
HAL Id: hal-00150886
https://hal.science/hal-00150886

Submitted on 3 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lambda-Z: Zermelo’s Set Theory as a PTS with 4 Sorts
Alexandre Miquel

To cite this version:
Alexandre Miquel. Lambda-Z: Zermelo’s Set Theory as a PTS with 4 Sorts. TYPES’04, 2006, Jouy-
en-Josas, France. pp.232-251. �hal-00150886�

https://hal.science/hal-00150886
https://hal.archives-ouvertes.fr

λZ: Zermelo’s Set Theory
as a PTS with 4 Sorts

Alexandre Miquel

PPS & Université Paris 7
175 rue du Chevaleret, 75013 Paris

Abstract. We introduce a pure type system (PTS) λZ with four sorts
and show that this PTS captures the proof-theoretic strength of Zer-
melo’s set theory. For that, we show that the embedding of the language
of set theory into λZ via the ‘sets as pointed graphs’ translation makes
λZ a conservative extension of IZ + AFA + TC (intuitionistic Zermelo’s
set theory plus Aczel’s antifoundation axiom plus the axiom of transitive
closure)—a theory which is equiconsistent to Zermelo’s. The proof of con-
servativity is achieved by defining a retraction from λZ to a (skolemised
version of) Zermelo’s set theory and by showing that both transforma-
tions commute via the axioms AFA and TC.

Introduction

Modern proof assistants based on the Curry Howard correspondence—such as
Agda, Coq, Nuprl or Plastic—basically implement a well-known pure type sys-
tem [7, 3] (PTS) enriched with many extensions such as inductive data-types
and recursive definitions of functions. Traditionally, the proof-theoretic strength
of the implemented formalisms is estimated via the sets-in-types and types-in-
sets encodings [13, 2], that respectively give a lower and an upper bound of the
proof-theoretic strength of the system, expressed as a variant of set theory.

Surprisingly, very little is known about the proof-theoretic strength of the
underlying PTSs themselves. The main reason is that the framework of PTSs
lacks the inductive data-types that are crucial in the definition of the traditional
sets-in-types encoding based on Aczel’s W -trees. Another reason is that there
is currently no simple set-theoretic interpretation of type-theoretic universes
that does not rely on the existence of large cardinals—an assumption which is
definitely too strong to give a reasonable upper bound of a PTS.

The aim of this paper is to initiate a more systematic study of the proof-
theoretic strength of the subsystems of the Calculus of Constructions with uni-
verses (CCω) following the correspondence with extensions of Zermelo’s set the-
ory that was outlined in the author’s thesis [11]. In this direction, we present
a first result by extracting a sub-PTS of the Calculus of Constructions with
universes—the system λZ presented in section 1—that captures the proof-the-
oretic strength of Zermelo’s set theory (without the Foundation Axiom). More-
over, we show that through the sets-as-pointed-graphs encoding (which is re-
called in section 3) the PTS λZ appears to be a conservative extension of a

very natural extension of Intuitionistic Zermelo’s set theory, namely, the system
IZ + AFA + TC whose classical version as been already considered in [5], and
which is clearly equiconsistent to Z.

Finally, let us mention that the crucial ingredient of the equiconsistency
proof presented in this paper does not come from the type-theoretic side, but
from the set-theoretic side. As we shall see in section 2, introducing an explic-
itly Skolemised version of Zermelo’s set theory reveals some unexpected closure
properties of this system that are fruitfully exploited in the definition of the
types-in-sets interpretation presented in section 4.

1 The PTS λZ

In this section, we assume the reader has some familiarity with the theory of
PTS (see [7, 3]).

1.1 The PTS presentation

Definition 1 (λZ). — λZ is the PTS whose set of sorts S , whose set of axioms
A ⊂ S 2 and whose set of rules R ⊂ S 3 are given by

S = {∗; 21; 22; 23} ,
A = {(∗ : 21); (21 : 22); (22 : 23)} ,
R = {(∗, ∗, ∗); (2i, ∗, ∗) | i ∈ {1, 2, 3}} ∪ {(2i,2j ,2max(i,j)) | i, j ∈ {1, 2}} .

By construction, the PTS λZ is a sub-system of the calculus of constructions
with universes (CCω), and actually, a subsystem of system Fω with universes
(Fω2, the non-dependent fragment of CCω) which is the PTS defined by:

SFω2 = {∗; 2i | i ≥ 1} ,
AFω2 = {(∗ : 20); (2i : 2i+1) | i ≥ 1} ,
RFω2 = {(∗, ∗, ∗); (2i, ∗, ∗); (2i,2j ,2max(i,j)) | i, j ≥ 1} .

Moreover, if we write Fω.n (for n ≥ 1) the PTS obtained by restricting Fω2 to
the set of sorts {∗; 2i | 1 ≤ i ≤ n}, then we have the inclusions:

Fω.2 ⊂ λZ ⊂ Fω.3 ⊂ · · · ⊂ Fω2 ⊂ CCω

Intuitively, the PTS λZ extends Fω.2 with a sort 23, an axiom 22 : 23 and a
unique rule (23, ∗, ∗), whereas Fω.3 completes the extension by adding all the
‘missing rules’ (23,2i,23) and (2i,23,23) for i ∈ {1; 2; 3}.

As for any PTS, λZ enjoys many good properties, such as substitutivity
and subject-reduction [7] as well as the property of uniqueness of types up to
β-conversion (since λZ is a functional PTS).

From the inclusions λZ ⊂ Fω2 ⊂ CCω we immediately get [9, 10]:

Fact 1 (Strong normalisation) — All the well-typed term of λZ are strongly
normalisable terms.

It is important to notice that this result will not be used in the following, for
that the conservativity result we will present purely relies on syntactic codings
(that involve straightforward conversion steps on the type-theoretic side). On
the other hand, using the normalisation result above—which seems to require
much more proof-theoretic strength than the consistency of Zermelo’s1—would
dramatically weaken the interest of our relative consistency proof.

1.2 Stratified presentation of Fω2

As for the systems of Barendregt’s cube, the PTS Fω2 (and its subsystems) can
be given a stratified presentation which syntactically distinguishes the terms
whose type has type 2i—that represent mathematical objects—from the terms
whose type has type ∗—that represent mathematical proofs.

Formally, we say that in a given context Γ , a term M of type T is an object
term if Γ ` T : 2i for some i ≥ 1, and a proof term if Γ ` T : ∗. Notice that
propositions—that is, terms of type ∗—are a special case of object terms. In the
rest of this presentation, we use capital letters M,N, T, U,A,B, etc. to denote
object terms (and more specifically: T,U for types and A,B for propositions)
whereas lowercase letters t, u, etc. are reserved for proof terms.

Dependent and non-dependent products are stratified according to their for-
mation rule as follows:

– Non-dependent products formed according to the rule (∗, ∗, ∗), which express
logical implication, are written A⇒ B. Notice that non-dependent products
are the only products that can be formed by this rule, since λZ is a non-
dependent logical PTS (following the terminology of [4]).

– Dependent products formed according to the rule (2i, ∗, ∗), which express
universal quantification, are written ∀x :T .A.

– Dependent products formed according to the rule (2i,2i,2i), which express
dependent function spaces, are still written Πx :T .U (or simply T → U in
the non-dependent case, when x /∈ FV (U)).

The stratified presentation of system Fω2 is given in table 1, and the corre-
sponding (stratified) typing rules are recalled in table 2.

Proposition 1 (Stratification equivalence). — The well-typed terms of sys-
tem Fω2 are exactly the object terms and proof terms that can be expressed in
the syntax given in table 1 and type-checked using the rules of table 2.

1 We conjecture that the (strong) normalisation of λZ has the same proof-theoretic
strength as (the consistency of) IZ plus one Zermelo-universe. This has to be com-
pared to the formalisms CC and Fω, whose strong normalisation properties have ex-
actly the same proof-theoretic strength as higher-order arithmetic (HAω) but whose
consistency can be proved within Heyting arithmetic (HA).

Object terms M,N, T, U,A,B ::= x | λx :T .M | MN
| Πx :T .U | ∗ | 2i (i ≥ 1)
| A⇒ B | ∀x :T .A

Proof terms t, u ::= ξ
| λξA. t | tu
| λx :T . t | tM

Table 1. The stratified presentation of Fω2

Context formation

[] `
Γ ` T : 2i

Γ, x : T `
Γ ` A : ∗
Γ, ξ : A `

Object terms

Γ `
Γ ` x : T

(x:T)∈Γ
Γ `

Γ ` ∗ : 21

Γ `
Γ ` 2i : 2i+1

Γ ` Πx :T .U : 2i Γ, x : T ` M : U

Γ ` λx :T .M : Πx :T .U
Γ ` M : Πx :T .U Γ ` N : T

Γ ` MN : U{x := N}

Γ ` A : ∗ Γ ` B : ∗
Γ ` A⇒ B : ∗

Γ, x : T ` A : ∗
Γ ` ∀x :T .A : ∗

Γ ` T : 2i Γ, x : T ` U : 2j

Γ ` Πx :T .U : 2max(i,j)

Γ ` M : T Γ ` T ′ : 2i

Γ ` M : T ′ T ′=βT

Proof terms

Γ `
Γ ` ξ : A

(ξ:T)∈Γ
Γ ` t : A Γ ` A′ : ∗

Γ ` t : A′ A′=βA

Γ, ξ : A ` t : B

Γ ` λξ :A . t : A⇒ B
Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

Γ, x : T ` t : A

Γ ` λx :T . t : ∀x :T .A
Γ ` t : ∀x :T .A Γ ` N : T

Γ ` tN : A{x := N}

Table 2. Typing rules of Fω2

1.3 The stratified presentation of λZ

In the stratified setting, system λZ naturally appears as the subsystem of Fω2

which is obtained:

– By restricting the set of sorts to the initial segment S = {∗; 21; 22; 23}
of SFω2 and the set A of axioms accordingly.

– By restricting the formation rule of dependent function spaces to the rules
of the form (2i,2j ,2max(i,j)) for i, j ∈ {1; 2}.

On the other hand, system λZ does not further restrict the rules (2i, ∗, ∗) that
are responsible for the formation of universal quantification ∀x :T .A, and that
can be used at any index i ∈ {1; 2; 3}.

To understand the structure of λZ, let us explain the meaning of each uni-
verse 2i (for i ∈ {1; 2; 3}) and of each formation rule (2i, ∗, ∗) in terms of the
notions they will correspond to via our translation to set theory:

1. The first universe 21—that contains no provably infinite data-type2—has
to be thought as the universe of finite data-types. Technically, the presence
of a first universe below the universe 22 of sets (see below) is needed to
justify the existence of a provably infinite data-type in 22, and plays the
very same role as the axiom of infinity in set theory. In particular, universal
quantifications ∀x :T .A(x) formed by the rule (21, ∗, ∗) roughly correspond
to finite quantifications ∀x< t A(x) (where t ∈ ω) in set theory.

2. The universe 22 has to be thought as the universe of sets, or, more precisely,
as the universe of the carriers of the pointed graphs that we will use to
represent sets. Thus, universal quantifications ∀x :T .A(x) formed by the
rule (22, ∗, ∗) correspond to bounded quantifications ∀x∈t A(x) in set theory.

3. The sort 23 is a top sort whose only inhabitant is the universe 22—which is
due to the absence of formation rules of the form (s1, s2,23). Technically this
sort is needed to type-check the construction ∀x :22 . A(x)—the only form
of universal quantification induced by the rule (23, ∗, ∗)—that corresponds
to the unbounded quantification ∀x A(x) in set theory.

The aim of this paper is to formalise the correspondence depicted above to turn
it into a result of proof-theoretic equivalence.

2 Zermelo’s set theory

2.1 The core language

Zermelo’s set theory (Z) is the classical first-order theory whose language is built
from the two binary relations x = y (equality) and x ∈ y (membership)

Formulæ φ, ψ ::= > | ⊥ | x = y | x ∈ y
| φ ∧ ψ | φ ∨ ψ | φ⇒ ψ | ∀x ψ | ∃x ψ

2 This will be a consequence of the soundness of the translation ()† defined in section 4.

and whose axioms are given in table 3, using the following shorthands:

¬φ ≡ φ⇒ ⊥ φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)
x /∈ y ≡ ¬(x ∈ y) x ⊂ y ≡ ∀z (z ∈ x⇒ z ∈ y)
Zero(x) ≡ ∀z (z /∈ x) Succ(x, y) ≡ ∀z [z ∈ y ⇔ z ∈ x ∨ z = x]

Nat(n) ≡ ∀a [∀x (Zero(x) ⇒ x ∈ a) ∧
∀x ∀y (x ∈ a ∧ Succ(x, y) ⇒ y ∈ a) ⇒ n ∈ a]

(Notice that in this presentation of Z, there is no Axiom of Foundation.)

Equality axioms

(Reflexivity) ∀x (x = x)

(Symmetry) ∀x ∀y (x = y ⇒ y = x)

(Transitivity) ∀x ∀y ∀z (x = y ∧ y = z ⇒ x = z)

(Mem-Compat-L) ∀x ∀y ∀z (x = y ∧ y ∈ z ⇒ x ∈ z)

(Mem-Compat-R) ∀x ∀y ∀z (x ∈ y ∧ y = z ⇒ x ∈ z)

Zermelo’s axioms

(Extensionality) ∀a ∀b [∀x (x ∈ a⇔ x ∈ b) ⇒ a = b]

(Pairing) ∀a1 ∀a2 ∃b ∀x [x ∈ b ⇔ x = a1 ∨ x = a2]

(Comprehension) ∀x1 · · · ∀xn ∀a ∃b ∀x [x ∈ b ⇔ x ∈ a ∧ φ]

for any formula φ such that FV (φ) ⊂ {x1; . . . ;xn;x}.

(Powerset) ∀a ∃b ∀x [x ∈ b ⇔ x ⊂ a]

(Union) ∀a ∃b ∀x [x ∈ b ⇔ ∃y (y ∈ a ∧ x ∈ y)]

(Infinity) ∃a ∀x [x ∈ a ⇔ Nat(x)]

Table 3. Axioms of Zermelo’s set theory

Intuitionistic Zermelo’s set theory (IZ) is the theory based on the same lan-
guage and axioms as Z, but in which reasoning is done in intuitionistic logic.
As shown by [6], there is a double negation translation which maps (classically)
provable formulæ of Z to (intuitionistically) provable formulæ of IZ, so that both
theories IZ and Z are actually equiconsistent.

In what follows, we will mainly work in IZ.

2.2 Skolemising Z

The main drawback of the traditional presentation of set theory is the lack of
notations to express objects (i.e. sets). To define the ‘retraction’ of section 4,
we first need to enrich—in a conservative way—the term algebra of set theory
(that only contains variables) with notations to express the unordered pairs, the
powersets, the unions, the set of natural numbers and all the sets defined by
using the comprehension scheme.

Formally, we introduce a system called Zsk, whose terms and formulæ are
mutually defined by:

Terms

Formulæ

t, u ::= x | ω | {t1; t2} | P(t) |
⋃
t | {x ∈ t | φ}

φ, ψ ::= t = u | t ∈ u | > | ⊥
| φ ∧ ψ | φ ∨ ψ | φ⇒ ψ | ∀x φ | ∃x φ

(Free and bound occurrences of variables are defined as expected, keeping in mind
that the construction {x ∈ t | φ} binds all the free occurrences of the variable x
in φ, but none of the free occurrences of x in t. The notions of substitutions
t{x := u} and A{x := u} are defined accordingly.)

Although Zsk is not based on a first-order language, the underlying notions
of sequent, inference rule and derivation are defined as in first-order theories.
The axioms of Zsk are the same as in Z, except that the existential axioms of
Zermelo’s system (table 3) are replaced by their Skolemized forms (table 4).

The intuitionistic fragment of Zsk is written IZsk.

(Pairingsk) ∀a1 ∀a2 ∀x [x ∈ {a1; a2} ⇔ x = a1 ∨ x = a2]

(Comprehensionsk) ∀x1 · · · ∀xn ∀a ∀x [x ∈ {z ∈ a | φ} ⇔ x ∈ a ∧ φ{z := x}]
for any formula φ such that FV (φ) ⊂ {x1; . . . ;xn; z}.

(Powersetsk) ∀a ∀x [x ∈ P(a) ⇔ x ⊂ a]

(Unionsk) ∀a ∀x [x ∈
S
a ⇔ ∃y (y ∈ a ∧ x ∈ y)]

(Infinitysk) ∀x [x ∈ ω ⇔ Nat(x)]

Table 4. Skolemised axioms of Zsk

The theory (I)Zsk is clearly an extension of (I)Z,3 in the sense that for any
formula φ of set theory, (I)Z ` φ entails (I)Zsk ` φ.

From the axioms of table 4, we easily check that the function symbols { ; },
P() and

⋃
are compatible with equality (in IZsk) as well as the construction

3 The shorthand (I)Z reads: “Z (resp. IZ)”. And similarly for (I)Zsk.

{x ∈ t | φ} in the sense that:

IZsk ` ∀x1 · · · ∀xn ∀a ∀a′ [a = a′ ⇒ {x ∈ a | φ} = {x ∈ a′ | φ}]
IZsk ` ∀x1 · · · ∀xn ∀a [∀x (φ⇔ φ′) ⇒ {x ∈ a | φ} = {x ∈ a | φ′}]

(for all formulæ φ, φ′ of Zsk such that FV (φ) ∪ FV (φ′) ⊂ {x1; . . . ;xn;x}), from
which we deduce that Leibniz principle holds, both for terms and formulæ:

Proposition 2 (Leibniz principle). — For any term t and for any formula φ
of the language of Zsk:

IZsk ` x1 = x2 ⇒ t{x := x1} = t{x := x2}
IZsk ` x1 = x2 ⇒ φ{x := x1} ⇔ φ{x := x2}

Proof. This result is proved by mutual induction on t and φ. ut

In Zsk (and, actually, in IZsk), most standard mathematical notations such
as ∅ (empty set), x ∪ y (union), x ∩ y (intersection), x \ y (difference), f(x)
(function application), 〈x, y〉 (ordered pair), BA (function space), etc. are easily
definable as macros in the enriched term algebra.

We now have to ensure that (I)Zsk is a conservative extension of (I)Z.

2.3 The deskolemisation procedure

The proof of conservativity of (I)Zsk w.r.t. (I)Z relies on a deskolemisation pro-
cedure that is achieved by two transformations:

– A transformation on terms, which maps each pair (t, z) formed by a term t
of Zsk and a variable z to a formula of set theory written z ∈◦ t;4

– A transformation on formulæ, which maps each formula φ of Zsk to a formula
of set theory written φ◦.

Both transformations are defined by mutual induction on t and φ from the de-
skolemisation equations given in table 5.

This process of deskolemisation preserves the meaning of terms and formulæ
in IZsk in the sense that:

Proposition 3 (Translation equivalence). — For all terms t and formulæ φ
of the language of Zsk, one has:

IZsk ` (z ∈◦ t) ⇔ z ∈ t and IZsk ` φ◦ ⇔ φ

Moreover, if φ is expressed in the core language (=, ∈) of set theory, then:

IZ ` φ◦ ⇔ φ .

4 Notice the conceptual similarity between the design of the deskolemisation procedure
for terms (z ∈◦ t) and the notions of realisability and forcing (t
 φ).

z ∈◦ x ≡ z ∈ x
z ∈◦ ω ≡ Nat(z)
z ∈◦ {t1; t2} ≡ (z = t1)

◦ ∨ (z = t2)
◦

z ∈◦ P(t) ≡ ∀x (x ∈ z ⇒ x ∈◦ t)
z ∈◦ S

t ≡ ∃y (y ∈◦ t ∧ z ∈ y)
z ∈◦ {x ∈ t | φ} ≡ z ∈◦ t ∧ φ◦{x := z}

(t = u)◦ ≡ ∀z (z ∈◦ t⇔ z ∈◦ u)
(t ∈ u)◦ ≡ ∃z ((z = t)◦ ∧ z ∈◦ u)

>◦ ≡ >
⊥◦ ≡ ⊥

(φ ∧ ψ)◦ ≡ φ◦ ∧ ψ◦

(φ ∨ ψ)◦ ≡ φ◦ ∨ ψ◦

(φ⇒ ψ)◦ ≡ φ◦ ⇒ ψ◦

(∀x φ)◦ ≡ ∀x φ◦
(∃x φ)◦ ≡ ∃x φ◦

Table 5. Deskolemisation equations for terms and formulæ of Zsk

Proof. The first two items are proved by mutual induction on t and φ. Last item
is proved by induction on φ. ut

Furthermore, we can show:

Proposition 4 (Soundness of deskolemisation). — If a closed formula φ

is a theorem of (I)Zsk, then φ◦ is a theorem of (I)Z.

From Prop. 3 (last equivalence) and Prop. 4 we easily deduce:

Proposition 5 (Conservativity). — The theory (I)Zsk is a conservative ex-
tension of (I)Z.

Proof. See appendix A.

2.4 A weak form of replacement in Zermelo’s system

Historically, one of the motivations of Fraenkel and Skolem to introduce the
replacement scheme in set theory

(Replacement) ∀a [∀x∈a ∃!y φ(x, y) ⇒ ∃b ∀x∈a ∃y∈b φ(x, y)]

(which fills the gap between Z and ZF) was to justify the notation {t(x) | x ∈ u}
which expresses the image of the set u by the functional relation x 7→ t(x).

Surprisingly, the study of Zsk reveals that the justification of the notation
{t(x) | x ∈ u} does not need any extension of Zermelo’s system when the term
t(x) is expressed in the term language of Zsk.

The reason is that for any term u of Zsk and for any term t(x) of Zsk that
possibly depends on a variable x, we can define a term written B(t(x), x ∈ u)

which uniformly bounds t(x) when x ranges over u. Formally, such a term can
be defined by structural induction on t(x) as follows:

B(x, x ∈ u) = u
B(y, x ∈ u) = P(y) (if y 6≡ x)
B(ω, x ∈ u) = P(ω)
B({t1; t2}, x ∈ u) = P

(
B(t1, x ∈ u) ∪ B(t2, x ∈ u)

)
B(P(t), x ∈ u) = P(P(

⋃
B(t, x ∈ u)))

B(
⋃
t, x ∈ u) = P(

⋃ ⋃
B(t, x ∈ u))

B({y ∈ t | φ}, x ∈ u) = P(
⋃

B(t, x ∈ u))

Lemma 1. — For all terms t(x) and u of Zsk such that x /∈ FV (u):

IZsk ` ∀x [x ∈ u⇒ t(x) ∈ B(t(x), x ∈ u)] .

Proof. By induction on t(x). ut

Setting {t(x) | x ∈ u} ≡ {y ∈ B(t(x), x ∈ u) | ∃x (x ∈ u∧ y = t(x))} we
easily check that:

Proposition 6. — For all terms t and u such that x /∈ FV (u) and y /∈ FV (t):

IZsk ` ∀y [y ∈ {t | x ∈ u} ⇔ ∃x (x ∈ u ∧ y = t)] .

An important consequence of this result is that we can now define in the
language of Zsk both the notation for function abstraction and the notation for
generalised Cartesian product that are crucial ingredients for any translation of
type theory in set theory:

λx∈ t . u(x) ≡
{
〈x, u(x)〉 | x ∈ t

}
∏

x∈t u(x) ≡
{
f ∈

(⋃
{u(x) | x ∈ t}

)t | ∀x (x ∈ t⇒ f(x) ∈ u(x))
}

(Remember that these notations are not macros, but that they denote the result
of complex transformations in the term language of Zsk.)

3 Sets as pointed graphs

In this section, we present the translation ()∗ of IZ into λZ using the representa-
tion of sets as pointed graphs [1]. This translation is basically the one presented
by the author in [11, 12], except that:

– The target formalism λZ is slightly weaker than the formalism (i.e. Fω.3) in
which this translation was originally presented.

– We also prove the soundness of two additional axioms that are crucial to
achieve the conservativity result (theorem 2) of section 4, namely: the anti-
foundation axiom (AFA) and the axiom of the transitive closure (TC).

Before defining the translation, let us first recall the basic notions of the
theory of pointed graphs (presented in set theory) that are needed to introduce
the axiom of anti-foundation.

3.1 Pointed graphs and anti-foundation

In set theory, a pointed graph is a triple 〈X,R, r〉 formed by an arbitrary set X
(the carrier) equipped with a binary relation R ⊂ (X ×X) (the edge relation)
and a distinguished element r ∈ X (the root).

Given a binary relation R (on any set), we say that a function φ (whose
domain is written Dφ) decorates R if for all x ∈ Dφ and for any set z, the relation
z ∈ φ(x) holds iff there exists x′ ∈ Dφ such that z = φ(x′) and 〈x′, x〉 ∈ R.
Finally, we say that a pointed graph 〈X,R, r〉 pictures a set x when there exists
a decoration φ of R such that r ∈ Dφ and φ(r) = x.

Formally, the relations PGraph(G) (‘G is a pointed graph’), Decor(φ,R) (‘the
function φ decorates R’) and Pict(G, x) (‘G pictures x’) are defined by:5

PGraph(G) ≡ ∃X ∃R ∃r [G = 〈X,R, r〉 ∧ R ⊂ (X ×X) ∧ r ∈ X]

Decor(φ,R) ≡ ∀x∈Dφ ∀z [z ∈ φ(x) ⇔ ∃x′∈Dφ (z = φ(x′) ∧ 〈x′, x〉 ∈ R)]

Pict(G, x) ≡ ∃X ∃R ∃r ∃φ [G = 〈X,R, r〉 ∧ function(φ) ∧
Decor(φ,R) ∧ r ∈ Dφ ∧ x = φ(r)]

In ZF, it is easy to show that any pointed graph G = 〈X,R, r〉 whose root r
is accessible6 w.r.t. the relation R pictures a unique set.7

In presence of the axiom of foundation [8], this result cannot be extended
further, for the relation Pict(〈X,R, r〉, x) automatically implies the accessibility
of the root r w.r.t. the relation R.

The axiom of anti-foundation (AFA) refutes the axiom of foundation by
extending the latter result of existence and uniqueness to all the pointed graphs:

(AFA) ∀G [PGraph(G) ⇒ ∃!x Pict(G, x)]

Notice that this axiom has two parts: the existence part that allows to build
arbitrarily non well-founded sets (for instance, a set x such that x = {x}), and
the uniqueness part that allows to prove equalities between non-wellfounded
sets (for instance, that any two sets x and y such that x = {x} and y = {y} are
equal).

3.2 The axiom of transitive closure

In ZF it is easy to associate to each set x a pointed graph 〈X,R, r〉 that pic-
tures x—a representation of x—simply by taking X = Cl({x}) the transitive
closure of the singleton {x}, R = {(y′, y) ∈ X | y′ ∈ y} and r = x.

5 Formally, these definitions are expressed in the language of Zsk, but in what follows
we will consider them as definitions expressed in the ordinary language of set theory,
implicitly using the deskolemisation procedure presented in section 2.

6 The accessibility predicate AccR(x) is inductively defined on X by the unique clause:
if AccR(y) for all y ∈ X such that 〈y, x〉 ∈ R, then AccR(x).

7 Actually, the proof does not rely on classical principles and can be done in IZFR

(intuitionistic ZF with replacement). In IZ, only the uniqueness is provable.

Unfortunately, the latter construction relies on the existence of a transitive
closure, which is not provable in Z [5]. For this reason, we consider the extension
of Zermelo’s system with the following axiom

(TC) ∀a ∃b [a ⊂ b ∧ ∀x (x ∈ b⇒ x ⊂ b)] .

that expresses that any set is included in a transitive set. From this axiom it is
easy to derive the expected representation property

(Repr) ∀x ∃G (PGraph(G) ∧ Pict(G, x))

using the construction described above.8

3.3 The translation of IZ into λZ

To each variable x of set theory we associate in λZ three object term variables
written x̄ (the carrier), x̃ (the relation) and ẋ (the root), with types

x̄ : 22, x̃ : x̄→ x̄→ ∗, ẋ : x̄ ,

that are intended to represent the set x as a pointed graph (x̄, x̃, ẋ) in λZ. We
also assume that for any pair x and y of distinct variables of set theory, the
variables x̄, x̃, ẋ, ȳ, ỹ and ẏ are pairwise distinct.

Given a finite set X of variables of set theory, we denote by ΓX the well-
formed context of λZ given by

ΓX =
⋃

x∈X

[x̄ : 22; x̃ : x̄→x̄→∗, ẋ : x̄]

(here, the union refers to a concatenation of contexts whose order is irrelevant).
Given two variables x and y of set theory, the relation x = y that expresses

the extensional equality of the sets x and y is interpreted in λZ as the bisimilarity
of the pointed graphs 〈x̄, x̃, ẋ〉 and 〈ȳ, ỹ, ẏ〉, namely, as the proposition written
〈x̄, x̃, ẋ〉 ≈ 〈ȳ, ỹ, ẏ〉 and defined by

(x̄, x̃, ẋ) ≈ (ȳ, ỹ, ẏ) ≡
∃r : (x̄→ȳ→∗) .

[R ẋ ẏ ∧
∀α, α′ : x̄ .∀β : ȳ .

(
x̃ α′ α ∧ r α β ⇒ ∃β′ : ȳ . (ỹ β′ β ∧ r α′ β′)

)
∧

∀β, β′ : ȳ .∀α : x̄ .
(
ỹ β′ β ∧ r α β ⇒ ∃α′ : x̄ . (x̃ α′ α ∧ r α′ β′)

)
]

To each formula φ of set theory we associate a proposition φ∗ of λZ by setting

(x = y)∗ ≡ (x̄, x̃, ẋ) ≈ (ȳ, ỹ, ẏ)
(x ∈ y)∗ ≡ ∃z : ȳ . (ỹ z ẏ ∧ (x̄, x̃, ẋ) ≈ (ȳ, ỹ, z))
(φ ∧ ψ)∗ ≡ φ∗ ∧ ψ∗ (>)∗ ≡ >
(φ ∨ ψ)∗ ≡ φ∗ ∨ ψ∗ (⊥)∗ ≡ ⊥

(φ⇒ ψ)∗ ≡ φ∗ ⇒ ψ∗

(∀x φ)∗ ≡ ∀x̄ :22 . ∀x̃ : (x̄→x̄→∗) . ∀ẋ : x̄ . φ∗

(∃x φ)∗ ≡ ∃x̄ :22 . ∃x̃ : (x̄→x̄→∗) . ∃ẋ : x̄ . φ∗

8 The proposition (Repr) is actually equivalent to (TC) in IZ + AFA.

It is easy to check that FV (φ∗) =
⋃

x∈FV (x){x̄; x̃; ẋ} and that ΓFV (φ) ` φ∗ : ∗.

Theorem 1 (Soundness). — For all formulæ φ of set theory such that IZ +
AFA + TC ` φ, there is a proof-term t such that ΓFV (φ) ` t : φ∗.

Proof. See appendix B.

4 Retracting λZ in Zsk + AFA

We now define a converse translation ()† from λZ to IZsk + AFA, using the
standard types-in-sets interpretation [13, 2]. Notice that here, we only need anti-
foundation (AFA) to justify the existence of the set HF of hereditarily finite sets
(a.k.a. Vω) [8], which is used to interpret the sort 21. 9

4.1 The translation M 7→ M†

Raw object terms of λZ (cf table 1) are translated into terms of Zsk as follows:

x† ≡ x
∗† ≡ P({•})
2
†
1 ≡ HF

22, 23 no translation
(Πx :T .U)† ≡

∏
x∈T † U†

(λx :T .M)† ≡ λx∈T † .M†

(MN)† ≡ M†(N†)
(A⇒ B)† ≡ {π ∈ {•} | • ∈ A† ⇒ • ∈ B†}
∀x :22 . A ≡ {π ∈ {•} | ∀x (• ∈ A†)}
∀x :T .A ≡ {π ∈ {•} | ∀x (x ∈ T † ⇒ • ∈ A†)}

This translation is partial, and associates no term to the sorts 22 and 23. (Notice
that FV (M†) = FV (M) whenever M† is defined.)

Propositions are interpreted in a proof-irrelevant way, as subsets of a single-
ton {•}, where • is any closed term of Zsk. We use here the standard trick by
which any (intuitionistic) formula φ of Zsk can be encoded as a subset φ̂ ⊂ {•}
by setting φ̂ = {π ∈ {•} | φ} whereas any subset p ⊂ {•} naturally decodes to
the formula • ∈ p. This correspondence between propositions and subsets of {•}
is one-to-one,10 in this sense that the equivalence φ⇔ (• ∈ φ̂) is provable in IZsk

(for all formulæ φ), as well as the implication p ⊂ {•} ⇒ (p = •̂ ∈ p).
Up to this coding trick, the different kinds of universal quantifications are

interpreted exactly as outlined in subsection 1.3. In particular, universal quan-
tifications of the form ∀x :22 are treated in a separate case, using unbounded
quantification of set theory.
9 Remember that the existence of the set HF of all hereditarily finite sets cannot be

justified in IZ ([8], p. 238, exercise 10). This is no more the case if we extend the
system with AFA, in which case HF can be reconstructed as the reification of a
universal (and denumerable) pointed graph whose root points to all the finite trees.

10 Classically, this is even more obvious since P({•}) = {∅; {•}}.

Contexts of λZ are translated as formulæ of Zsk as follows:

([])† ≡ >
(Γ ; x : 22)† ≡ Γ †

(Γ ; x : T)† ≡ Γ † ∧ (x ∈ T †) (if T 6≡ 22)
(Γ, ξ : A)† ≡ Γ † ∧ (• ∈ A†)

Notice that FV (Γ ∗) ⊂ FV (Γ). In particular, proof-term variables are system-
atically erased (as well as object term variables declared with type 22.)

Proposition 7 (Soundness). — For any derivable judgment of λZ of the form
Γ ` M : T where M and T are object terms such that T is neither 22 nor 23,
one has:

IZsk ` Γ † ⇒ M† ∈ T †

Proof. By induction on the derivation of Γ ` M : T .

Proposition 8 (Soundness). — For any derivable judgment of λZ of the form
Γ ` t : A where t is a proof-term and A and object term, one has:

IZsk ` Γ † ⇒ • ∈ A†

Proof. By induction on the derivation of Γ ` t : A.

Since the equality (Πx : ∗ . x)† = ∅ is easily provable in IZ, the latter propo-
sition implies that the translation M 7→M† transforms any inconsistency of λZ
(given as a closed proof-term of Πx : ∗ . x) into an inconsistency of IZ + AFA
(expressed as a proof of • ∈ ∅). Combining this with theorem 1 we get:

Proposition 9 (Equiconsistency). — The theories IZ + AFA + TC and λZ
are equiconsistent.

However, this result of equiconsistency can be refined as a result of conser-
vativity by studying the composition of the translations ()∗ and ()†.

4.2 Composing both translations

The translation ()∗ from IZ to λZ rephrases each formula of set theory in graph-
theoretic terms by replacing each variable x (of set theory) by three variables
x̄ : 22, x̃ : x̄→x̄→∗ and ẋ : x̄ that denote a pointed graph representing x.

Via the translation ()†, each type-theoretic pointed graph (X,R, r) becomes
in turn a set-theoretic pointed graph 〈X†, R†, r†〉, up to this (minor) difference
that the edge relation R† is not given as a subset of X†×X†, but as an element
of the function space X† → X† → P({•}) which is clearly isomorphic to the set
P(X†×X†) using the same coding trick as before. (For the sake of clarity, both
sets X → X → P({•}) and P(X ×X) will be identified in what follows.)

Consequently, the composition ()∗† of both translations is nothing but the
graph-theoretic rephrasing of non-well founded set theory into set theory itself.
Using the anti-foundation axiom AFA together with TC we easily close the
diagram as follows:

Proposition 10 (Composition). — Let φ be a formula of IZ with free vari-
ables x1, . . . , xn. If y1, . . . , yn are variables such that the variables x1, . . . , xn,
ȳ1, . . . , ȳn, ỹ1, . . . , ỹn and ẏ1, . . . , ẏn are pairwise distinct, then:

IZ + AFA + TC `
(n∧

i=1

Pict
(
(ȳi, ỹi, ẏi), xi

))
⇒ (φ ⇔ • ∈ φ{~x := ~y}∗†)

Proof. By induction on the formula φ. AFA and TC are used to treat the case
of atomic formulæ x = y and x ∈ y as well as quantifiers ∀x ψ and ∃x ψ. ut

When φ is a closed formula, the equivalence φ⇔ • ∈ φ∗† is thus provable in
IZ + AFA + TC. Consequently:

Theorem 2 (Conservativity). — Via the embedding φ 7→ φ∗, λZ is a con-
servative extension of IZ + AFA + TC.

References

1. P. Aczel. Non well-founded sets. Center for the Study of Language and Information,
1988.

2. Peter Aczel. On relating type theories and set theories. In Thorsten Altenkirch,
Wolfgang Naraschewski, and Bernhard Reus, editors, TYPES, volume 1657 of Lec-
ture Notes in Computer Science, pages 1–18. Springer, 1998.

3. Henk Barendregt and Herman Geuvers. Proof-assistants using dependent type
systems. In John Alan Robinson and Andrei Voronkov, editors, Handbook of Au-
tomated Reasoning, pages 1149–1238. Elsevier and MIT Press, 2001.

4. Thierry Coquand and Hugo Herbelin. A-translation and looping combinators in
pure type systems. Journal of Functional Programming, 4(1):77–88, 1994.

5. Olivier Esser and Roland Hinnion. Antifoundation and transitive closure in the
system of Zermelo. Notre Dame Journal of Formal Logic, 40(2):197–205, 1999.

6. H. Friedman. Some applications of Kleene’s methods for intuitionistic systems. In
Cambridge Summer School in Mathematical Logic, volume 337 of Springer Lecture
Notes in Mathematics, pages 113–170. Springer-Verlag, 1973.

7. J.H. Geuvers and M.J. Nederhof. A modular proof of strong normalization for the
calculus of constructions. In Journal of Functional Programming, volume 1,2(1991),
pages 155–189, 1991.

8. J.-L. Krivine. Théorie des ensembles. Cassini, 1998.
9. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford

University Press, 1994.
10. Paul-André Melliès and Benjamin Werner. A generic normalisation proof for pure

type systems. In Eduardo Giménez and Christine Paulin-Mohring, editors, TYPES,
volume 1512 of Lecture Notes in Computer Science, pages 254–276. Springer, 1996.

11. A. Miquel. Le calcul des constructions implicite: syntaxe et sémantique. PhD
thesis, Université Paris 7, 2001.

12. Alexandre Miquel. A strongly normalising Curry-Howard correspondence for IZF
set theory. In Matthias Baaz and Johann A. Makowsky, editors, CSL’03, volume
2803 of Lecture Notes in Computer Science, pages 441–454. Springer, 2003.

13. Benjamin Werner. Sets in types, types in sets. In Mart́ın Abadi and Takayasu Ito,
editors, TACS, volume 1281 of Lecture Notes in Computer Science, pages 530–346.
Springer, 1997.

A Soundness of deskolemisation (from IZsk to IZ)

The proof of the soundness of the deskolemisation procedure (Prop. 4) actually
involves several intermediate steps that we briefly sketch here.

Fact 2 — For all terms t and formulæ φ of the language of Zsk, one has
FV (z ∈◦ t) = FV (t) ∪ {z} and FV (φ◦) = FV (φ).

Proof. By mutual induction on t and φ. ut

To prove that the deskolemisation procedure transforms each theorem φ of
(I)Zsk into a theorem φ◦ of (I)Z, we first check that each term of the extended
language Zsk corresponds to a set whose existence can be proved in Z:

Lemma 2 (Collection). — For each term t of Zsk, one has:

IZ ` ∃x ∀z [z ∈ x⇔ z ∈◦ t] (x and z fresh)

Proof. By structural induction on t, using the corresponding existential axiom
of Zermelo’s system for each syntactic construct of the term algebra of Zsk. ut

Lemma 3. — For each axiom φ of Zsk, one has: IZ ` φ◦.

Notice that for all axioms φ of Zsk, the proof of φ◦ only relies on the equality
axioms and the axiom of extensionality. In the deskolemisation process, Zermelo’s
existential axioms actually play their role in the deduction rules that involve a
substitution, and whose translation relies on the following lemma:

Lemma 4 (Substitutivity). — For all formulæ φ and for all terms t and u
of Zsk one has the equivalences:

1. IZ ` y ∈◦ t{x := u} ⇔ ∃x [y ∈◦ t ∧ ∀z (z ∈ x⇔ z ∈◦ u)] (y 6≡ x)
2. IZ ` (φ{x := u})◦ ⇔ ∃x [φ◦ ∧ ∀z (z ∈ x⇔ z ∈◦ u)]

Proof. We first prove by mutual induction on t and φ that:

1. IZ ` ∀x [∀z (z ∈ x⇔ z ∈◦ u) ⇒ ∀z (z ∈◦ t{x := u} ⇔ z ∈◦ t)]
2. IZ ` ∀x [∀z (z ∈ x⇔ z ∈◦ u) ⇒ (φ{x := u}◦ ⇔ φ)]

We then conclude that the desired equivalences hold by using lemma 2, whose
proof relies on Zermelo’s existential axioms. ut

Lemma 5 (Deskolemisation of a derivation). — Let A be a formula and
Γ a list of formulæ both expressed in the language of Zsk. If Γ ` A is classically
(resp. intuitionistically) derivable, then there exists a list ∆ of axioms of Z such
that ∆,Γ ◦ ` A◦ is classically (resp. intuitionistically) derivable.

Proof. By induction on the derivation of Γ ` A. The only interesting cases
correspond to the rules ∀-elim and ∃-intro, whose translation rely on lemma 4.

ut

From lemmas 3 and 5 it is then clear that:

Proposition 11 (Soundness of deskolemisation). — If a closed formula φ
is a theorem of (I)Zsk, then φ◦ is a theorem of (I)Z.

B Soundness of the translation φ 7→ φ∗

The translation ()∗ from IZ (+AFA +TC) into λZ depicted in section 3 is ac-
tually a fragment of a translation of IZsk (+AFA +TC) into λZ, in which the
pointed graphs associated to sets are explicitly built from the terms of Zsk.

Formally, this translation maps

– Each variable x of set theory to three variables x̄, x̃ and ẋ of λZ, declared
(in this order) as follows: x̄ : 22, x̃ : x̄→ x̄→ ∗, ẋ : x̄.

– Each formula φ of the language of Zsk to a term φ of λZ of type ∗ in the
typing context associated to the free variables of φ.

– Each term t of the language of Zsk to three terms t∗̄ : 22, t∗̃ : t∗̄ → t∗̄ → ∗
and t∗̇ : t∗̄ of λZ (in the typing context associated to the free variables
of t) that respectively represent the carrier, the edge relation and the root
of the pointed graph that represents the set denoted by t in λZ.

B.1 Logic and data types

The formal definition of the translation relies on the usual second-order encod-
ings of connectives, existential quantifier and Leibniz equality in λZ:

⊥ ≡ ∀γ : ∗ . γ > ≡ ∀γ : ∗ . (γ ⇒ γ)
A ∧B ≡ ∀γ : ∗ . ((A⇒ B ⇒ γ) ⇒ γ)
A ∨B ≡ ∀γ : ∗ . ((A⇒ γ) ⇒ (B ⇒ γ) ⇒ γ)

∃x :T .A(x) ≡ ∀γ : ∗ . (∀x :T . (A(x) ⇒ γ) ⇒ γ)
x =T y ≡ ∀γ : (T → ∗) . (γ x⇒ γ y)

Given two types X,Y : 22 we define two data-types opt(X) : 22 (‘pseudo option
type’) and sum(X,Y) : 22 (‘pseudo union type’) as follows:

opt(X) : 22 ≡ (X → ∗) → ∗
some(X,x) : opt(X) ≡ λf : (X→∗) . f x (x : X)
none(X) : opt(X) ≡ λf : (X→∗) .⊥

sum(X,Y) : 22 ≡ (X → ∗) → (Y → ∗) → ∗
inl(X,Y, x) : sum(X,Y) ≡ λf : (X→∗) . λg : (Y→∗) . f x (x : X)
inr(X,Y, y) : sum(X,Y) ≡ λf : (X→∗) . λg : (Y→∗) . g y (y : Y)
out(X,Y) : sum(X,Y) ≡ λf : (X→∗) . λg : (Y→∗) .⊥

It can be shown [11] that the constructions some(X,x) and none(X) (for the data
type opt(X)) and the constructions inl(X,Y, x), inr(X,Y, y) and out(X,Y) (for
the data type sum(X,Y)) behave as constructors in the sense that they enjoy the
expected properties of injectivity and non-confusion. On the other hand, these
data types (that actually contain much more values than the ones introduced by
the constructors) have no associated elimination principle.

The type nat of Church numerals is easily constructed in 22 as shown below.
As usual, this definition is accompanied with a relativisation predicate wf nat(n)

which captures the induction strength. We also introduce the definition of large
and strict ordering on natural numbers:

nat ≡ ΠZ :21 . (Z → (Z → Z) → Z)
0 ≡ λZ :21 . λz :Z . λf : (Z→Z) . z
S(n) ≡ λZ :21 . λz :Z . λf : (Z→Z) . f (n Z z f)

n ≤ m ≡ ∀P : (nat→∗) . (P n ⇒ ∀z : nat . (P z ⇒ P S(z)) ⇒ P m)
n < m ≡ S(n) ≤ m wf nat(n) = 0 ≤ n

(assuming n,m : nat). This encoding is sound w.r.t. all principles of Heyting
arithmetic provided all quantifications on the type nat are relativised to the
class defined by the predicate wf nat.

B.2 Translation of terms and formulæ

The four transformations φ 7→ φ∗ (proposition), t 7→ t∗̄ (carrier), t 7→ t∗̃ (edge
relation) and t 7→ t∗̇ (root) are defined by mutual induction on φ and t.

Translation of formulæ The translation φ 7→ φ∗ is defined by:

(t = u)∗ ≡ (t∗̄, t∗̃, t∗̇) ≈ (u∗̄, u∗̃, u∗̇)
(t ∈ u)∗ ≡ ∃β :u∗̄ . (u∗̃ β u∗̇ ∧ (t∗̄, t∗̃, t∗̇) ≈ (u∗̄, u∗̃, β)
(φ � ψ)∗ ≡ φ∗ � ψ∗ U∗ ≡ U (� = ∧,∨,⇒ U = >,⊥)
(Qx φ)∗ ≡ Qx̄ :22 . Qx̃ : (x̄→x̄→∗) . Qẋ : x̄ . φ∗ (Q = ∀,∃)

(where ≈ denotes the type-theoretic expression of the bisimilarity relation, that
has been already given in subsection 3.3).

Translation of terms The translations t 7→ t∗̄, t 7→ t∗̃ and t 7→ t∗̇ are defined
in table 6. For the sake of clarity, we omit type parameters X and Y in the
constructors some, none, inl, inr, out and Leibniz equality ‘=’.

B.3 Soundness of the axioms of IZsk

Lemma 6. — For each axiom φ of IZsk, the proposition φ∗ : ∗ has a closed
proof-term in λZ.

The proof essentially proceeds as in [11], except that the target formalism λZ
is slightly weaker than Fω.3, in which the translation was originally presented.
Technically, the difference appears with the comprehension scheme, whose trans-
lation in Fω.3 benefits from the possibility of encoding class abstraction (using
the rule (23,21,23)) and class quantification (using rule (23, ∗, ∗)) so that com-
prehension can be expressed as a single proposition.11 In λZ however, class ab-
straction is not possible anymore, and each instance of the comprehension scheme
has to be translated separately.
11 The main reason is that Fω.3 () λZ) actually captures the strength of IZω (intu-

itionistic higher-order Zermelo’s set theory.

Variables

x∗̄ ≡ x̄, x∗̃ ≡ x̃ and x∗̇ ≡ ẋ

Set of von Neumann numerals

ω∗̄ ≡ opt(nat), ω∗̇ ≡ none

ω∗̃ ≡ λβ′, β : opt(nat) .
∃n′, n : nat .

`
wf nat(n′) ∧ β′ = some(n′) ∧
wf nat(n) ∧ β = some(n) ∧ n′ < n

´
∨ ∃n′ : nat .

`
wf nat(n′) ∧ β′ = some(n′) ∧ β = none

´
Unordered pair

{t1; t2}∗̄ ≡ sum(t∗̄1, t
∗̄
2), {t1; t2}∗̇ ≡ out

{t1; t2}∗̃ ≡ λβ′, β : sum(t∗̄1, t
∗̄
2) .

∃α′, α : t∗̄1 .
`
β′ = inl(α′) ∧ β = inl(α) ∧ t∗̃1 α

′ α
´

∨ ∃α′, α : t∗̄2 .
`
β′ = inr(α′) ∧ β = inr(α) ∧ t∗̃2 α

′ α
´

∨
`
β′ = inl(t∗̇1) ∧ β = out

´
∨

`
β′ = inr(t∗̇2) ∧ β = out)

´
Powerset

(P(t))∗̄ ≡ sum(t∗̄, t∗̄→∗), (P(t))∗̇ ≡ out

(P(t))∗̃ ≡ λβ′, β : sum(t∗̄, t∗̄→∗) .
∃α′, α : t∗̄ .

`
β′ = inl(α′) ∧ β = inl(α) ∧ t∗̃1 α

′ α
´

∨ ∃α : t∗̄ .∃p : (t∗̄→∗) .
`
β′ = inl(α) ∧ β = inr(p) ∧ t∗̃ α t∗̇ ∧ pα

´
∨ ∃p : (t∗̄→∗) .

`
β′ = inr(p) ∧ β = out

´
Union

(
S
t)∗̄ ≡ opt(t∗̄), (

S
t)∗̇ ≡ none

(
S
t)∗̃ ≡ λβ′, β : opt(t∗̄) .

∃α′, α : t∗̄ .
`
β′ = some(α′) ∧ β = some(α) ∧ t∗̃ α′ α

´
∨ ∃α′, α : t∗̄ .

`
β′ = some(α′) ∧ β = none ∧ t∗̃ α′ α ∧ t∗̃ α t∗̇

´
Comprehension

({x ∈ t | φ})∗̄ ≡ opt(t∗̄), ({x ∈ t | φ})∗̇ ≡ none

({x ∈ t | φ})∗̃ ≡ λβ′, β : opt(t∗̄) .

∃α′, α : t∗̄ .
`
β′ = some(α′) ∧ β = some(α) ∧ t∗̃ α′ α

´
∨ ∃α : t∗̄ .

`
β′ = some(α) ∧ β = none ∧
t∗̃ α t∗̇ ∧ φ∗{x̄ := t∗̄; x̃ := t∗̃; ẋ := α}

´
Table 6. Translation of the terms of Zsk in λZ

B.4 Soundness of anti-foundation

The soundness of AFA in λZ is an exercise of decoding a pointed graph structure
from the type-theoretic representation of a set-theoretic pointed graph.

Let us assume that (X,R, r) is a type-theoretic pointed graph that represents
a set-theoretic pointed graph, that is, three terms

X : 22, R : X→X→∗ and r : X

of λZ such that the proposition PGraph∗(X,R, r) is provable in λZ, where
PGraph is the set-theoretic predicate defined by

PGraph(x) ≡ ∃x1 ∃x2 ∃x3 [G = 〈x1, x2, x3〉 ∧ x2 ⊂ (x1 × x1) ∧ x3 ∈ x1]

From the assumption PGraph∗(X,R, r), we can easily extract three pointed
graphs (X1, R1, r1), (X2, R2, r2) and (X3, R3, r3) representing the three com-
ponents x1, x2 and x3 of the set-theoretic triple represented by (X,R, r). In
particular, we know that x3 ∈ x1 so that there is a vertex α0 : X1 such that the
pointed graphs (X3, R3, r3) and (X1, R1, α0) are bisimilar.

We now have to build in λZ a pointed graph (Y, S, s) that represents the set
pictured by the set-theoretic pointed graph whose carrier, edge relation and root
are represented by the pointed graphs (X1, R1, r1), (X2, R2, r2) and (X3, R3, r3).
This pointed graph (Y, S, s) is constructed from the pointed graph (X1, R1, r1)
by changing the edge relation and root as follows:

Y ≡ X1 s ≡ α
S ≡ λα′, α :X1 . R1 α

′ r1 ∧ R1 α r1 ∧
Rel∗((X1, R1, α

′), (X1, R1, α), (X2, R2, r2))

where Rel(x, y, z) is the set-theoretic formlula 〈x, y〉 ∈ z. We then check that
Pict∗((X,R, r), (Y, S, s)) holds in λZ, and that any pointed graph (Y ′, S′, s′)
such that Pict∗((X,R, r), (Y ′, S′, s′)) is bisimilar to (Y, S, s). (The proof is the
type-theoretic transposition of the validity proof of AFA presented in [1].)

B.5 Soundness of transitive closure

The transitive closure of a pointed graph (X,R, r) is represented in λZ as the
pointed graph (Y, S, s) whose components are given by:

Y ≡ opt(X) s ≡ none
S ≡ λβ′, β :Y .

∃α′, α :X .
(
β′ = some(α′) ∧ β = some(α) ∧ R α′ α

)
∨ ∃α :X .

(
β′ = some(α) ∧ β = none ∧ R+ α r

where R+ denotes the transitive closure of R (expressed in λZ), namely, the
binary relation on X defined by

R+ ≡ λα1, α2 :X . ∀r : (X→X→∗) .
[∀α′, α :X . (R α′ α⇒ r α′ α) ∧
∀α′′, α′, α :X . (r α′′ α′ ⇒ r α′ α ⇒ r α′′ α)
⇒ r α1 α2] .

