. Note that in λΣΠ

c the domain of quantification is untyped.
We will now discuss lax logic a bit further. We shall denote the lax modal

operator ◦. We have the following axioms:

1. U : a → ◦a;
2. J : ◦ ◦ a → ◦a;
3. M : (a → b) → (◦a → ◦b);
4. St : a ∧ ◦b → ◦(a ∧ b).

The first three (unit, join and map) say that ◦ is a monad, the last one that it
is strong. As a direct consequence of 1, we have > → ◦>, that is ◦> is valid.

Under quite general hypotheses on logic supporting the lax-modality, one can
show that monads are strong monads [22]. Indeed, in our type theoretic context
this is the case:
6 A squash operator is an operator, denoted [ ], on types which identifies all its objects.

That is, a=b, whenever a,b:[A]. Such an operator exists in extensional type theories
with quotient types, but not in the Coq type theory.
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Definition Str:= fun (A B : Type) (X : A ** T B) ⇒
let b’ := sndT X in Unit (pairT (fstT X) b’).

and we have defined a functor producing a strong monad from a given monad.
We copy some results from Bell [6] to our context. They are readily checked

in Coq.

Lemma 1. For any (strong) lax modality ◦:

1. (a → ◦b) → (◦a → ◦b); and conversely (which is trivial).
2. ◦(a ∧ b) → (◦a ∧ ◦b);
3. (◦a ∧ ◦b) → ◦(a ∧ b);
4. ◦(a → b) → (◦a → ◦b);
5. ◦(a → ◦b) → (a → ◦b);
6. ∃x. ◦ a → ◦∃x.a;
7. ◦∀x.a → ∀x. ◦ a.

Note that it is impossible to prove in general that ◦⊥ → ⊥. (Take ◦A := > for
a counterexample.) When this holds the modality is called a strict lax modality.

Although the bi-implications (a → ◦b) ↔ (◦a → ◦b) and (◦a∧◦b) ↔ ◦(a∧ b)
hold, they are not isomorphisms in the computational type theory; for instance
consider the option monad A 7→ A ∨ >.

Finally, one can prove that the computational lambda calculus with the fol-
lowing reductions is strongly normalizing [7]:

◦.ass let z ⇐ ( let y ⇐ p in q ) in r = let y ⇐ p in ( let z ⇐ q in r )
◦.β let z ⇐ val y in p = p[z := y]
◦.η let z ⇐ y in val z = y

In other words, reading unit for val and bind for the let construction, we see
that the tactic in section 3 which rewrites with Associative, Rightunit and
Leftunit is strongly normalizing.

6.2 Prop as nc-stable types

Finally, we now come to the connection of lax logic with the Coq type theory. The
sort Prop is closed under products — that is, ∀b:B, A has type Prop, whenever
A:Prop and B:Type. Consequently, Prop is also closed under non-dependent
products, A→B and binary products A∧B. It is not difficult to define:

Definition prop_stable : ∀A:Prop, nc A → A.
Definition prop_stable2 : ∀A:Type, A → nc A.

and prove that those maps are inverses of each other. That is, Prop is the universe
of types stable under the monad nc. Remark that to define the composition of
the maps above we used that Prop is a subtype of Type. It is not a subtype of
Set. This also explains our choice in section 3 to define nc as a map from Type
to Prop, and not only from Set to Prop.

There is a clear similarity between Prop and the class of Harrop formulas
and the following Theorem, see Lemma 1.
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Definition 2. A formula A is called ◦-stable if ◦A ↔ A, or, equivalently,
◦A → A. The class of Harrop formulas is defined inductively as follows: atomic
formulas are Harrop, when A and B are Harrop, then so are A ∧ B, ∀xA and
C → A.

Theorem 2. Suppose that the atomic formulas are stable under ◦, then all Har-
rop formulas are ◦-stable.

This theorem suggests that we think of Prop as the sort of types stable
under a given lax modal operator, it should however be noted that the empty
and singleton elimination in the Coq logic do not hold in a generic lax logic. The
folklore interpretation of Prop as either the class of proof-irrelevant types or as
the class of double-negated formulas can both be derived from this: the former is
the squash operator ◦A := [A] in extensional type theory, which we will discuss
later, the latter is the operator ◦A := ¬¬A.

7 Conclusions

We have presented a lightweight treatment of implicit arguments for program
extraction using the present Coq type theory. With the use of an axiom we
showed how one can implement Berger’s non-computational quanitfiers in Coq.
Finally, we also provided a new view on the Coq type theory by making a
connection with lax modal logic.

As a substitute for non-computational quantifiers the use of nc is likely to be
a short-term solution to provide more flexible extractions in Coq. In addition to
the induced changes in proofs, this solution must indeed be used with caution,
due to the need for a proof-relevance axiom. A more satisfactory solution would
be to directly integrate the nc distinction at the extraction level like in minlog.
In Coq, this nc criterion could certainly be used as a complement of the current
Prop/Set criterion. Then some additional verifications should be added, either
in the Coq kernel or inside the extraction mechanism, to ensure that a nc-tagged
object is not used in a constructive place.

The relation between lax modal logic and proof irrelevance seems to have
appeared first, although not yet entirely explicit, in [26][27]. This work was a
starting point for [5] which studies squash types in an extensional setting. Squash
types [19] are also called bracket types [5], or mono types [21]. Awodey and Bauer
note that in their extensional setting [ ] is a monad.

Since the squash type is closely related to nc, it is not impossible that our
treatment of ‘implicit’ arguments also works in the context of the Prl proof
assitants. See [3] for a treatment of squash-types in NuPrl. The present theory
of non-computational quantifiers clearly will not work in that context, because
[ ] is proof-irrelevant, thus contradicting our axiom of proof-relevance.

Many of the translations in proof theory may be seen as lax modal opera-
tors. Examples are: the double negation translation, the A-translation, etc, see [1]
for an overview. Aczel and Gambino [2] describe a logic-enriched type theory in
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which one can accomodate the so-called j-reinterpretations. It would be interest-
ing to see to what extend it is possible to use the present view of Propas the sort
of types which are stable under a lax-modality to give a more type-theoretical
account of such reinterpretations. It would also be interesting the explore the
connections with minimal type theory [18] which like logic-enriched type theory
separates propositions from types, but has a more type theoretic flavour.

Finally, given the success in section 5 it would be interesting to see how
the current technique can be used in the extraction of programs from other large
proof developments [12][11]. This technique may possibly also be used to improve
the new Coq evaluator, which currently always computes in Prop terms.
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