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Abstract

Modelling is becoming a necessity in studying biological signalling pathways, because the
combinatorial complexity of such systems rapidly overwhelms intuitive and qualitative forms
of reasoning. Yet, this same combinatorial explosion makes the traditional modelling paradigm
based on systems of differential equations quickly impractical, if not conceptually inappropriate.
As an alternative, we propose an agent-based / concurrent language, named x [4-8], which
places causal reasoning front center. We illustrate how k transparently represents biological
knowledge, thereby making models easier to build, discuss, modify, and merge. By taming
the combinatorial explosion, circumventing the frustrations of handling opaque systems of
equations, and lowering the mathematical threshold for molecular biologists, s holds promise
for making modelling more widely available.

The causal structure of processes [9], is largely absent from systems of differential equations,
yet it deeply shapes the dynamical, and perhaps even evolutionary, characteristics of complex
distributed biological systems. We illustrate the use of k and its associated causal analysis by
means of a model of EGFR signalling that would overwhelm any traditional approach. The
model is obtained by refactoring two extant models based on differential equations [3,19]. We
formalize the colloquial concept of pathway in terms of a special kind of event structure and
illustrate how the juxtaposition of it with relationships of conflict between rules can be used
to dissect EGFR signalling dynamics.

1 Background

A large majority of models aimed at investigating the behavior of biological pathways is cast in
terms of systems of differential equations [3,12,14,15,17,19]. The choice seems natural. The theory
of dynamical systems offers an extensive repertoire of mathematical techniques for reasoning about
such networks. It provides, at least in the limit of long times, a well-understood ontology of
behaviors, like steady states, oscillations, and chaos, along with their (linear) stability properties.
The ready availability of numerical procedures for integrating systems of equations, while varying
over parameters and initial conditions, completes a powerful workbench that has successfully carried
much of physics and chemical kinetics. Yet, this workbench is showing clear signs of cracking under
the ponderous combinatorial complexity of molecular signalling processes, which involve proteins
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that interact through multiple post-translational modifications and physical associations within an
intricate topology of locales [18].

Representations of chemical reaction networks in terms of differential equations are about chem-
ical kinetics, not the unfolding of chemistry. In fact, all molecular species made possible by a set
of chemical transformations must be explicitly known in advance for setting up the corresponding
system of kinetic equations. Every molecular species has its own concentration variable and an
equation describing its rate of change as imparted by all reactions that produce or consume that
species. These reactions, too, must be known in advance. Many ion channels, kinases, phosphatases,
and receptors — to mention a few — are proteins that possess multiple sites at which they can be
modified by phosphorylation, ubiquitination, methylation, glycosidilation, and a plethora of other
chemical tagging processes. About one in a hundred proteins have at least 8 modifiable sites, which
means 256 states. A simple heterodimer of two distinct proteins, each with that much state, would
weigh in at more than 65,000 equations. It is easily seen that this combinatorics can rapidly amount
to more possible chemical species than can be realized by the actual number of molecules involved
in a cellular process of this kind. The problem is not so much that a deterministic description is
no longer warranted, but rather that the equations, whether deterministic or stochastic, cannot be
written down anymore. And if they could, what would one learn from them?

This difficulty is well recognized. One way out is to use aggregate variables decribing sets
of modification forms. For example, one might bundle together all phosphoforms of a receptor,
regardless of which sites are phosphorylated. This, however, is problematic. First, the choice
of what to aggregate and not is unprincipled. Second, the appropriate level of aggregation may
change over time as the system dynamics unfolds. Third, the aggregation is error prone, since it
has to be done without a prior microscopic description. A further, more subtle, difficulty is that
an extensional system of differential equations describes the constituent molecules only in terms
of interactions that are relevant in a given context of other molecules. It does not characterize
molecular components in terms of their potential interactions that could become relevant if the
composition of the system were to change. As a consequence, “compositional perturbations”, such
as adding a novel molecular component (a drug) or modifying an extant one (to model the effects
of knocking out a site or adding a new domain) are virtually impossible to carry out by hand,
since they require, again, enumerating all chemical consequences in advance and then rewriting all
affected equations.

These problems have led to recent attempts at describing molecular reaction networks in terms
of molecules as “agents”, whose possible interactions are defined by rules that specify how a local
pattern of “sites” and their “states” is to be rewritten [2,10]. This resembles good old organic
chemistry, except that biologists think of post-translational modifications less as chemical trans-
formations (which, of course, they ultimately are) than as state changes of the same agent. A
phosphorylated kinase is, at some useful level of description, still the same entity - though in a
different state - than its unphosphorylated version. Indeed, biologists think of the state of an agent
as a specific set of interaction capabilities. The discontinuous change of such capabilities despite
an underlying continuity in agent-type hinges on the large size of a protein, which allows for a sig-
nificant change in hydrophobic and electrostatic dispositions without much changing the protein’s
overall chemical identity. In contrast, chemists dont think of oxaloacetate as being a different state
of pyruvate.

A rule may specify, for example, that if site Y996 of protein A is phosphorylated, protein B
can bind to it with its site SH2. Since this rule applies regardless of whether A or B are bound
to other partners or possess other sites with particular states, it captures a potentially large set of



individual reactions between distinct molecular species. The need for spelling out all these reactions
was spelling problems for “flat” (extensional) reaction network representations, whereas modifying
or extending a reaction system is now as simple as modifying a single rule or merging sets of rules,
respectively.

Our stance in this paper is to forgo writing out differential equations. Instead, we directly
operate at the level of rules defining the interactions among a set of agents. The principal challenge
is to do so without abandoning the possibility for formal analysis. In the dynamical systems
framework, the set of differential equations was a formal object amenable to analysis - even if that
analysis involves approximations (such as the adiabatic elimination of variables), which are still
rigorous procedures. When replacing a set of differential equations with a set of rules that rewrite
patterns defined on agents and combinations of agents, we should define formal procedures with
which to extract statements about the possible behaviors of a system governed by that set of rules.
In this paper we provide a starting point, mainly in form of an illustrative example, that will be
developed more rigorously elsewhere.

The stance we take is strongly influenced by how computer scientists reason about concurrent or
distributed systems, and in particular by the causal analysis of distributed systems [1,9]. Biological
signalling and control processes are, in fact, massively distributed systems. Taking concurrency
seriously means understanding the organization of such systems in terms of observables defined from
within rather than outside these systems. Time is a particular case in point. In molecular systems,
the temporal precedence among events cannot be defined (at first) on physical time, since cells or
molecules do not bear watches, let alone synchronized ones. It is well known in concurrency that
temporal precedence is a logical relation that gives rise to a partial order, as opposed to a total order.
Some events must occur before others can happen, while other events may happen in any sequence,
reflecting their mutual independence. Clearly, in any particular physical realization one will observe
a particular sequence of events. The issue, however, is to uncover which aspects of that sequence
are necessary and which contingent. The issue is to discover the invariant structure underlying
all observable sequences. That structure is derived from the concept of event structure [21] and
represents the form of causality we seek to illustrate in a biological example. Differential equations
are unable to resolve this causality, precisely because they treat time as global, as if everything
proceeded in a synchronized fashion. In contrast, the rule-based approach seeks to understand the
dependencies that constrain an observable event, such as the production of a particular molecular
complex. The rule-based approach permits to clarify the causal relationships between rules that
explain how a path toward a specified event has unfolded from initial conditions. Such a path seems
an appropriate formalization of what biologists colloquially call a “signalling pathway”.

There are many paths towards a particular event. It therefore becomes paramount to isolate
those paths that occur with significant frequency from a given starting condition. In addition, paths
are themselves time-dependent in reflection of the changing composition of resources available to
their occurrence. To sample pathways, requires fast and scalable stochastic simulation tools, which
we have implemented and described elsewhere [5].

Last, but not least, a consistent rule-based framework permits the storage and clean update of
all knowledge about the interaction capabilities of a biomolecular agent, regardless of whether all
of these capabilities are needed in a particular model of signalling. A rule need only mention the
interface of an agent that is relevant to that rule. In this sense, rules and agents expressed in a
formal grammar represent empirical knowledge that is executable.

Here we sketch some early steps towards developing formal analytical tools that, in conjunction
with stochastic simulation, can generate insights into the collective properties of distributed rule-



based systems. In outline, we build a model that would be quite large and unwieldy by traditional
standards, but appears fairly simple within our framework. We then construct causal histories,
called stories, of the type described above. On the basis of relationships of activation and inhibition
(or conflict) between rules, we identify key junctures in the system’s dynamics that yield explanatory
insights and suggest numerical experiments.

To introduce the framework, we warm up with a simple example of an ubiquitous control motif
in cellular signal processing: a futile cycle of enzymatic modification and demodification of a target
substrate.

2 A futile cycle

2.1 Agents and rules

The K description of a system consists of a collection of agents and rules. An agent has a name
and a number of labeled sites, collectively referred to as the agent’s interface. A site may have
an internal state, typically used to denote its phosphorylation status or other post-translational
modification. Rules provide a concise description of how instances of agents interact. Elementary
interactions consist of the binding or unbinding of two agents and the modification of the state of a
site. This seems limited, but closely matches the style of reasoning that molecular biologists apply
to mechanistic interactions in cellular signalling. While this approach does not address all aspects
of signaling (such as compartmentation), it does cover a substantive body of events sufficient for
the present purpose.

To develop the main concepts, we start with a system consisting of three agents: a kinase K, a
target T with two phosphorylatable sites, and a phosphatase P. We first describe a phosphorylation
event by means of three elementary actions and their corresponding rules: (1) the kinase K binds
its target T either at site x or y; (2) the kinase may (but need not) phosphorylate the site to which
it is bound; (3) the kinase dissociates (unbinds) from its target. For ease of reference, we label
rules with a mnemonic on the left. Using a textual notation, we represent internal states as ‘~u’
(unphosphorylated), and ‘“p’ (phosphorylated), and physical associations (bindings or links) as ‘!’
with shared indices across agents to indicate the two endpoints of a link. The left hand side of a
rule specifies a condition in the form of a pattern expressed as a partial graph, which represents
binding states and site values of agents. The right hand side of a rule specifies (usually elementary)
changes to agents mentioned on the left. A double arrow indicates a reversible rule. With these
conventions, the phosphorylation process of sites x or y translates into:

'KT@x’ K(a),T(x) <-> K(al!l),T(x!1)
"Tp@x’ K(a!l),T(x"u!l) -> K(a!1l),T(x"p!1)
’KTQy’ K(a),T(y) <-> K(a!1),T(y!'1)
>Tp@y’ K(a!l),T(y"u!l) -> K(a!1),T(y"p!'1)

Likewise, the action of the phosphatase P, which undoes the action of K, is described by a set of
dual rules:

’PTOx’> P(a),T(x) <-> P(a!l),T(x!1)
’Tu@x’ P(a!l),T(x"p!1) -> P(a!l),T(x"u!l)
’PTQy’ P(a),T(y) <-> P(a!1l),T(y!'1)
’Tu@y’ P(a!l),T(y"p!1) -> P(a!l),T(y"u!l)
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Figure 1: A Goldbeter-Koshland contact map: nodes represent the three kinds of agents in the rule set,
together with their sites, and each site is connected sites it can bind to; whether a site can be modified
is indicated by a colour code (green). Although very simple, the associated rule set generates already 38
non-isomorphic complezxes (36 of which contain T).

It is possible to associate rate constants with each rule, as we shall do later. We refer to this
rule set as the Goldbeter-Koshland (GK) loop [11]. It is a frequent motif that appears in many
variants throughout cellular signal transduction. Notice how the specification of elementary actions
forces us to make our mechanistic choices explicit. The example views phosphorylation of T by K
as a distributed mechanism, whereby the kinase lets go of its target before phosphorylating it (or
another instance) again, since it cannot remain bound to site x and phosphorylate site y. Other
variants of multisite phosphorylation involve a processive mechanism whereby the same kinase acts
sequentially on some or all sites of its target. Further variants still would have to specify whether
multiple kinases can be bound to the same target or not.

2.2 The contact map

Large rule sets can be difficult to understand, although they are nowhere nearly as opaque as
models based on thousands of differential equations. It is therefore important to have a suite of
views that report at a glance information implied by the rules. Such cognitive devices are useful
for a piecewise modular construction of the system of interest. They also allow for a modicum
of reasoning about the system. A first useful view of the rule set is the contact map, which is
akin to a protein-protein interaction (PPI) map and is shown in Fig. 1. The contact map is a
graph whose nodes are the agents with their interfaces and whose edges represent possible bindings
between sites. Potential site modifications are indicated by a colour code. The contact map does
not provide causal information, in the sense that it does not specify which conditions must be met
for a modification or binding to occur. It only shows possibilities. It may be thought of as a static
typing of a rule set.

2.3 Trajectories

With a rule set in place, one can generate time courses, or stochastic trajectories, for user-defined
observables. One selects an initial state, which here consists of 100 instances of each of the three
agents with their interfaces in defined states, T(x"u,y"u), K(a), P(a). In addition, rate constants
may be specified for each rule (see the caption to Fig. 2(a)). We chose to track two observables:
(1) the number of doubly phosphorylated target molecules, regardless of whether sites x and y are
bound to enzymes, which is written as T(x"p?,y"p?), and (2) the number of target instances T



that are fully phosphorylated but free on both sites x and y, T(x"p,y~p). As can be verified in
Fig. 2(a), the latter observable has to be smaller since it is more stringent. The trajectories are
obtained using an entirely rule-based continuous time Markov chain (Gillespie) kinetics [5]. At
any given time a rule can apply to the set of instances in the system in a number of ways. That
number is multiplied by the rate of the rule and defines the rule’s activity or flux. It determines the
likelihood that this rule will fire next. The total activity of the system determines probabilistically
the associated (simulated) time advance. One has to keep in mind that such trajectories are but
one realization of a stochastic process that will differ slightly when repeated. Statistical properties
require averaging over many runs, but we shall not be concerned with them here.

25 9

oy
KPT eldy dat 13
KT, MT) a2 ——

T
KPT_study.dat'u 12 ——
'KPT_study dat u 13

sk

0k N U :: - — B L _ L
A |

10+ n — - | |
|
N |
s el L ;_‘ r
— . i L | | [l | - |

n nn n
\H‘ \‘
|

0

(a) Association and modification rates are set to 1,  (b) Same model perturbed by a tenfold increase in
and dissociation rates are set to 10 (per time units).  the association and modification rate of P at site x.

Figure 2: Simulation of the Goldbeter-Koshland loop: the initial state has a hundred instances of each
agent, each disconnected and unphosphorylated; the level of doubly phosphorylated target is lower in the
perturbed case (right).

2.4 Causality and stories

The contact map and the trajectory samples represent an agent-centric view of the system’s evo-
lution. They do not answer directly the question of which succession of events results in a fully
phosphorylated form of the target T. This is where the notion of pathway or story comes into play.
An event is said to cause another event, if the former cannot possibly happen after the latter. An
example is an event of type Tu@x, which requires the prior occurrence of an event of type PT@x. This
notion of causation defines a partial order on any sequence of events. The fact that two events may
succeed one another in a particular trajectory does not imply that they are in a causal relationship.
An example is provided by two successive events of type KT@x and KT@y. Events that are not related
by precedence are said to be concurrent.

By a story we mean the causal lineage that led to an instance of a user-defined observable.
Causality is an acyclic relationship between events (instances of rule applications), not agents. An
observable in a story must therefore be a rule that produces a particular molecular configuration
that one wishes to observe. If there are many rules, one may define an “identity-rule”, which
(eventually) detects the appearance of the desired configuration. The precise causal lineage is
reconstructed using backtracking methods once the specified event has occurred in the system.



The idea behind a story is to retain only those events in the causal lineage that contributed a
net progression towards the event of interest. This means in particular that circular histories are
detected and eliminated. Circular histories generate a situation that is subsequently undone without
leaving a side effect that impacts the causal lineage later on.

In sum, every good story has a beginning, a middle, and an end. A story is a sequence of events
that:

- begins with the initial condition and ends with the observable event,

- consists only of events that are in the causal lineage to the observable (which eliminates events
that are concurrent to the observable)

- contains no event sequence that revisits a situation encountered previously (which eliminates
circles).

For the sake of simplicity, we now change the initial condition to consist of one instance of each
agent. This yields two stories depending on whether K hits x or y first (Fig. 3 shows the former).
If the initial condition contained more than one K, there would be a third story in which both
sites are phosphorylated by different K-agents. Stories proceed in logical time, not physical time,
and are therefore partial orders. The technical definition of causality between two events, e; — e,
means that (1) either es could not have happened before e or (2) e3 would have prevented e; from
happening. This corresponds to the intuition of one event (e;) pointing “downstream” to another
(e2).! The partial nature of logical time seems well-suited for signalling networks in which a huge
number of events do happen concurrently, making it difficult to spot the “organization” of events
as implied by a set of mechanisms expressed by rules. It is intuitively clear that the very notion
of signal has to do with the fact that some events enable or prevent others and therefore don’t
permute.

[My~ux-wio ] [ K@t |
PT@x i [KT@x]_11

Figure 3: A story: inhibitions or spoilers on the story are shown on the left. Event numbers represent
the actual step in the stmulation where these events occurred; missing events are either concurrent, or not
represented because of successive opposite rules applications.

2.5 Rule inhibition and activation maps

As seen with stories, drawing on the classical notion of causation, one obtains an event-centric view
of a system. A more detailed view results from adding the classical concept of conflict between

ITo keep things visually manageable, one represents only a reduced version of such relationships. The reduced
set is such that its transitive closure regenerates the full orginal set of causal relations.



events. Two events are in conflict, if either event can happen, but not both. An example is given
by the application of the rules KT@x and PT@x. Both rules potentially apply at the same time to a
free instance of site x, but only one can actually occur. It is important to emphasize that conflict
is defined over events (application instances of rules), not rules. Yet, the notion of conflict projects
to rules in the sense that two rules conflict, if they can lead to conflicting events. Another way of
viewing conflict at the rule level is to think of one rule inhibiting another rule, because application of
the former destroys instances to which the latter could apply. The notion of conflict (or inhibition)
between rules is not symmetric: rule X may conflict with rule Y, but not the other way around.
The reason lies in aspects of a pattern on the left hand side of a rule that are only tested but not
modified by it. The application of rule X may therefore alter aspects of a pattern that are only
tested by rule Y. This is sufficient for X to destroy instances eligible for rule Y. Yet, the application
of Y to those same instances would not make them ineligible for rule X.

Complementary to the notion of conflict is the notion of activation. Here, rule X is said to
activate rule Y if an application of X may increase the number of instances to which rule Y applies.
This means in particular that rule X changes aspects of a pattern that could, in some instance,
have been the last ones missing for rule Y to apply. Yet, it may equally be the case that, in a given
instance, rule X alone is not sufficient to make rule Y apply, but rule X contributes to moving the
pattern closer to the specification given on the left hand side of rule Y. The influence map given in
Fig. 4 recapitulates the main conflict and activation relationships between rules in the GK set.

2.6 Spoilers of stories

Because a story reflects causation between events, it lends itself as a scaffold for superimposing
rules that are in conflict with it. As can be seen in Fig. 3, it is possible to represent spoilers of a
given story by merging conflict relations from the inhibition map with a story of interest. These
spoilers can actually pinpoint kinetic opportunities for delaying a story’s ending or reducing its
significance. For instance, as shown in Fig. 2(b), a tenfold increase in the rate constants of PT@x
and Tu@x yields a much lower value for the observable.

Tu@y Tu@x Tp@x Tp@y

N

PT@y_op PT@x_op KT@x_op KT@y_op

Figure 4: The rule influence map of the Goldbeter-Koshland loop. Nodes are rules, edges represent causation
(green), or conflict (red, not always symmetric). Trivial causations between a rule and its opposite are not
shown. The final doubly phosphorylated state is represented at the bottom (red).



This concludes the introduction of the main concepts underlying our rule-based approach to the
analysis of signalling processes. We next proceed to apply these ideas to the more complex example
of an EGF receptor model coupled to a MAP kinase cascade. In its full form, as presented in
Ref. [16], EGFR signaling is a highly complex suite of pathways whose boundaries to other signaling
systems appear increasingly blurred. While the present model falls far short of representing this
complexity, it goes some way towards demonstrating how to eventually represent and face it.

3 EGFR model construction

The pathway to the activation of ERK has been the target of intense modelling efforts over the past
decade. The ubiquity and importance of the pathway for biomedical applications [20, Chap. 5] have
spurred extensive studies at the mechanistic level of protein-protein interactions and localizations.
At the same time, the subtleties uncovered by these investigations (see, for example, the receptor
network combinatorics of the pathway [13]) have made it clear that intuition alone, however sharp,
cannot front the complexity and only risks flushing enormous amounts of drug development money
down the drain. To calibrate the reader on the magnitudes involved, the particular model pre-
sented below generates about 400,000 different (non-isomorphic) molecular species. An exhaustive
approach with differential equations would, in principle, require that many equations. And that is
in no way a large example.

In outline, a signal arrives at the cell membrane in the form of a ligand, EGF, which binds to
the extra-cellular portion of a special receptor protein, EGFR, that straddles the membrane. With
the arrival of EGF, an EGFR becomes capable of binding to a neighbouring EGFR. also bound to
a ligand. Such receptor pairs can cross-activate one another, meaning that certain of their intra-
cellular residues become phosphorylated. These phosphorylated residues now serve as binding sites
for a variety of proteins in the cytoplasm. This in turn leads to the activation of a small protein,
Ras, that serves as a kind of relay for triggering a cascade of phosphorylations which comprises
three stacked GK loops in which the fully phosphorylated form of one loop acts as the kinase of
the subsequent loop, causing the overall cascade to behave like an amplifier and culminating in the
activation of ERK.

Fig. 5 depicts the contact map of a substantial body of rules describing also the AKT path-
way downstream the same family of receptors. The associated rule-based model overlays a causal
structure on the contact map by specifying, for example, that Ras can only bind Raf if it has been
phosphorylated beforehand at site S1S2. For the purpose of the present paper, we will restrict
ourselves to the subset of rules relevant to the two left components of the contact map (Fig. 5).
The rule set itself was mainly obtained from refactoring two existing ordinary differential equations
(ODE) models [3,19] treating two different aspects of EGF-EGFR signalling: down-regulation of
Erk activity through a negative feedback and down-regulation of the signal through internalization.
Refactoring involves searching the literature for mechanistic details germane to the interactions rep-
resented in ODE models. It was surprisingly easy to combine both components into one x-model.

In its present form, our basic EGFR scheme consists of a:

- receptor module, which for illustration purposes retains only the EGFR (or ErbB1) receptor, but
includes internalization dynamics through (at the moment) fictitious “sites” whose state flags local-
ization. This module can be refined to include a receptor heterodimerization network comprising
all four receptors of the ErbB family.

- adaptors and relays, such as Sos, Grb2, and Ras. These too can be extended as the complexity of
the model is built up in a stepwise fashion.



Figure 5: The contact map of the joint AKT and ERK pathways: edges represent potential bindings between
sites; modes are the agents of the model; sites can be modified, or bound (blue), or both (green). In this
paper we are only concerned with the left components and their interaction via the negative feedback arising
from the CD-SS edge from ERK to SoS (in red). The rule set is given in the appendiz.

- the target MAPK cascade.
Our basic EGFR model contains 68 rules (see appendix for the complete rule set), which generate
more than 400,000 distinct complexes.

4 Causality

4.1 Ras activation

An examination of the contact map immediately reveals a potentially critical role for Ras in the
behaviour of the model: Ras has only one site but can bind to three distinct agents (SoS, RasGAP
and Raf) and so probably forms a bottleneck. Inspection of the rules governing these four agents
allows us to refine the contact map: Ras’s site has an internal state (representing active or inactive),
only SoS can bind to an inactive Ras, whereas RasGAP and Raf must compete for active Ras.

In terms of signal propagation, SoS activates Ras so that Ras can in turn activate Raf. RasGAP
plays an inhibitory role by deactivating Ras. We can observe this chain of causality by extracting
stories for rules expressing Ras’s recruitment of Raf (Fig. 6 and 7).

RasGAP does not appear in either of these stories, confirming that it plays no role in the logical
propagation of the signal. RasGAP, however, does play a role in shaping the kinetics of signal
propagation. Indeed, most sequences of events leading to Raf’s recruitment do exhibit RasGAP
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| [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)] 10 | [ [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR) 8 |

[ [EaF EGFR 12 | | (EGF EGFR] 13 ]
[ [EcFRe@1068] 22 | [ [Gro2(sHa,sH2) 2 | [ 1SoS(b,a,SS~u)13 |
[ [EGFR Gro2 26 | [ 1Grb2 sos] 50 | [ Tintro:Ras(S152~gdp)1 5 |

I [short arm SoS_Ras]_52

Figure 6: Short arm activation of Ras (without Shc)

[ [EGF(~ext) 7 | [[EGFR(Y992~u,Y1148~u,Y1068~uL~extCR)]_10 | [ [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)| 8 | [ [EGF(~ext)] 9 |

[EGF_EGFR]_12 [EGF_EGFR]_11
| [EGFR_EGFR]_13 |

[ ishevate~uptB) 0 | [ [EGFR@1148] 15 |

[EGFR_Shc]_16
[Shc@318]_18 |

[Grb2(SH3,SH2) 1| [ [sospass-uy3 |

[Sho_Grb2] 19 [ (Gro2_sos] 47 | [ [Ras(S1S2~gdp)l 5 |

Figure 7: Long arm activation of Ras (with Shc)

intervention, a typical example being given Fig. 8. This example emphasizes a slightly paradoxical
effect of the EGF signal: in order to propagate the signal, SoS is induced to activate Ras (and
hence the downstream cascade to ERK) but, at the same time, the signal also induces RasGAP
to frustrate SoS’s work. Of course, a signal needs to be controlled and eventually down-regulated,
so the existence of a RasGAP-like agent should be expected. Yet, the fact that both the positive
(SoS) and the negative (RasGAP) influences on Ras depend on the same signal suggests that Ras’s
activation dynamics only depend on the relative concentrations of SoS and RasGAP: if RasGAP
dominates, Ras activation will be weak and short-lived; if SoS dominates, it will be stronger and

11



last longer.

[1EcF(ext1_7 | [ [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext.CR)|_8 | [[EGF(~extL9 | [ [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext, CR)L_10 |

[EGF_EGFR]_12 [EGF_EGFR]_13
[EGFR_EGFR] 16
[[sosbass-wi3 | [Iera(sHasH2) 2 | [EGFR@1068] 19 [ EGFRessz] 17 |  [(RasGAP(s;SH2)l 4]
[Grb2_SoS] 24 [EGFR_Grb2] 22 [EGFR_RasGAP]_20

[Ras(S1S2~gdp)]_5
[short arm SoS_Ras]_26 |—————
[Ras GTP]_60
[SoS_Ras_op]_67

[short arm SoS_Ras] 85 |y

[Ras GTP]_86
[Raf(x~u)_6 [SoS_Ras_op]_92
[Ras_Raf]_107 []

Figure 8: Battle between SoS and RasGAP

4.2 SoS deactivation

SoS has a second enemy in the form of activated ERK, the endpoint of this pathway that SoS
has contributed to. Activated ERK phosphorylates SoS, inhibiting the formation of the complex
between Grb2 and SoS (Fig. 9).

For the duration of the SoS’s phosphorylation, this substantially weakens the signal from SoS
to Ras, essentially shifting the balance in favour of RasGAP. As a result, the level of active Ras
decreases which, with a small delay, causes a significant reduction in active ERK at the bottom
of the cascade. At that moment, SoS is no longer being strongly targeted by ERK and can, once
more, signal to Ras. We thus see a cyclic process of activation and then inhibition of Ras, leading
to an oscillating activation pattern for ERK, typical of a cascade embedded in a negative feedback
loop [14].

The crucial parameter determining the shape of these oscillations is the “recovery rate” of SoS
from its phosphorylation by ERK. A slow recovery rate leads to a clear oscillation of the cascade. As
the rate of recovery increases, the cascade oscillates more quickly, albeit with the same amplitude.
With a sufficiently rapid recovery rate, the cascades achieves a transient activation, again with the
same amplitude, with a little oscillation as the signal dies (Fig. 10).

4.3 ERK and MKP3

Another factor regulating the effect of the negative feedback to SoS comes from MKP3, the phos-
phatase targeting ERK, as suggested by the spoilers shown in Fig. 9. A higher concentration of
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Figure 9: Negative feedback from active ERK to SoS

MKP3 will tend to hamper activation of ERK and this impacts the rate of oscillation at the cascade:
increasing the concentration of MKP3 over successive simulations, one observes (without surprise)
that the amplitude of ERK activation decreases. However, one also observes that ERK remains
active for less time, leading to a gradual increase in the frequency of oscillation (Fig. 11). In ad-
dition, the signal attenuates faster: with more phosphatase in the system, ERK requires a higher
“threshold” concentration of its kinase (MEK) in order to achieve significant activation.

While this obviously constitutes a spoiler of ERK activation, it also protects SoS from being in
turn spoiled by ERK. However, this secondary effect turns out to be fairly minor, since a typical
system contains more ERK than SoS molecules. Therefore, even a reduced level of ERK activation
suffices to mount a powerful spoiling of SoS.

One final parameter substantially influences ERK’s level of activation: the speed of SoS phos-
phorylation by ERK. A slow rate limits the effect of the negative feedback, leading to a longer and
steadier period of Ras and ERK activation and little to no oscillation. A fast rate accentuates the
negative feedback effect, considerably shortening the time during which Ras signals and, in tandem
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Figure 10: Oscillations and rates of SoS recovery.

with a slow recovery rate, leads to a pronounced, low-frequency oscillation (Fig. 11).

5 Conclusions

600

We have illustrated how rule-based modeling transcends the bottleneck of the traditional ODE-
based framework. It does so in many important ways both practical and conceptual, which we

summarize here.

Rule-based modeling tames the combinatorial explosion by decontextualizing reactions between
As an immediate corollary, modifications and

molecular species into rules defined on patterns.

extensions become fairly straightforward.

Rules represent nuggets of mechanistic knowledge that current experimental practice is rapidly
accumulating. Rather than expressing such knowledge in terms of human language or non-actionable
graphical information, it seems vastly more useful to represent it in a context-free grammar ready
for computational consumption. Much like chemical reactions, rules can be viewed as operational
“instructions” that can be let loose on a set of initial molecular agents, driving the unfolding of
pathways and their kinetics. In this sense, x-rules make knowledge executable. The granularity of
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Figure 11: Impact of MKP3 concentration on pathway oscillations.

such rules is, in principle, adaptable to the needs of bench scientists. We believe that the current
level of granularity offered by & or the variant langugae BNG [2] meets the most urgent practical
needs.

Sets of rules are not just inputs to simulators, like systems of differential equations are not just
inputs to numerical integrators. Rather, rule sets replace systems of differential equations as formal
entities that can be subject to rigorous analysis from which to extract predictive and explanatory
information about the behavior of systems. In contrast to the synchronicity of differential equations,
rules operate in a concurrent execution model, which is a far more appropriate representation of
what is actually going on in cells. This constitutes rather unfamiliar terrain for many biologists.
Yet, this is the turf that has been successfully plowed for over thirty years in computer science.
We have shown how notions of conflict and causation can be used to build maps that relate rules
with one another. We have defined a concept of story, which we believe formalizes the intuitive
notion of “pathway” that biologists entertain. Stories are partial orders representing causal lineages
that explain how a given observable arises in logical time. Stories change in time, since they
depend on available molecular resources. The superposition of stories with rule inhibition maps
identifies potential “story spoilers”, junctures at which logical structure meets kinetics. We have
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made extensive use of this trick to explain several dynamical and logical features of a simplified
EGFR signalling system. Our experience is that this mode of reasoning matches quite naturally
the way biologists intuitively go about telling their “stories”. The only difference is that our
framework formalizes this process and therefore enables computational procedures to tackle much
more complicated systems in rigorous ways when the story-telling of biologists risks degenerating
into just that.

It is worth emphasizing that the main dynamic characteristics of our modest EGFR case were
obtained with uniform rate constants for all rules. The impact of certain rules on these characteris-
tics was then explored by dialing up different rate constants. This is not to say that rate constants
don’t matter, but it does hint at the importance of the causal architecture of a system in shaping
dynamics. Disentangling the contribution of causal structure and rates to overall systems dynamics
is hardly possible in large systems of differential equations. By forgoing this separation, modelers
who fit rate constants to ODE systems risk to engage in an idle encoding exercise rather than a
modeling process, since many behaviors can be inscribed into any sufficiently large system of ODEs
by appropriate choice of rate parameters. We believe that rule-based modeling affords a strategy
whereby one first tries to get the logical structure to generate key dynamical characteristics and
then tunes the rate constants to obtain the fine structure. If the logical structure is insufficient,
odds are that our knowledge is insufficient and that more experiments are better than more models.

It is useful to think of rule-based modeling as a task in concurrent programming, in which rules
are computational instructions that contribute to system behavior. It is difficult to grasp how
concurrent systems — in particular natural ones like cells, tissues, and organisms — function and
why they function the way they do. Modeling in a rule-based format yields a better appreciation of
the role played by individual mechanisms in generating collective behavior. Linking architecture to
behavior will produce more informed strategies for intervention in the case of disease and will help
us distill the principles that enabled cells to evolve such versatile information processing systems
in the first place. Like in programming, however, there is ample opportunity for mistakes. In fact,
a model might be wrong not because it isn’t a correct description of the world, but because it
may not express what the modeler intended (think typo). To catch such mistakes is crucial and
will eventually necessitate a veritable “modeling environment” with sophisticated debugging and
verification tools. The complete absence of such tools in the traditional ODE framework, makes
classic models beyond a certain size highly prone to error and exceedingly difficult to maintain. As
in programming, rule-based models are “grown” by merging smaller models to build larger models
that are easily refined by incorporating new empirical knowledge. Rule-based modeling is as much
a scientific instrument as it is effective knowledge management.
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Appendix: the model code

This appendix contains the s rendition of the Schoeberl et al. (2002) EGFR model [19], combined
with the negative feedback of the earlier Brightman & Fell (2000) model [3]. Rule names used in the
body and figures of the paper are defined below. Rates were all set to 1, unless specified differently
in the rule set or in the nunerical experiments reported in the paper.

Some rules below use an additional ! _ notation, meaning ‘bound to something’, as a convenient

way to shorten rules.
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# phase -> activated dimers

# external dimers:

’EGF_EGFR’ EGF(r~ext), EGFR(L"ext,CR) <-> EGF(r~ext!1), EGFR(L"ext!1,CR)
’EGFR_EGFR’ EGFR(L"ext!_,CR), EGFR(L"ext!_,CR) <-> EGFR(L~ext!_,CR!1), EGFR(L ext!_,CR!1)
# simplified phosphorylation (internal or external)

’EGFR@992’ EGFR(CR!_,Y992%u) -> EGFR(CR!_,Y992p)

’EGFRQ@1068° EGFR(CR!_,Y10687u) -> EGFR(CR!_,Y10687p)

’EGFR@1148° EGFR(CR!_,Y1148%u) -> EGFR(CR!_,Y11487p)

# simplified dephosphorylation (internal or external)

’992_op’ EGFR(Y992"p) -> EGFR(Y9927u)

’1068_op’ EGFR(Y1068"p) -> EGFR(Y10687u)

’1148_op’ EGFR(Y11487p) -> EGFR(Y11487u)

# phase -> internalization, degradation and recycling
# internalization:

’int_monomer’
’int_dimer’

# dissociation:
’EGFR_EGFR _op’
’EGF_EGFR_op’
# degradation:
’deg_EGF’
’deg_EGFR’

# recycling:
’rec_EGFR’

# phase -> SoS
’EGFR_RasGAP’
’EGFR_Grb2’
’Grb2_So0S’
’Grb2_SoS_op’
’EGFR_Shc’
’Shc_Grb2’
’Shc@318°
’Shc@318_op’

EGF(r~ext!1), EGFR(L"ext!1,CR) -> EGF(r~int!1), EGFR(L"int!1,CR) @ 0.02
EGF(r~ext!1), EGFR(L"ext!1,CR!2), EGF(r~ext!3), EGFR(L"ext!3,CR!2) -> \
EGF(r~int!1), EGFR(L"int!1,CR!2), EGF(r~int!3), EGFR(L"int!3,CR!2) @ 0.02

EGFR(L"int!_,CR!1), EGFR(L"int!_,CR!1) -> EGFR(L"int!_,CR), EGFR(L"int!_,CR)
EGF(r~int!1), EGFR(L~int!1,CR) -> EGF(r~int), EGFR(L"int,CR)

EGF(r~int) ->
EGFR(L~int,CR) ->

EGFR(L"int,¥992%u,Y1068%u,Y1148%u) -> EGFR(L"ext,¥992%u,Y1068%u,Y1148 u)

and RasGAP recruitment

EGFR(Y992"p), RasGAP(SH2) <-> EGFR(Y992"p!1), RasGAP(SH2!1)

EGFR(Y10687p), Grb2(SH2) <-> EGFR(Y1068~p!1), Grb2(SH2!1)

Grb2(SH3), SoS(a,SS™u) -> Grb2(SH3'1), SoS(a!1,SS"u)

Grb2(SH3!1), SoS(a!l) -> Grb2(SH3), SoS(a)

EGFR(Y1148%p), Shc(PTB) <-> EGFR(Y11487p!1), Shc(PTB!1)

Shc(Y3187p), Grb2(SH2) <-> Shc(Y3187p!1l), Grb2(SH2!1)

EGFR(CR!_,Y1148%p!1), Shc(PTB!1,Y318%u) -> EGFR(CR!_,Y1148%p!1), Shc(PTB!1,Y3187p)
Shc(Y318"p) -> Shc(Y3187u)

# phase -> active Ras

# activate:

’long arm SoS_Ras’ EGFR(Y11487p!1), Shc(PTB!1,Y3187p!2), Grb2(SH2!2,SH3!3), SoS(a!3,b), Ras(S1S27gdp) -> \

’short arm SoS_

’Ras GTP’
’SoS_Ras_op’

# deactivate:

EGFR(Y11487p!1), Shc(PTB!1,Y3187p!2), Grb2(SH2!2,SH3!3), SoS(a!3,b!4), Ras(S1527gdp!4)
Ras’ EGFR(Y10687p!1), Grb2(SH2!1,SH3!2), SoS(a!2,b), Ras(S1S27gdp) -> \

EGFR(Y1068"p!1), Grb2(SH2!1,SH3!2), SoS(a!2,b!3), Ras(S152~gdp!3)

SoS(b!1), Ras(S1S27gdp!1) -> SoS(b!1), Ras(S1S2~gtp!l)

SoS(b!1), Ras(S182!'1) -> SoS(b), Ras(S1S2)

’direct RasGAP_Ras’ EGFR(Y9927p!1), RasGAP(SH2!1,s), Ras(S1S27gtp) -> \

’Ras GDP’

EGFR(Y9927p!1), RasGAP(SH2!'1,s!2), Ras(S1S27gtp!2)
RasGAP(s!1), Ras(S1S27gtp!1) -> RasGAP(s!1), Ras(S1S27gdp!'1)
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’RasGAP_Ras_op’

RasGAP(s!1), Ras(S1S2!1) -> RasGAP(s), Ras(S1S2)

’intrinsic Ras GDP’ Ras(S1S2"gtp) -> Ras(S1827gdp)

# phase -> active Raf

# activation:
’Ras_Raf’

’Raf’
’Ras_Raf_op’

# deactivation:
’PP2A1_Raf’
’Raf_op’

Ras(S1S2~gtp), Raf(x"u) -> Ras(S1S2~gtp!1), Raf(x~u!l)
Ras(S1S2~gtp!1), Raf(x"u!l) -> Ras(S1S27gtp!1l), Raf(x"p!l)
Ras(S1S2~gtp!1), Raf(x!1) -> Ras(S1S27gtp), Raf(x)

PP2A1(s), Raf(x™p) -> PP2A1(s!1), Raf(x"p!'l)
PP2A1(s!1), Raf(x"p!1) -> PP2A1(s!1), Raf(x"u!l)

’PP2A1_Raf_op’ PP2A1(s!1), Raf(x!1) -> PP2A1(s), Raf(x)

# phase -> active MEK

# activation:
’Raf _MEK@222°
’MEK@222°
’Raf_MEKQ222_op’
’Raf_MEK@218"’
’MEK0218°
’Raf_MEKQ218_op’
# deactivation:
’PP2A2_MEK@222°
’MEK@222_op’

’PP2A2_MEKQ@222_op’

’PP2A2_MEK@218’
'MEK@218_op’

Raf (x"p), MEK(S222%u) -> Raf(x"p!1), MEK(S2227u!1l)
Raf(x"p!'1), MEK(S222~u!1) -> Raf(x"p!1l), MEK(S2227p!1)
Raf (x"p!1), MEK(S8222!1) -> Raf(x"p), MEK(S222)

Raf (x“p), MEK(S218%u) -> Raf(x"p!1), MEK(S2187u!1l)
Raf(x"p!1), MEK(S218~u!1) -> Raf(x"p!1l), MEK(S218~p!1)
Raf (x"p!1), MEK(S218!1) -> Raf(x"p), MEK(S218)

PP2A2(s), MEK(S222%p) -> PP2A2(s!1), MEK(S222"p!1)
PP2A2(s!1), MEK(S222"p!1) -> PP2A2(s!1), MEK(S2227u!1l)
PP2A2(s!'1), MEK(S222!'1) -> PP2A2(s), MEK(S222)
PP2A2(s), MEK(S218%p) -> PP2A2(s!1), MEK(S2187p!1)
PP2A2(s!1), MEK(S218~p!1) -> PP2A2(s!1), MEK(S218~u!1l)

’PP2A2_MEK@218_op’ PP2A2(s!1), MEK(S218!1) -> PP2A2(s), MEK(S218)

# phase -> active ERK

# activation:
’MEK_ERK@185°
’ERKQ185°
’MEK_ERKQ185_op’
’MEK_ERK@187°
’ERKQ187°
’MEK_ERKQ187_op’
# deactivation:
’MKP_ERK@185°
’ERK@185_op’
’MKP_ERKQ185_op’
’MKP_ERK@187°
’ERK@187_op’
’MKP_ERK@Q187_op’

MEK (s,S52187p,S2227p), ERK(T185"u) -> MEK(s!1,S218%p,S5222%p), ERK(T185%u!1l)
MEK(s!1,S2187p,S2227p), ERK(T1857u!1l) -> MEK(s!1,52187p,S222"p), ERK(T1857p!1)
MEK(s!1), ERK(T185!1) -> MEK(s), ERK(T185)

MEK (s,S52187p,S2227p), ERK(Y187 u) -> MEK(s!1,8218%p,S5222%p), ERK(Y187 u!1l)
MEK(s!1,S2187p,S2227p), ERK(Y187 u!l) -> MEK(s!1,52187p,S222"p), ERK(Y187"p!1)
MEK(s!1), ERK(Y187!1) -> MEK(s), ERK(Y187)

MKP3(s), ERK(T185%p) -> MKP3(s!1), ERK(T185%p!1)
MKP3(s!'1), ERK(T1857p!1) -> MKP3(s!1), ERK(T1857u!1)
MKP3(s!1), ERK(T185!1) -> MKP3(s), ERK(T185)
MKP3(s), ERK(Y187"p) -> MKP3(s!1), ERK(Y187"p!1)
MKP3(s!'1), ERK(Y187p!1) -> MKP3(s!1), ERK(Y187 u!1l)
MKP3(s!1), ERK(Y187!1) -> MKP3(s), ERK(Y187)

# negative feedback

’SoS_ERK’

SoS(SS~u), ERK(s,T1857p,Y187"p) -> SoS(SS~u!l), ERK(s!1,T185%p,Y187 p)

’SoS_ERK_op’ SoS(SS!'1), ERK(s!'l) -> SoS(SS), ERK(s)
# feedback creation

’SoS@SS’

SoS(SS~u!1), ERK(s!1,T185%p,Y187"p) -> SoS(SS~p!1), ERK(s!1,T185%p,Y187 p)
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# feedback recovery
’S08@SS_op’ So0S(SS”p) -> SoS(SS7u)

The initial state used in the various simulations (unless specified otherwise) is shown below.
Techniques used for the simulation are explained in Ref. [5]. Stories were extracted by sampling
trajectories using lower numbers of agents (as in the GK rule set case) and eliminating concurrent
events, and cycles.

%init: 10%(EGF(r~ext)) + 100%(EGFR(L~ext,CR,Y992"u,Y1068 u,Y1148 u)) + 100%(Shc(PTB,Y318"u)) \
+ 100*(Grb2(SH2,SH3!1),S08(a!1,b,SS™u)) + 200*(RasGAP(SH2,s)) + 100*(Ras(S1S27gdp)) \

+ 100x(Raf (x~u)) + 25%(PP2A1(s)) + 50x(PP2A2(s)) \

+ 200%(MEK (s,S2227u,S218u)) + 200%(ERK(s,T185"u,Y187 u)) + 50%(MKP3(s))
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