Ariel Arbiser 
email: farbiser@dc.uba.ar
  
Alexandre Miquel 
email: alexandre.miquel@pps.jussieu.fr
  
Alejandro R Os 
  
A -calculus with constructors

We present an extension of the ()-calculus with a case construct that propagates through functions like a head linear substitution, and show that this construction permits to recover the expressiveness of ML-style pattern matching. We then prove that this system enjoys the Church-Rosser property using a semi-automatic `divide and conquer' technique by which we determine all the pairs of commuting subsystems of the formalism (considering all the possible combinations of the nine primitive reduction rules). Finally, we prove a separation theorem similar to B ohm's theorem for the whole formalism.

Introduction

Lambda-calculus has been introduced by Church in the 30's [START_REF] Church | The calculi of lambda-conversion[END_REF] as a universal language to express computations of functions. Despite its remarkable simplicity, !-calculus is rich enough to express all recursive functions. Since the rise of computers, !-calculus has been used fruitfully as the basis of all functional programming languages, from LISP to the languages of the ML family. From the theoretical point of view, untyped !-calculus enjoys many good properties [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF], such as Church and Rosser's property expressing determinism of computations.

In Logic, !-calculus is also a fundamental tool to describe the computational contents of proofs via the Curry-Howard correspondence.

Although arbitrarily complex data structures can be encoded in the pure !calculus, modern functional programming languages provide primitive constructs for most data structures, for which a purely functional encoding would be inefcient. One of the most popular extensions of !-calculus is pattern-matching on constructed values (a.k.a. variants), a problem that has been widely investigated in functional programming [START_REF] Milner | The denition of Standard ML[END_REF][START_REF] Hudak | Report on the programming language Haskell, a non-strict, purely functional language (Version 1.2)[END_REF][START_REF]The Objective Caml language[END_REF] and in rewriting [START_REF] Van Oostrom | Lambda calculus with patterns[END_REF][START_REF] Cirstea | Rho-calculus, the rewriting calculus[END_REF][START_REF] Cerrito | Pattern matching as cut elimination[END_REF][START_REF] Kahl | Basic pattern matching calculi: Syntax, reduction, conuence, and normalisation[END_REF][START_REF] Jay | The pattern calculus[END_REF].

However, introducing objects of dierent kinds|functions and constructed values|in the same formalism addresses the problem of their interaction. What does it mean to apply a constructed value to an argument? Should the constructed value accumulate the extra argument? Or should it produce an error? Similarly, what does it mean to perform case analysis on a function?

Unfortunately, these problems are usually not addressed in the literature because they are irrelevant in a typed setting|applications go with functions, case analyses with variants. However, one should not forget that one of the reasons of the success of the !-calculus in computer science and in logic lies in its excellent operational semantics in the untyped case. The best example is given by B ohm's separation theorem [START_REF] Dezani-Ciancaglini | A discrimination algorithm inside lambda-beta-calculus[END_REF] that expresses that two observationally equivalent -normal !-terms are intentionally equal. In the pure !-calculus,normal terms are not canonical forms because they cannot be further reduced; they are canonical forms because the computational behaviour of a -normal term cannot be expressed by another -normal term.

The situation is far from being as clear when we add pattern-matching to the untyped !-calculus. As far as we know, there is no generalisation of B ohm's theorem for this kind of extension. One reason for that is that the notion of normal form is not as clear as in the pure !-calculus, precisely because the traditional operational semantics says nothing about the computational behaviour of ill-typed constructions, such as a case analysis over an abstraction.

An extended operational semantics of case analysis In this paper, we propose an extension of the untyped !-calculus with constructors and case analysis that lls the holes of the traditional operational semantics. Technically, the main novelty is that we let application and case analysis (written fjj gX w) commute via the (ill-typed 1 ) reduction rule (CaseApp) fjj gX (wx) 3 (fjj gX w)x X (Here, denotes a case binding, that is a nite map from constructors to terms.) Symmetrically, we introduce a reduction rule

(CaseLam) fjj gX (!x X x) 3 !x X (fjj gX w) (x a P FV ())
to let case analysis go through abstractions. In this way, case analysis can be understood as a form of head linear explicit substitution. . . of constructors. Surprisingly, the system we obtain is not only computationally sound|we will show (section 3) that it is conuent and conservative over the untyped !-calculus|but it also permits to decompose ML-style pattern matching (with patterns of any arity) from the construction fjj gX w that only performs case analysis on constant constructors (section 2). Finally, we will show (section 4) a theorem of weak separation for the whole calculus, using a separation technique inspired by B ohm's [START_REF] Dezani-Ciancaglini | A discrimination algorithm inside lambda-beta-calculus[END_REF][START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF]. For this reason, the formalism provides a special constant written z and called the daimon (following the terminology and notation of [START_REF] Girard | Locus solum: From the rules of logic to the logic of rules[END_REF]) that requests the termination of the program|something like an exit system call|and which will be used as the main technical device to observe normal forms and separate them.

Proofs and technical details are omitted from this extended abstract, but are available in the long version of the paper [START_REF] Arbiser | A -calculus with constructors[END_REF]. 1 Observe that M is treated as a function in the l.h.s. of the rule whereas it is treated as a constructed value in the r.h.s. This rule should not be confused with the rule of commutative conversion (fjj g: M)N = fjN j g: M that comes from logic, a rule which is well-typed. . . but incompatible with the reduction rules of our calculus! 2 Syntax and reduction rules

Syntax

The !-calculus with constructors distinguishes two kinds of names: variables (written x, y, z, etc.) and constructors (written , H , etc.) The set of variables and the set of constructors are written and g, respectively. In what follows, we assume that both sets and g are denumerable and disjoint.

The terms (written w, x, etc.) and the case bindings (written , 0, etc.) of the !-calculus with constructors are inductively dened as follows: Case bindings Y 0 ::= 1 U 3 w 1 ; X X X ; n U 3 w n ( i T = j for i T = j) The sets of terms and case bindings are denoted by £ g and f, respectively, and their disjoint union by £ g +f.

Constructor binding Each case binding is formed as a nite unordered list of constructor bindings of the form ( U 3 w) whose l.h.s. are pairwise distinct.

We say that a constructor is bound to a term w in a case binding if the binding ( U 3 w) belongs to the list . From the denition of case bindings, it is clear that a constructor is bound to at most one term in a given case binding . When there is no such binding, we say that the constructor is unbound in .

The size of a case binding = ( 1 U 3 w 1 ; X X X ; n U 3 w n ) is written jj and dened by jj = n.

We also introduce an (external) operation of composition between two case bindings and 0, which is written 0 and dened by:

( 1 U 3 w 1 ; X X X ; n U 3 w n ) 1 U 3 fjj gX w 1 ; X X X ; n U 3 fjj gX w n (where 0 ( 1 U 3 w 1 ; X X X ; n U 3 w n )). Notice that this operation is not syntactically associative, since: ( 0) ( i U 3 w i ) i=1::n ( i U 3 fj 0j gX w i ) i=1::n whereas (0 ( i U 3 w i ) i=1::n ( i U 3 fjj gX fj0j gX w i ) i=1::n However, composition of case bindings only makes sense in the presence of the case conversion reduction rule fjj gX fj0j gX w 3 fj 0j gX w (see 2.2), for which both right hand sides above are convertible.

Free variables and substitution The notions of bound and free occurrences of a variable are dened as expected. The set of free variables of a term w (resp. a case binding ) is written FV (w) (resp. FV ()).

As in the (ordinary) !-calculus, terms are considered up to -conversion (i.e.

up to a renaming of bound variables). Notice that the renaming policy of the !-calculus with constructors is strictly the same as in the !-calculus: it only aects (bound) variable names, but leaves constructor names unchanged.

The external substitution operation of the !-calculus, written wfx := xg, is extended to the !-calculus with constructors as expected. The same operation is also dened for case bindings (notation: fx := xg).

Reduction rules

The !-calculus with constructors has 9 primitive reduction rules that are depicted in Fig. 1.

Beta-reduction AppLam (AL) (x : M)N ! Mfx := Ng AppDai (AD) z N ! z Eta-reduction LamApp (LA) x : Mx ! M (x = 2 FV (M))
LamDai (LD) x : z ! z In what follows, we will be interested not only in the system induced by the 9 reduction rules taken together, but more generally in the subsystems formed by all subsets of these 9 rules. We write !f g the calculus generated by all rules of Fig. 1, and f g the calculus generated by all rules but AppLam (a.k.a. ).

Notice that AppLam (a.k.a ) and LamApp (a.k.a. ) are the only reduction rules that may apply to an ordinary !-term in !f g .

An example

In !f g , the predecessor function (over unary integers) is implemented as pred !n X fj0 U 3 0; s U 3 !z X zj gX n (where 0 and s are two distinct constructors). From the rules AppLam (= ) and CaseCons it is obvious that pred 0 3 fj0 U 3 0; s U 3 !z X zj gX 0 3 0 X More interesting is the case of pred (s x) (where x is an arbitrary term)

pred (s x) 3 fj0 U 3 0; s U 3 !z X zj gX (s x) 3 (fj0 U 3 0; s U 3 !z X zj gX s) x 3 (!z X z) x 3 x
which shows how the case construct captures the head occurrence of the constructor s via the reduction rule CaseApp. More generally, ML-style pattern-matching (on disjoint patterns) is translated in !f g as follows:

match x with j 1 (x 1 Y X X X Y x n1 ) U 3 w 1 j 2 (x 1 Y X X X Y x n2 ) U 3 w 2 j ¡ ¡ ¡ becomes fj 1 U 3 !x 1 ¡ ¡ ¡ x n1 X w 1 ; 2 U 3 !x 1 ¡ ¡ ¡ x n2 X w 2 ; ¡ ¡ ¡ j g ¡ x 3
The Church-Rosser property

In this section, we aim to prove that !f g is conuent. For that, we will prove a much more general result by characterising among the 2 9 = 512 possible subsets of the 9 primitive reduction rules which subsets induce a subsystem of !f g which is conuent, and which ones do not.

Preliminary denitions

Let us rst recall some classic denitions. Denition 1. | An Abstract Rewriting System (ARS) is a pair e = (jejY 3 A ) formed by an arbitrary set jej (called the carrier of e) equipped with a binary relation 3 A on jej. We denote by 3 £ A the reexive-transitive closure of 3 A , and by 3 = A the reexive closure of 3 A . Denition 2. | An ARS e is strongly normalising (SN) if there is no innite sequence of objects (w i ) iPN P jej N such that w i 3 A w i+1 for all i P N. Denition 3. | Let e = (Y 3 A ) and f = (Y 3 B ) be two ARSs dened on the same carrier set . We say that: { e weakly commutes with f, written e aa w f, if for all wY w 1 Y w 2 s.t.

w 3 A w 1 and w 3 B w 2 there exists w 3 s.t. w 1 3 £ B w 3 and w 2 3 £ A w 3 .

{ e commutes with f, written e aa f, if for all wY w 1 Y w 2 s.t. w 3 £ A w 1 and w 3 £ B w 2 there exists w 3 s.t. w 1 3 £ B w 3 and w 2 3 £ A w 3 .

An ARS e is said to be weakly conuent or weakly Church-Rosser (WCR) (resp. conuent, or Church-Rosser (CR)) if e aa w e (resp. if e aa e).

Given two ARSs e and f dened on the same carrier set, we write e + f the (set-theoretic) union of both relations. The conuence proof of !f g relies on standard results of rewriting [START_REF] Baader | Rewriting and All That[END_REF], and in particular in the following two lemmas: Lemma 1. | If e aa w f and e + f is SN, then e aa f. Proof: Same proof-technique as for Newman's lemma [START_REF] Baader | Rewriting and All That[END_REF]. 2 Lemma 2. | If e aa f and e aa g then e aa (f + g).

Critical pairs and closure conditions

Each of the 9 primitive reduction rules of !f g describes the interaction between two syntactic constructs of the language, which is reected by the name of the rule: AppLam for `Application over a Lambda', etc. These reduction rules induce 13 dierent critical pairs, that are summarised in Fig. 2 and3.

Critical pairs occur for all pairs of rules of the form FooBaraBarBaz. A quick examination of Fig. 2 and3 reveals that each time we have to close such a critical pair, we need to use the third rule FooBaz when this rule exists. This occurs for the 6 critical pairs (2), ( 4), ( 5), ( 6), ( 7) and ( 8) of Fig. 2; in the other cases, the critical pair is closed by the only rules FooBar and BarBaz. This remark naturally suggests the following denition: Denition 4 (Closure conditions). | We say that a subset s of the 9 rules given in Fig. 1 fulls the closure conditions and write s j = CC if:

(CC1) (CC2) (CC3) (CC4) (CC5) (CC6)
AppLam P s LamDai P s A AppDai P s LamApp P s AppDai P s A LamDai P s CaseApp P s AppLam P s A CaseLam P s CaseApp P s AppDai P s A CaseDai P s CaseLam P s LamApp P s A CaseApp P s CaseLam P s LamDai P s A CaseDai P s Intuitively, a subset that fulls the 6 closure conditions denes a system in which all critical pairs can be closed, and thus constitutes a good candidate for Church-Rosser. The aim of this section is to turn this intuition into the Theorem 1 (Church-Rosser). | For each of the 512 subsystems s of !f g the following propositions are equivalent:

1. s fulls the closure conditions (CC1){(CC6); 2. s is weakly conuent; 3. s is conuent. Again, the 9 binary closure conditions come from an analysis of critical pairs. For example (BCC1) comes from the observation that critical pair (2) of Fig. 2 can be formed as soon as s 1 contains AppLam and s 2 contains LamDai, and that it can be closed only if s 1 contains AppDai.

We can also remark that when we take s 1 = s 2 = s, the binary closure conditions (BCC1){(BCC6) degenerate to the (simple) closure conditions (CC1){ (CC6) whereas (BBC7){(BCC9) become tautologies, so that: Fact 1 | For all subsystems s of !f g : s j = CC i (sY s) j = BCC.

We rst show that: Proposition 1. | For all pairs (s 1 Y s 2 ) of subsystems of !f g the following propositions are equivalent: 1. (s 1 Y s 2 ) j = BCC (binary closure conditions); 2. s 1 aa w s 2 (weak commutation).

Proof: (1 A 2) By structural induction on the reduced term, closing critical pairs using BCCs. (2 A 1) By contraposition, exhibiting a suitable counterexample for each BCC that does not hold.

2

Now it remains to be shown that all weakly commuting pairs commute.

Strong normalisation of the B C -calculus

The rst step is to check that the subsystem f g = (!f g n AppLam) is SN. Proposition 2 (SN of f g -calculus). | The f g -calculus is SN.

Proof: Consider the function h : £ g + f 3 N recursively dened by h

(x) = h() = h(z) = 1 h(fjj gX w) = h() + (jj + 2)h(w) h(!x X w) = h(w) + 1 h(wx) = h(w) + h(x) h(( i U 3 w i ) i=1::n ) = n i=1 h(w i )
It is routine to check that h decreases at each f g -reduction step. 2

From Lemma 1 and Prop. The details of the 12 commutation proofs can be found in [START_REF] Arbiser | A -calculus with constructors[END_REF]. From that we deduce that all pairs of subsystems that full BCCs commute, and the proof of Theorem 1 is now complete.

(1) AppLam == AppLam (2) AppLam == AppDai (3) AppLam == LamApp (4) AppLam == CaseCons [START_REF] Cerrito | Pattern matching as cut elimination[END_REF] AppLam == CaseDai [START_REF] Church | The calculi of lambda-conversion[END_REF] AppLam == CaseLam [START_REF] Cirstea | Rho-calculus, the rewriting calculus[END_REF] AppLam == CaseCase [START_REF] Girard | Locus solum: From the rules of logic to the logic of rules[END_REF] AppLam + AppDai == LamDai [START_REF] Hudak | Report on the programming language Haskell, a non-strict, purely functional language (Version 1.2)[END_REF] AppLam + AppDai == LamApp + LamDai [START_REF] Jay | The pattern calculus[END_REF] AppLam + CaseLam == CaseApp [START_REF] Kahl | Basic pattern matching calculi: Syntax, reduction, conuence, and normalisation[END_REF] AppLam + CaseLam == LamApp + CaseApp [START_REF] Milner | The denition of Standard ML[END_REF] AppLam + AppDai + CaseDai + CaseLam == LamApp + LamDai + CaseDai + CaseApp 

Vw 1 Y w 2 P £ (!f g j = w 1 = w 2 A ! j = w 1 = w 2 ) X
Proof: Follows from Cor. 1 using the concluding remark of subsection 2.2. 2

Separation

The aim of this section is to establish the theorem of (weak) separation, expressing that observationally equivalent normal terms are syntactically equal.

For that, we will show that for all normal terms4 w 1 T w 2 of !f g there exists a context g[] such that g[w 1 ] converges whereas g[w 2 ] diverges|or vice-versa| using notions of convergence and divergence that will be precised. Separation [START_REF] Dezani-Ciancaglini | A discrimination algorithm inside lambda-beta-calculus[END_REF] can be understood as some kind of completeness of the formalism. Intuitively, it expresses that the calculus provides suciently many reduction rules to identify observationally equivalent terms, or|which is the same dually|that it provides suciently many syntactic constructs (i.e. observers) to discriminate dierent normal forms.

Quasi-normal forms

Let us rst analyse the shape of normal forms in the calculus. Denition 6 (Head term). | We call a head term (and write r, r 1 , r H , etc.) any term that has one of the following four forms: Head term r ::= x j j fjj gX x j fjj gX ( a P dom())

When a head term r is of one of the rst three forms (variable, constructor, case binding on a variable), we say that r is dened. When r is of the last form (case binding on an unbound constructor), we say that r is undened. Denition 7 (Quasi-head normal form). | A term w is said to be in quasi-head normal form (quasi-hnf) if it has one of the following two forms Quasi-hnf

w ::= z j !x 1 ¡ ¡ ¡ x n X rx 1 ¡ ¡ ¡ x k (nY k ! 0)
where r is an arbitrary head term, called the head of w, and where x 1 Y X X X Y x k are arbitrary terms.

Here, the prex `quasi-' expresses that such terms are in head normal form w.r.t. all reduction rules, but (possibly) the rule LamApp (= ). In what follows, `quasi-' systematically refers to `all reduction rules but LamApp'.

As for head terms, we distinguish dened quasi-hnfs from undened ones.

We say that a quasi-hnf w is dened when either w !x 1 ¡ ¡ ¡ x n X rx 1 ¡ ¡ ¡ x k with r dened, or when w z; and we say that w is undened when w !x 1 ¡ ¡ ¡ x n X (fjj gX )x 1 ¡ ¡ ¡ x k with a P dom().

More generally, we call a dened term (resp. an undened term) any term that reduces to a dened (resp. undened) quasi-hnf. The class of dened terms is closed under arbitrary reduction, as for the class of undened terms. Moreover, the class of undened terms is closed under arbitrary substitution.

Denition 8 (Quasi-normal form). | A term (resp. a case binding) is said to be in quasi-normal form when it is in normal form w.r.t. all the reduction rules but LamApp (= ).

Terms (resp. case bindings) that are in quasi-normal form are simply called quasi-normal terms (resp. quasi-normal case bindings). In particular, we call a quasi-normal head term any head term r which is in quasi-normal form. These notions have the following syntactic characterisation: Proposition 5. | Quasi-normal terms, quasi-normal head terms, and quasinormal case bindings are (mutually) characterised by the following BNF:

Q.n.-terms Q.n.-head-terms Q.n.-case bind.
x ::= z j !x 1 ¡ ¡ ¡ x n X rx 1 ¡ ¡ ¡ x k r ::= x j j fjj gX x j fjj gX ( a P dom()) ::= 1 U 3 x 1 ; X X X ; p U 3 x p

Separation contexts

The notion of context with one hole is dened in !f g as expected. The term obtained by lling the hole of a context g[] with a term w is written g[w], and the composition of two contexts g[] and g H [] is written g H

[g[]]
. In what follows, we will use contexts of a particular form, namely, evaluation contexts:

Evaluation contexts i[] ::= []x 1 ¡ ¡ ¡ x n j (fjj gX [])x 1 ¡ ¡ ¡ x n

Notice that the composition i H [i[]] of two evaluation contexts i[] and i H []

is not always an evaluation context, but that it always reduces to an evaluation context using zero, one or several steps of the CaseApp rule, possibly followed by a single step of the CaseCase rule.

The daimon z which represents immediate termination naturally absorbs all evaluation contexts: Lemma 3. | In any evaluation context i[] one has i[z] 3 £ z.

Symmetrically, each sub-term of the form fjj gX (with a P dom()) blocks the computation process at head position so that undened terms \absorb" all evaluation contexts as well:

Lemma 4. | Given an undened term , the term i[] is undened for all evaluation contexts i[].

The daimon z and undened terms are thus natural candidates to dene the notion of separability: Since undened terms cannot be separated from each other (because undened heads block all computations), we have to exclude them 5 from our study: Denition 10 (Completely dened quasi-normal term). | A term w in quasi-normal form is said to be completely dened if it contains no sub-term of the form fjj gX , where a P dom().

Disagreement

The separation theorem is proved in two steps:

1. First we dene a syntactic relation between terms, called disagreement at depth d P N, and we show that any pair of distinct normal forms haveexpansions that disagree at some depth (this subsection). 2. Then we show (by induction on the depth of disagreement) that any pair of disagreeing quasi-normal terms are weakly separable (subsection 4.5).

Denition 11 (Skeleton equivalence). | We say that two dened head terms r 1 and r 2 have the same skeleton and write r 1 % r 2 if either: 5 Semantically, this means that we identify undened terms with non weakly normalisable terms, and thus interpret them as (Scott's bottom).

{ r 1 r 2 x for some variable x; or { r 1 r 2 for some constructor ; or { r 1 fj 1 j gX x and r 2 fj 2 j gX x for some variable x and for some 1 Y 2 such that dom( 1 ) = dom( 2 

w 1 = z and w 2 = !x 1 ¡ ¡ ¡ x n X rx 1 ¡ ¡ ¡ x k ; or w 1 = !x 1 ¡ ¡ ¡ x n X rx 1 ¡ ¡ ¡
x k and w 2 = z; or w 1 = !x 1 ¡ ¡ ¡ x n X r 1 x 1;1 ¡ ¡ ¡ x 1;k1 and w 2 = !x 1 ¡ ¡ ¡ x n X r 2 x 2;1 ¡ ¡ ¡ x 2;k2 and r 1 T % r 2 . { (Inductive case) For all d P N, we write dis d+1 (w 1 Y w 2 ) if w 1 = !x 1 ¡ ¡ ¡ x n X r 1 x 1;1 ¡ ¡ ¡ x 1;k1 and w 2 = !x 1 ¡ ¡ ¡ x n X r 2 x 2;1 ¡ ¡ ¡ x 2;k2 and r 1 % r 2 ) for some d P N.

Ingredients for separation

Separating disagreeing quasi-normal terms relies on denitions and techniques that are fully described in [START_REF] Arbiser | A -calculus with constructors[END_REF]. Here we briey present some of them.

Tuples In order to retrieve arbitrary sub-terms of a given normal form (the so called `B ohm-out' technique), we need tuples that are encoded as in the pure !-calculus as hw 1 ; X X X ; w n i !e X ew 1 ¡ ¡ ¡ w n . In what follows, we use a more general notation to represent partial application of the n-uple constructor to its rst k arguments and waiting the remaining n k arguments: hw 1 ; X X X ; w k ; £ n k i !x k+1 ¡ ¡ ¡ x n e X ew 1 ¡ ¡ ¡ w k x k+1 ¡ ¡ ¡ x n (0 k n) With these notations, the n-uple constructor is written h£ n i.

Encoding names Separation of distinct free variables is achieved by substituting them by easily separable closed terms. For that, we associate to each variable name x a unique Church numeral written x (using the same name written in typewriter face), which we call the symbol of x.

Substitutions A substitution is a nite association list which maps pairwise distinct variables to terms. A substitution ' can be applied to a term w, and the result (which is dened as expected) is written w['].

Separation is achieved (Prop. 6) using a particular substitution ' K X parameterised by an integer u ! 0 and a nite set of variables , namely, the substitution that maps each variable x P to the term hx; £ K i representing the partial application of the (u + 1)-uple constructor to the symbol of x.

The separation theorem

Let w be a term in quasi-normal form. We call the application strength of w the largest integer k ! 0 such that w has a sub-term of the form rx 1 ¡ ¡ ¡ x k . Proposition 6 (Separation of disagreeing terms). | Let u ! 0 be a natural number, and w 1 and w 2 two completely dened quasi-normal terms whose application strength is less than or equal to u and such that w 1 and w 2 disagree at some depth d P N. Then there exists an evaluation context i[] such that either

{ i ¢ w 1 [' K X ] £ 3 £ z and i ¢ w 2 [' K X ] £ is undened, or { i ¢ w 2 [' K X ] £ 3 £ z and i ¢ w 1 [' K X ] £ is undened;
where is any nite set of variables that contains at least the free variables of w 1 and w 2 , and where ' K X is the substitution dened in subsection 4.4.

From this proposition and lemma 5 we easily conclude:

Theorem 2 (Separation). | Let w 1 and w 2 be completely dened terms in normal form. If w 1 T w 2 , then w 1 and w 2 are weakly separable.

Conclusion

We have introduced an extension of !-calculus, !f g , in which pattern matching is implemented via a mechanism of case analysis that behaves like a head linear substitution over constructors. We have shown that the reduction relation of !f g is conuent and conservative over the !-calculus, but also that it is complete in the sense that it provides suciently many reduction rules to identify all observationally equivalent normalisable terms.

Using the divide-and-conquer method for other proofs of conuence An original aspect of this work is the way we proved conuence by systematically studying the commutation properties of all pairs of subsystems of !f g . Surprisingly, the mechanical propagation rule \if e aa f and e aa g then e aa (f+g)" (combined with the primitive knowledge of all commutation properties between subsystems that do not involve AppLam) is sucient to reduce the proof of the expected 7,784 non-trivial commutation lemmas to only 12 primitive lemmas, that are established by hand. It would be interesting to investigate further to see whether the same method can be used to prove the conuence of other rewrite systems with many reduction rules|typically, systems with explicit substitutions.

A notion of B ohm tree for !f g The separation theorem we proved suggests that head normal forms of !f g could be the adequate brick to dene a notion of B ohm-tree [START_REF] Dezani-Ciancaglini | A discrimination algorithm inside lambda-beta-calculus[END_REF][START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF] for !f g |and more generally, for ML-style pattern-matching.

However, the fact that it is a weak separation theorem also suggests that the observational ordering is non-trivial on the set of normal forms. Characterising observational ordering on normal forms could be the next step to deepen our understanding of both operational and denotational semantics of !f g .

Which type system for !f g ? The reduction rules CaseApp and CaseLam which are the starting point of this work deeply challenge the traditional intuition of the notion of type, for which functions and constructed values live in dierent worlds. However, the good operational semantics of the calculus naturally raises the exciting question of nding a suitable type system for !f g .

A 12 initial commutation properties

In this appendix we show the 12 commutation properties of Table 1.

The rst commutation property of Table 1 expresses the conuence of the reduction rule AppLam. As usual, we prove it (following Tait and Martin-L of) by introducing the corresponding notion of parallel reduction:

Denition 13. | The relations of parallel AppLam-reduction on terms and on case bindings (both written A) are dened as follows:

w A w (pRef) w A w H x A x H (!x X w)x A w H fx := x H g (pAppLam) w A w H !x X w A !x X w H (pLam) w A w The next 5 commutations properties (2{6) are of the form `AppLam aa r', where the reduction rule r is linear, that is, a rule that cannot duplicate subterms during contraction. (But it may erase sub-terms.)

To treat this case, we use the following denition: Denition 14. | Let (Y 3 A ) and (Y 3 B ) be two ARSs dened on the same carrier set. We say that e strongly commutes with f if for all wY w 1 Y w 2 such

  Since the full system (i.e. !f g ) obviously fulls all closure conditions, we will get as an immediate corollary:Corollary 1 (Church-Rosser). | !f g is conuent.The proof of theorem 1 relies on a systematic analysis of the commutation properties of all pairs of subsystems (s 1 Y s 2 ) of !f g . For that, we rst have to generalise the notion of closure condition to any pair (s 1 Y s 2 ) of subsystems. This leads us to adopt the following denition: Denition 5 (Binary closure conditions). | We say that a pair (s 1 Y s 2 ) of subsystems fulls the binary closure conditions and write (s 1 Y s 2 ) j = BCC if LamDai P s 2 A AppDai P s 1 LamApp P s 1 AppDai P s 2 A LamDai P s 1 CaseApp P s 1 AppLam P s 2 A CaseLam P s 2 CaseApp P s 1 AppDai P s 2 A CaseDai P (s 1 s 2 ) CaseLam P s 1 LamApp P s 2 A CaseApp P s 2 CaseLam P s 1 LamDai P s 2 A CaseDai P (s 1 s 2 ) CaseCase P s 1 CaseDai P s 2 A CaseDai P s 1 CaseCase P s 1 CaseApp P s 2 A CaseApp P s 1 CaseCase P s 1 CaseLam P s 2 A CaseLam P s 1 as well as the 9 symmetric conditions (obtained by exchanging s 1 with s 2 ).

	AppLam MN (9) CaseCase=CaseCons LamApp 1 1 ? ? ? ? ? ? MN (3) LamApp=AppLam fjj g: fjj g: c [(c7 !M)2] CaseCase CaseCons 1 1 ? ? ? ? ? ? fj j g: c fjj g: M x : (y : M)x [x = 2FV(M)] LamApp AppLam 1 1 ? ? ? ? ? ? y : M x : Mfy := xg (5) CaseApp=AppLam fjj g: ((x : M)N) [x = 2FV()] CaseApp AppLam 1 1 ? ? ? ? ? ? (fjj g: x : M)N CaseLam fjj g: (Mfx := Ng) # # CaseCase (fj j g: M)N CaseApp (fjj g: fjj g: M)N CaseCons 1 1 fjj g: M (11) CaseCase=CaseApp fjj g: fjj g: (MN) CaseCase CaseApp 1 1 ? ? ? ? ? ? fj j g: (MN) fjj g: (fjj g: M)N CaseApp fj j g: x : M AppLam z ? (x : z)N ? ? ? ? LamDai 1 1 ? ? ? ? ? ? ? ? ? ? (10) CaseCase=CaseDai z N AppDai z fjj g: fjj g: z CaseCase CaseDai ? ? ? ? ? ? 1 1 fj j g: z fjj g: z (4) LamApp=AppDai x : (z x) LamApp AppDai 1 1 ? ? ? ? ? ? z ? ? ? ? ? ? ? ? x : z LamDai z (6) CaseApp=AppDai CaseApp AppDai (fjj g: z)N CaseDai fjj g: z # # x : fj j g: M CaseCase 1 1 ? ? ? ? ? ? CaseLam x : fjj g: fjj g: M fjj g: (z N) CaseDai 1 1 CaseDai z (12) CaseCase=CaseLam fjj g: fjj g: x : M CaseCase CaseLam 1 1 ? ? ? ? ? ? fjj g: x : fjj g: M CaseLam (BCC1) (BCC9) (BCC8) (BCC7) (BCC6) (BCC5) (BCC4) (BCC3) (BCC2) AppLam P s 1
	(x : fjj g: M)N	(13) CaseCase=CaseCase	z N	CaseDai
	AppLam 1 1 (fjj g: M)fx := Ng (7) CaseLam=LamApp fjj g: fjj g: fjj g: M CaseCase CaseCase (8) CaseLam=LamDai § § AppDai 1 1 z ? ? ? ? ? ? 1 1 fj j g: fjj g: M fjj g: fj j g: t
	fjj g: x : (Mx) CaseLam LamApp 1 1 ? ? ? ? ? ? x : fjj g: (Mx) CaseApp fjj g: M CaseCase fj( ) j g: M [x = 2FV(M;)] fj ( )j g: M CaseCase CaseLam fjj g: x : z LamDai ? ? ? ? ? ? 1 1 x : fjj g: z CaseDai fjj g: z # # CaseCase £
	x : (fjj g: M)x	x : z Fig. 3. Critical pairs 9{13 (/13)	CaseDai
	LamApp 1 1 fjj g: M	§ § LamDai 1 1 z
		Fig. 2. Critical pairs 1{8 (/13)	

  If the 12 pairs of subsystems of Table 1 commute, then all 13Y 396 weakly commuting pairs of systems commute. Again, this fact can be mechanically checked by considering the set formed by all 5Y 612 SN-commuting pairs extended with the 12 pairs of Table 1, and by checking that the closure of this set of 5Y 624 pairs under Lemma 2 yields the set of all 13Y 396 pairs that full BCCs. To conclude, it suces to prove: Proposition 4. | The 12 pairs of Table 1 commute.

	1 we get:		
	Proposition 3. | If (s 1 Y s 2 ) j = BCC and AppLam a P (s 1 + s 2 ), then s 1 aa s 2 .
	3.4 Propagation of commutation lemmas		
	Let us now consider the 512 ¢ 512 matrix formed by all 131Y 328 (unordered) pairs of subsystems of !f g 2 . With the help of a small computer program 3 , we easily check that 13Y 396 of the 131Y 328 pairs of systems full BCCs|and thus
	weakly commute. Moreover, 5Y 612 of these 13Y 396 weakly commuting pairs do not involve AppLam|and thus we know that they commute. The situation is summarised in the following table:
	SN + commuting (= XAppLam + BCC) Weakly commuting (= BCC)	Pairs (s 1 Y s 2 ) s 1 = s 2 5,612 160 13,396 248
	Total	131,328	512
	The problem is now to check that the 13Y 396 5Y 612 = 7Y 784 remaining
	weakly commuting pairs commute too. For that, we notice that:	
	Fact 2 |		

Table 1 .

 1 The 12 initial commutation lemmas Corollary 2. | !f g is conservative over !-calculus, in the sense that:

  Denition 9 (Separability). | We say that two terms w 1 and w 2 are: { weakly separable if there exists a context with one hole g[] such that either: g[w 1 ] 3 £ z and g[w 2 ] is undened, or g[w 2 ] 3 £ z and g[w 1 ] is undened; { strongly separable if there exists two contexts g 1 [] and g 2 [] such that g 1 [w 1 ] 3 £ z and g 1 [w 2 ] is undened, and g 2 [w 2 ] 3 £ z and g 2 [w 1 ] is undened.

  ).

	Denition 12 (Disagreement at depth d). | For each d P N, we dene a binary relation on the class of completely dened quasi-normal terms, called the disagreement relation at depth d. This relation, written dis d (w 1 Y w 2 ) (`w 1 and w 2 disagree at depth d'), is dened by induction on d P N as follows:
	{ (Base case) We write dis 0 (w 1 Y w 2 ) if either:

  2 , and if either r 1 = fj 1 j gX y and r 2 = fj 2 j gX y for some case bindings 1 Y 2 and for some variable y, and there is a constructor P dom( 1 ) = dom( 2 ) such that dis d ( 1 ()Y 2 ()); or There is a position 1 k min(k 1 Y k 2 ) such that dis d (x 1;k Y x 2;k ).

	Lemma 5 (Cooking lemma). | If w 1 and w 2 are completely dened normal terms (w.r.t. all reduction rules including LamApp = ) such that w 1 T w 2 , then one can nd two completely dened quasi-normal terms w H 1 and w H 2 such that w H 1 3 £ w 1 , w H 2 3 £ w 2 , and dis d (w H 1 Y w H

  H x A x H wx A w H x H U 3 w i ) i=1::n A ( i U 3 w H . If w 3 w H , then w A w H (i.e. 3 & A) 2. If w A w H , then w 3 £ w H (i.e. A & 3 £ ) 3. If w A w H and x A x H , then wfx := xg A w H fx := x H g 4. If w A w 1 and w A w 2 , then there exists w 3 s.t. w 1 A w 3 and w 2 A w 3 (diamond property) Proof: Item 1: by induction on the derivation of w 3 w H . Item 2: by induction on the derivation of w A w H . Item 3: by induction on the derivation of w A w H . Item 4: by induction on the derivation of w A w 1 . 2 From this we deduce that A £ = 3 £ , and thus: Proposition 8 (1/12). | AppLam aa AppLam, i.e. AppLam is conuent.

	(pApp)
	w A w H A H fjj gX w A fj H j gX w H (pCase)
	w 1 A w H 1 ¡ ¡ ¡ w n A w H

n ( i i ) i=1::n (pCBind)

As usual, we check that:

Proposition 7 (Properties of A). 1

In what follows, we count (s1; s2) and (s2; s1) as a single pair of systems.

This program can be downloaded from the web pages of the authors.

Actually, we will prove our separation theorem only for completely dened normal terms (cf subsection 4.2).

Proof: The proof proceeds by merging the following diagrams, that cover all the possible cases:

that w 3 A w 1 and w 3 B w 2 there exists w 3 such that w 1 3 =B w 3 and w 2 3 £ A w 3 . In other words, the following diagram holds: The commutation between AppLam and CaseCase is more delicate to handle since both rules may duplicate redexes of the other kind during contraction.

However, the problem is greatly simplied if we replace AppLam by A (parallel AppLam-reduction), since:

Lemma 8. | CaseCase strongly commutes with A.

Proof: By induction on the derivation of A. 2 Proposition 10 (7/12). | AppLam aa CaseCase.

Proof: By lemma 6, we know that CaseCase commutes with A. But since we know that A £ =3 £ , we are done.

2

The following lemma describes the interaction between the reduction rules AppLam and LamDai, generalising critical pair (2) of Fig. CL 1 1 CA (The diagrams above come from lemmas 7, 17, 15 and 14, respectively.) The second diagram is deduced from the rst diagram, by induction on the number of (LamApp + CaseApp)-reduction steps (see [START_REF] Arbiser | A -calculus with constructors[END_REF] for the details).

2 Proposition 14 (11/12) 

(Non annotated diagrams describe the interaction between two linear rules that have no critical pair.)

2

Proposition 15 (12/12). | AppLam + AppDai + CaseDai + CaseLam commutes with LamApp + LamDai + CaseDai + CaseApp.

Proof: Again, let s 1 = AppLam + AppDai + CaseDai + CaseLam and s 2 = LamApp + LamDai + CaseDai + CaseApp. The proof of conuence is done by induction on the (s 2 + CL + CD)-depth of the top term, using lemma 20 to close the diagram (see [START_REF] Arbiser | A -calculus with constructors[END_REF] for the details).

B Conuence of the whole system B C

Each item of the following (mechanically constructed) proof states a commutation property (s 1 aa s 2 ) which is either:

{ an item of Table 1;

{ a consequence of (s 1 Y s 2 ) j = BCC and (s 1 + s 2 ) j = SN;

{ a consequence of two former items using the rule of inference:

if e aa f and e aa g, then e aa (f + g) .