
HAL Id: hal-00150872
https://hal.science/hal-00150872

Preprint submitted on 31 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an exact adaptive algorithm for the
determinant of a rational matrix

Anna Urbanska

To cite this version:
Anna Urbanska. Towards an exact adaptive algorithm for the determinant of a rational matrix. 2007.
�hal-00150872�

https://hal.science/hal-00150872
https://hal.archives-ouvertes.fr

ha
l-

00
15

08
72

, v
er

si
on

 1
 -

 3
1

M
ay

 2
00

7

Towards an exact adaptive algorithm for the
determinant of a rational matrix

Anna Urbańska
Laboratoire Jean Kuntzmann

Université Joseph Fourier, Grenoble I
E.mail: Anna.Urbanska@imag.fr

ABSTRACT
In this paper we propose several strategies for the
exact computation of the determinant of a ratio-
nal matrix. First, we use the Chinese Remain-
dering Theorem and the rational reconstruction to
recover the rational determinant from its modular
images. Then we show a preconditioning for the
determinant which allows us to skip the rational
reconstruction process and reconstruct an integer
result. We compare those approaches with matrix
preconditioning which allow us to treat integer in-
stead of rational matrices. This allows us to intro-
duce integer determinant algorithms to the ratio-
nal determinant problem. In particular, we discuss
the applicability of the adaptive determinant algo-
rithm of [9] and compare it with the integer Chinese
Remaindering scheme. We present an analysis of
the complexity of the strategies and evaluate their
experimental performance on numerous examples.
This experience allows us to develop an adaptive
strategy which would choose the best solution at
the run time, depending on matrix properties. All
strategies have been implemented in LinBox linear
algebra library.

1. INTRODUCTION
The determinant computation is one of the core
problems in linear algebra. To our knowledge, the
problem of the exact computation of the determi-
nant of a rational matrix (i.e a matrix with ratio-
nal entries) has not yet been widely studied. In

general, exact algorithms can be used everywhere
where large precision is required. For example, the
determinant can be too close to 0 or ±∞ and thus
cannot be computed by floating point precision al-
gorithms. In the case of ill-conditioned matrices
symbolic methods can be preferred as rounding er-
rors can spoil the computation. It can also be in-
teresting to compare the use of decimal and contin-
ued fractions approximations of the entries of real-
valued matrices. Continued fractions are the best
approximants with small denominators, see [12, Ch.
4]. In this paper, we will try to face the question
of how efficient an exact determinant computation
can be in both cases.

LinBox library [7] implements exact algorithms for
the determinant computation in the case of mod-
ular and integer domains. By using fast modular
routines [6, 8] it can offer solutions an order of mag-
nitude faster than other existing implementations
[9]. We apply these procedures to the computation
of the determinant of a rational matrix.

Rational field arithmetics is implemented in GMP
[21] and Givaro [22] libraries. In general, rational
numbers are difficult to treat from the exact com-
putation point of view. Mainly, the size of the nu-
merator and denominator can increase very quickly
with every addition and multiplication. When we
add or multiply two fractions with numerators and
denominators bounded by M , the numerator and
denominator of the result are bounded by O(M2).
Moreover, one addition requires 3, and one mul-
tiplication requires 2 integer products, as well as
a gcd computation. Therefore, the cost of an ex-
act matrix-vector or matrix-matrix product can be
prohibitive in practice. This prohibits the use of
the rational field Q in most exact linear algebra
algorithms which rely on matrix-matrix or matrix-
vector products.

However, the cost of computing a modular image
of a rational number a

b
, where a, b are of moderate

size, should be comparable with the cost of com-
puting a modular image of a large integer number.
This allows us to compute a modular image of a ra-
tional matrix at a reasonable cost and thus enables
us to use modular procedures.

To compute the determinant of a rational matrix
A =

[aij

bij

]

, bij > 0 the problem of matrix storage

has to be considered. First, we can store the entries
of A as rational numbers. Furthermore, one could
store the common denominator D(A) of all entries
of A and an integer matrix A′ given by the formula
A = 1

D(A)
A′. This approach can be useful in the

case when the entries of A are decimal fractions and
D(A) can be set to a power of 10. But if we only
assume that the values |aij |, bij are less than M ,

both D(A) and ‖A′‖ are bounded by O(Mn2

). Still,
we may store the common denominator for each row
(column) separately. Then the integer vectors Ãi

are given by the equation Ai = 1
Di

Ãi, where Ai

is the matrix row (column) and Di is the common

denominator of its entries. Vectors Ãi form matrix
Ã, the norm of which is bounded by O(Mn). The
product πDi gives a more accurate approximation
of the denominator D(det(A)) than D(A)n.

The purpose of this paper is to propose the strate-
gies to compute the denominator of a rational ma-
trix. All approaches are based on modular com-
putation. Depending on the matrix storage deter-
minant and/or matrix preconditioning is proposed.
The resulting algorithms can use the rational re-
construction [12, Ch.5] and/or existing integer de-
terminant algorithms.

The rest of the paper is organized as follows. In sec-
tion 2 we give a short description of the existing al-
gorithms for the rational reconstruction and the in-
teger determinant problem. In section 3 we present
the main result i.e. two preconditioning strategies
and four new algorithms to compute the rational
determinant. The cost of the algorithms can be
described in terms of the number of modular im-
ages of A and modular determinant computations
needed. Depending on the strategy, the cost of the
rational reconstruction or p-adic lifting is taken into
account. In section 4 we discuss the cost of com-
puting a modular image of a matrix and the overall
cost of the algorithms. In section 5 we present the
experimental results and discuss the best choice of
the strategy in practice. We conclude the paper by
proposing some mixed solutions in section 6.

2. EXISTING ALGORITHMS
The aim of this section is to introduce the algo-
rithms that will be used later in section 3. In sub-
section 2.1 we give a short description of the ratio-
nal reconstruction procedure. On the example of p-
adic system solving [2], we present the application
of this procedure to the computation of a rational
solution. We show how to change the procedure in
the case of early terminated reconstruction [18] and
give the complexity estimation in this case. Then
in subsection 2.2 we present the classical CRA al-
gorithm for the determinant and its modifications
by [1] and [9].

2.1 Rational reconstruction and its ap-
plication

A modular image of a rational number a
b

mod M
can be computed by taking the modular images of
a and b and applying the modular division. This
fact can be written as

a

b
= u mod M ⇔ a = bu mod M.

It should be noticed is that the opposite procedure
can also be performed. One can reconstruct the
fraction a

b
where gcd(a, b) = 1, b > 0 from it mod-

ular image u. The solution is usually not unique
but when we additionally require that |a| < N

2
,

b ≤ M
N

, then there exists at most one solution, see
[12, Ch.5].

The solution to the rational reconstruction prob-
lem can be computed by applying the extended
Euclidean algorithm EEA which searches for the
gcd of M and u. The procedure Ratrec(a,b,u,M,
N, D) takes as the input modulus M , u ∈ Z and
the bounds N and D, and returns a fraction a

b
=

u mod M such that |a| < N, b < D or FAIL if no
such solution exists. The worst case complexity
of Ratrec is thus the same as for the EEA algo-
rithm i.e. O

(

log2(M)
)

for the classical algorithm
and O(log(M) log(log(M))) for the fast Euclidean
algorithm, see [12, Ch.11]. We will use the nota-
tion EEA(M) for the complexity of the Extended
Euclidean Algorithm with entries bounded by M .

In many application, the cost of rational recon-
struction is usually small compared with the cost of
computing u and M . The general scheme is to re-
cursively compute uk, Mk, where Mk = p1p2 · · · pk

or Mk = pk until Mk > 2ND and then to apply the
rational reconstruction. The complexity of the pro-
cedure depends on the number k of steps, which can
be quite large Reducing the number of steps can be
the easiest way to enhance the performance of the

algorithm.

This can be seen on the example of the Dixon al-
gorithm [2] to solve a linear system Ax = b of in-
teger equations. Let N, D be the bound for the
numerator and denominator of x. In the classi-
cal approach we compute the p-adic approxima-
tion in k > log(N) + log(D) + 1 steps and then
reconstruct the result, which gives the complex-
ity O

(

m3(log(m) + log(‖A‖))2
)

when we use the
bound of Hadamard for D, N and assume b ∈ O(1).
See [15] for a detailed complexity study. In fact, the
number of entries in x which we need to reconstruct
can often be reduced, see [7].

One should however notice, that the bounds N and
D can be much bigger than the actual result. The
idea is therefore to apply the rational reconstruc-
tion periodically and check the solution for correct-
ness. If Mk = pk is the modulus in the current step,

the method of Wang [18] prompts us to set
√

Mk
2

as the current bound for numerators and the de-
nominator in Ratrec. The algorithm is guaranteed
to return the result if Mk > 2max(N(x)2, D(x)2),
where N(x),D(x) are the values of the numera-
tor and the denominator. In the opposite case,

Ratrec(a, b, u, Mk,
√

Mk
2

,
√

Mk
2

) should fail with large

probability. If we apply Wang’s idea to the p-adic
lifting we can reduce the number of steps to k =
2 logp(max(N(x),D(x)))+1 and the complexity be-

comes O
(

mω + m2k log(m‖A‖)
)

Current work on
this field focus on further reducing the number of
steps in the case when N(x) ≪ D(x) or D(x) ≪
N(x). A purely heuristic idea is to use the bounds
√

Mk
2

N
D

,
√

Mk
2

D
N

instead of
√

Mk
2

. For other ap-

proaches, see [14, 17].

2.2 Integer Determinant Algorithms
For an integer matrix A one has several alterna-
tives to compute the determinant. The classical ap-
proach is to use Chinese Remaindering Algorithm
(CRA) to reconstruct the value from sufficiently
many modular images. The modular determinant
is computed by LU factorization in the time O(nω),
where n is the matrix dimension.Each step of the
algorithm consist of computation mod pi and a re-
construction of the determinant mod p1 · · · pi by the
Chinese Remaindering Theorem. The computation
is stopped when the early termination (ET) con-
dition is fulfilled i.e. the reconstructed result rests
the same for several iterations. The algorithm is
Monte Carlo type, where the probability of success
is controlled by the number of repetitions. See [4,

9] for a detailed description.

A mixture of CRA loop and Dixon p-adic lifting is
used to compute the integer determinant in [1] and
in the hybrid algorithm of [9]. The principle is to
reduce the value reconstructed by CRA algorithm
by computing a large fraction of the determinant.
By solving several linear systems we can compute
some largest invariant factors sm, . . . sm−i. Their
product π is potentially a large part of the determi-
nant. An early terminated CRA loop which recon-
structs det(A)/π mod p0p1 · · · pi usually requires
only a few modular determinant computations. In-
formally, the algorithm can be described as follows.

1. For i = 0 to k do

(a) Solve Axi = bi by Dixon p-adic lifting to
find sm, . . . sm−i;

(b) π = sm · · · sm−i;

(c) Run CRA for several iterations to deter-
mine det(A)/π;

(d) if ET break;

2. Run another determinant algorithm to get the
result;

Here, k should not exceed the expected number
of invariant factors which is O(

√

log(n)) see [9].
The expected complexity of the hybrid determi-
nant algorithm [9] for random dense matrices is
O

(

n3 log2.5(n‖A‖)
)

. In the worst case (step 2) we
can choose between the CRA algorithm and the al-
gorithms of [16, 10, 13]. In fact, in the expected
case we do not need to run this step. The experi-
ment proved that thanks the adaptive solutions this
algorithm performs better than other implementa-
tion for a larger group of matrices.

3. RATIONAL DETERMINANT AL-
GORITHMS

The algorithms to compute the rational determi-
nant are based on the ideas described in section
2. We present four main strategies to compute the
rational determinant. They all use CRA which al-
lows us to compute the determinant of the matrix
modulo a product p1 · · · pk of primes. Then the
first variant uses the rational reconstruction to ob-
tain the rational result. In order to make use of
Early Termination condition we have to precondi-
tion the determinant to obtain its integer multipli-
cation. Preconditioning of the matrix allows us to
use the integers determinant algorithms. The ap-
plication of two determinant algorithms is studied

here. The common requirements for all algorithm
are shown in 3.0. The algorithms are Monte Carlo
type due to the early termination used.

Requirements 3.0

Require: A - an m × m rational matrix;
Require: Di, i = 1 . . . m - the common denomina-

tor of the entries of the ith row (column);
Require: N, D - the bounds for the numerator and

the denominator of det(A), D = πDi;
Require: A set P of random primes;
Require: Ratrec(a, b, u, M, N, D) - a procedure

which reconstructs a
b

= u mod M, a < N, b < D
or returns FAIL.

Ensure: det(A) - the determinant of the matrix.

The effectiveness of our methods depends heavily
on the number of modular determinants computed
and thus on the bound N and D for the numerator
and the denominator of the determinant. One can
compute D as the product of lcm of all denomina-
tors in a row (or a column). Then N can be com-
puted as D · H , where H is the Hadamard bound
for matrix A. One should notice that the bounds
can be largely overestimated. Thus, we proposed
output-dependant approach which allows us to re-
duce the number of iteration.

The first idea is to employ the CRA scheme and
compute the determinant for the modular images
of a rational matrix. In the case when the determi-
nant is rational, early termination condition never
holds. Instead, we have to compute the bounds
D and N for the denominator and numerator of
the determinant. As soon as the product of primes
M = p1 · · · pk overcomes 2ND we can apply ratio-
nal reconstruction and reconstruct the determinant
from the modular image. We can also use an output
dependent rational reconstruction as described in
section 2.1. This strategy is presented as algorithm
RatLU. An early termination in the rational case
would required applying the rational reconstruction

from time to time with the bounds N = D =
√

Mk
2

and wait for the result to re-occur. This leads to so-
lution when M > 2max{n2, d2}, where n, d are the
numerator and denominator of the determinant.

The second method can use the denominator bound D
to make the CRA loop look for an integer value.
Again, we compute the modular image of a ratio-
nal matrix A but this time we call CRA to look for
D × det(A) which is integer. Now the classic ET
condition can be used and the result is obtained as
soon as M > nD

d
. The effectiveness of this method

Algorithm 3.1 RatLU

1: i = 0, k = 0, n = 0, d = 1, M = 1, u = 0;
2: repeat
3: ++i; Get pi from P ;
4: Compute Ai = A mod pi;
5: Compute ui = det(Ai);
6: Reconstruct u = det(A)mod Mpi using

M, u, ui, pi, M = Mpi;
7: if i = k2 then

8: s = Ratrec(n, d, u, M,
√

M
2

,
√

M
2

);++k;

9: if s 6= FAIL then return n, d; end if
10: end if
11: until M > 2ND
12: status = Ratrec(n, d, u, M, N, D);
13: if status 6= FAIL then return n, d; end if

depends therefore on the exactness of denominator
bound D. Experimental results show that it is suf-
ficient in practice, see sec. 5 table 2. This strategy
is presented as algorithm PrecDetLU.

Algorithm 3.2 PrecDetLU

1: i = 0; M = 1; u = 0;
2: repeat
3: ++i;Get pi from P ;
4: Compute Ai = A mod pi;
5: Compute ui = D · det(Ai);
6: reconstruct u = D · det(A)mod Mpi using

M, u, ui, pi, M = M · pi

7: if ET holds then return u
gcd(u,D)

, D
gcd(u,D)

;

end if
8: until M > 2ND
9: return u

gcd(u,D)
, D

gcd(u,D)
;

The last two strategies require an integer matrix Ã
which can be obtained by preconditioning the ra-
tional matrix A. In order to obtain an integer ma-
trix, the easiest way would be to take matrix A′ =
D(A)A, where D(A) is the common denominator
of all entries. In the general case, where the entries
of A are fractions

aij

bij
with numerator and denom-

inator bounded by ‖A‖, this is not the best choice

as the size of D(A) can be as large as O(‖A‖m2

).
This causes log(‖A′‖) to be O(m2). Moreover, the
denominator approximation is D(A)m in this case,
which is O(m3) in size. We have already defined
a tighter bound for the denominator of det(A) by
πDi, which is O(m2) in size. Now, if we want to

use the integer matrix Ã then we can precondi-
tion A by taking Ã = Adiag(Di), where Di are

the common denominators of the rows (or Ã =
diag(Di)A, where Di are the common denomina-

tors of the columns). For the preconditioned ma-

trix Ã all integer determinant algorithms can be
applied. In particular the hybrid determinant algo-
rithm of [9] can be used. The drawback of this ap-

proach is the size of the coefficients of Ã compared
to A, see section 5 table 1. This forced us to use
early terminated rational reconstruction for system
solving in the Dixon p-adic lifting algorithm. The
strategies that use the CRA loop or the hybrid algo-
rithm are presented as algorithms PrecMatLU and
PrecMatDixon respectively.

Algorithm 3.3 PrecMatLU

1: i = 0; M = 1; u = 0;
2: Compute A = Adiag(Di) (or diag(Di)A)
3: repeat
4: Get pi from P ;
5: Compute Ai = Amod pi;
6: Compute ui = det(Ai);
7: reconstruct u = det(A)mod Mpi using

M, u, ui, pi, M = M · pi

8: if ET holds then return u
gcd(u,D)

, D
gcd(u,D)

;

end if
9: until M > 2ND

10: return u
gcd(u,D)

, D
gcd(u,D)

;

Algorithm 3.4 PrecMatDixon

1: Compute A = Adiag(Di) (or diag(Di)A);
2: Compute u = det(A) by HybridDet [9];
3: return u

gcd(u,D)
, D

gcd(u,D)
;

4. COMPLEXITY ANALYSIS
In this section we study the complexity of the al-
gorithms presented in section 3. In subsection 4.1
we present the analysis of the general case, where
we assume that the entries of the matrix are frac-
tions with numerators and denominators bounded
by ‖A‖. Then, in subsection 4.2, we will focus on
two special cases i.e. matrices of decimal fractions
and Hilbert matrices.

The complexity of the strategies described in sec-
tion 3 depends on the number of iterations required
by the while loop of CRA. Then, depending on the
strategy, we have to include the cost of computing
the homomorphic image of the matrix, the cost of
the rational reconstruction or the cost of p-adic lift-
ing. If we use the early termination condition, the
number of steps required for the computation of
det(A) depends on the values: m - the size of the
matrix, n, d - the real values of the numerator and
denominator of det(A) and D - the bound for the
denominator. The cost of homomorphic imaging

depends on the maximum norm of the matrix i.e.
‖A‖ = max{‖aij‖, bij} and ‖Ã‖.

4.1 General case
We start this section by the analysis of the ratio-
nal homomorphic imaging schemes. We have the
following lemma.

Lemma 4.1. Let p be a word-size prime. Then

the complexity of computing the modular image at p
for a rational matrix A is O(m2(log(‖A‖))+EEA(p))
word operations.

Proof. For a matrix without a pattern we com-
pute an image for all m2 entries. For a rational
fraction the cost is O(log(‖A‖)) for the computa-
tion of the modular image of the numerator and de-
nominator and EEA(p) = O(log(p) log(log(p))) for
the modular inverse computation by fast extended
Euclidean algorithm. Therefore for a word-size ‖A‖
the cost of computing the image is O(1) yet impor-
tant, due to the constant for computing the inverse
of an element mod p.

For the integer case, the cost is log(‖Ã‖)). We

can notice that log(‖Ã‖) can be O(m log(‖A‖)) in
the worst case, so the complexity of homomorphic
imaging in terms of m is O(m2) for the rational

and O(m3) in the integer case. But if ‖Ã‖ < p the
cost of imaging for one element is 1. Thus, if both
‖Ã‖ and ‖A‖ are less than p, the complexity of the
homomorphic imaging becomes m2 EEA(p) for the
rational and m2 for the integer case. In this case,
it is better to use integer imaging. On the other
hand, if matrix A is structured, for example it is
Hankel-type, we have the complexity mEEA(p) for
rational imaging. Due to the preconditioning, we
loose the structure pattern for Ã and the complex-
ity of integer imaging rests without change. Finally
we notice, that for sparse matrices with Ω elements,
we can take Ω instead of m2 in the complexity for-
mula.

Putting it together we have the following theorem.

Theorem 4.2. The worst case complexities of the

strategies for computing the determinant of a ratio-

nal matrix A of size m are

1. O
(

k(m2 log(‖A‖) + mω)
)

+O∼

(

k
√

k
)

for RatLU,

where O∼ hides some log(k) factors;

2. O
(

log(D
d

n)(m2 log(‖A‖) + mω)
)

for PrecDetLU;

3. O
(

log(D
d

n)(m2 log(‖Ã‖) + mω)
)

for PrecMatLU;

4. O∼(x(m2(log(m)+log(‖Ã‖))+mx
1
2)+O(log(D

d
n

sm
+

1)(m2 log(‖Ã‖)+mω)) for PrecMatDixon, where

sm = sm(Ã) and x ∈ m(log(m‖Ã‖‖b‖) is the

size of solution to Ãx = b.

Here Ã is equal to A diag(Di) as in section 3; n, d
are the numerator and denominator of det(A) and

k = O(max(log(n), log(d))).

Proof. The complexities can be obtained by a
careful examination of the number of CRA steps.
The result for alg. RatLU takes into account the
cost of the rational reconstruction which is per-
formed at most O(

√
k) times. In alg. PrecMat-

Dixon we introduce x to estimate the cost of early
terminated p-adic lifting. The size of x can gen-
erally vary depending on the choice of b but is
O(m log(m‖Ã‖‖b‖)) in the worst case. To further
evaluate the worst case complexity of alg. PrecMat-
Dixon we assumed that HybridDet continues to use
CRA loop in the worst case. Thus the number of
iterations O(log(D

d
n

sm
)) and the complexity.

Special care should be taken if we consider the use
of alg. PrecMatDixon. As ‖Ã‖ can potentially be
O∼(m) in size and with a pessimistic bound on
x, its worst case complexity can be O∼(log(m4)),
which is worse than for the CRA computation. Nev-
ertheless, the gain of computing sm can be impor-
tant, as it is the case in the HybridDet algorithm,
see [9].

4.2 Complexity in the special cases
By the precedent remarks it should be visible, that
the analysis of the strategies should be divided into
two main cases. One would consist of the matri-
ces, whose entries are given by decimal fraction,
or more generally, where the common denomina-
tor of all entries, the common denominator of the
rows and the norm of A are of the same order i.e.
D(A) = O(Di) = O(‖A‖). In the other case ma-
trix entries are given as fractions with different de-
nominators. We will study the complexity of the
algorithms on the example of Hilbert matrices.

In the case of matrices of decimal fractions let us
further assume that ‖A‖ is O(1). This would be the
case of numerous ill-conditioned matrices emerging

from different applications in science and engineer-
ing. In order to better describe the differences be-
tween the algorithms, we include the cost of EEA
when it is relevant. The theorem is a straightfor-
ward consequence of theorem 4.2.

Theorem 4.3. The complexities of the strategies

in the case when ‖A‖ = O(˜‖A‖) = O(1) are:

1. O∼

(

k(m2 EEA(p) + mω + k
√

k
)

for alg. RatLU;

2. O∼
(

log(D
d

n)(m2 EEA(p) + mω)
)

for alg. PrecDetLU;

3. O∼
(

log(D
d

n)(m2 + mω)
)

for alg. PrecMatLU;

4. O∼

(

x(m2 log(m) + mx
1
2)) + log(D

d
n

sm
)(m2 + mω)

)

for alg. PrecMatDixon.

where k, x are as in theorem 4.2.

The analysis suggests that the algorithm PrecMatLU should
be better than PrecDetLU (see 4.1 for the homo-
morphic image complexity). The performance anal-
ysis in section 5 confirms this observation. Further-
more, as long as the Smith form of Ã is simple, we
encourage the use of strategy PrecMatDixon. In
particular, we can establish an equivalence between
matrices A of random decimal fractions with e dec-
imal places taken randomly an uniformly from the
interval [0, 1] and matrices Ã, ‖Ã‖ < 10e. This
allows us to use the expected complexity of the hy-
brid algorithms of [9] as the expected complexity
of the rational determinant computation by alg.
PrecMatDixon. Also, the preconditioning should
be used instead of strategy RatLU. For more de-
tails see section 5.

The other group consists of matrices with ratio-
nal entries given by fractions with very different
denominators. As a model case we can consider
Hilbert matrices. Hilbert matrices are the matrices
of the form Hm = [1

i+j−1
]i,j=1..m. They are bench-

marks examples for many numerical methods. The
formula for the determinant of a Hilbert matrix is
well known and is given by the equation

1

det(Hm)
= Πm−1

k=1 (2k + 1)

(

2k
k

)2

.

Theorem 4.4. The complexities for rational de-

terminant strategies in the case of Hilbert matrices

are

1. O
(

m2 log(m)(mω + m
√

log(m))
)

for alg. RatLU;

2. O
(

mω+2 log(m)
)

for alg. PrecDetLU;

3. O
(

m5) log(m)
)

for alg. PrecMatLU;

4. O(smm3 log2(m) + m5 log(m)) for alg. Prec-

MatDixon.

Proof. One should notice that log(1
det(Hm)

) is

O(m2 log(m)). The size of entries of Hm is log(‖Hm‖) =

O(log(m)) and log(‖H̃m‖) = O(m log(m)).

In the case of Hilbert matrices algorithm PrecDetLU -
has the best time complexity and also performed
best in the experiments, see section 5. Since the
numerator is equal to 1, we only have to recover
the size of the over-approximation. Experimental
results show, that its size is equal to about 8% of
the denominator size. Therefore, alg. PrecDetLU,
PrecMatLU perform about 25 times less iterations
than RatLU. As for the algorithm PrecMatDixon,
the study of the Smith form of H̃m has revealed that
it is quite complex, with about 2

√
m nontrivial fac-

tors and the size log(sm(H̃m)) equal O(m). Thus,
it is not worth computing PrecMatDixon due to
the high cost of the algorithm and poor gain.

5. PERFORMANCE COMPARISON
In this section we present the experimental results
for four strategies from section 3. We have tested
the performance of four strategies on three matrix
sets: random, ill-conditioned and Hilbert matrices.

We generated the random matrices using Matlab
procedure rand. The entries of the matrices are
decimal fractions with 6 decimal places chosen ran-
domly from the interval [0, 1]. The determinant of
the resulting matrices is large in the absolute value.
The result of the numerical procedure of Matlab is
±∞.

Ill-conditioned matrices have been chosen from the
Matrix Market [20] Harwell-Boeing collection. We
chose three sets: Grenoble, Astroph and Bcsstruc3.
Grenoble set represents the results of the simula-
tion of computer systems. The sizes of the matri-
ces varies from 115 to 1107 and the condition num-
bers range from 1.5 · 102 in the case of the smallest
matrix to 9.7 · 107 for the biggest. The decimal
precision of the entries depends on the matrix and
ranges from 1 to 5 decimal places. The determi-
nants are close to 0. For these matrices, Matlab
procedure det computes the result correctly up to

the 5th decimal place. Since matrix entries seem to
be represented as rounded expansions of rational
numbers, we computed the determinant of the ma-
trices ”as is” and then we took continued fractions
approximants of the entries with the same precision
as the decimal fractions.

Astroph set describes the process of nonlinear ra-
diative transfer and statistical equilibrium in as-
trophysics. The condition number is 3.6 · 1017 for
the small 180 × 180 matrix and 1.7 · 1014 for the
765 × 765 one. The result of Matlab computation
is −∞. Bcsstruc3 gives dynamic analyses in struc-
tural engineering. All matrices are symmetric. The
condition number is about 1011 for matrices 19 and
20 and 105 for matrix 22. The result of Matlab
computation is ∞.

We split the analysis of the performance of the al-
gorithms in three phases. First, we will consider
the cost of rational-modular vs. integer-modular
imaging and compare it with the results for ‖A‖
and ‖Ã‖. Then we will take a look on the nu-
merator and denominator approximations D and N
computed by our algorithms. Finally, we give the
timings for all strategies and compare their perfor-
mance.

As we can see in table 1, the time of computing an
integer image can be several times shorter than for
the rational image provided that the size of precon-
ditioned matrix is still small. This is not the case
for Hilbert matrices of dimension ≥ 250 , when the
time of rational image computation is better. Fur-
thermore, for structured matrices, like Hilbert, we
can reduce the number of images computed. For
a Hankel-type matrix, there are only 2n − 1 im-
ages to compute, which makes the cost of imaging
negligible.

The performance of the algorithms depends on the
accuracy of denominator approximation used. For
the bound D = πDi, the resulting size of the over-
approximation is shown in table 2, column 4. In
algorithm PrecMatDixon we additionally approx-
imate the numerator by computing sm(Ã). In this

case we are interested in the value App(N) = sm(Ã)
and D

d
n

sm(Ã)
which we compute instead of the nu-

merator. As we can see in the table, the quality
of the approximation of the denominator depends
on the matrix and ranges from 1-2% in the case
of sparse matrices in the Grenoble set, to 80% for
Bccstk matrices. For Hilbert matrices the approxi-
mation is quite efficient, the over-approximation is
always less than 10%. Table 3 shows that despite

A RatIm IntIm IntIm/RatImlog(‖A‖)log(‖Ã‖)

bccstk817 0.145870.03126 4.66696 60 66

bccstk485 0.051890.01123 4.61980 65 69

bccstk138 0.002800.00050 5.53681 42 42

mmca180 0.008080.00120 6.74795 77 76

mccf765 0.132220.03215 4.11219 70 68

grenoble115 0.001620.00019 8.51887 19 19

grenoble185 0.007460.00096 7.8125 19 19

grenoble216a0.010550.00145 7.25 2 1

grenoble216b 0.0105 0.00106 9.90055 19 19

grenoble343 0.0264 0.00507 5.21053 2 1

grenoble512 0.0588 0.0126 4.66667 2 1

grenoble11070.267620.05682 4.70958 16 16

random200 0.037 0.003 11.692 19 19

random500 0.330 0.028 11.831 19 19

random800 0.599 0.071 8.436 19 19

random1000 0.934 0.111 8.452 19 19

hilbert100 0.004140.00255 1.62264 7 289

hilbert200 0.021740.01984 1.09552 8 567

hilbert250 0.034810.03629 0.95942 8 714

hilbert300 0.050930.05967 0.85350 9 847

hilbert400 0.093070.13343 0.69756 9 1134

hilbert600 0.214850.41759 0.51450 10 1711

hilbert800 0.388390.94920 0.40917 10 2294

hilbert1000 0.614251.81285 0.33883 10 2866

Table 1: Comparison of the times (in sec-
onds) for homomorphic imaging are given in
columns RatIm (for rational) and IntIm (for
integer). The ratio of the timings is given in
column 3. Last two columns give the size of
entries for A and Ã. Matrix size is included
in its name.

the size of the over-approximation, preconditioning
allow us to gain enough to beat the naive RatLU al-
gorithm. If the size of ‖Ã‖ is small, as is the case

for sparse matrices, we can compute sm(Ã) at a
relatively low cost and efficiently approximate the
numerator.

The timings for all algorithms are shown in table
3. The results for Hilbert matrices agree with the
complexity estimation in Thm. 4.4. Note that alg.
PrecMatDixon is usually the best for the matrices
from MatrixMarket collection.

For the Grenoble set, the approximation by contin-
ued fractions allowed quite well, in our opinion, to
reconstruct the orginal rational matrix connected
to the problem. Despite the difference in proper-
ties, the running times for the decimal and con-
tinued fractions variants were simmilar. However,
although the matrices were close in the maximum
norm, the determinants ratio reached as much as 2
in the case of grenoble1107.

In figure 5 we present the results of the determinant
computation for Hilbert matrices. We compare the
timings for algorithm RatLU, PrecDetLU, Prec-
MatLU, PrecMatDixon, and the Maple LinearAlge-
bra::Determinant algorithm with method=rational.
The best performance is observed for a variant of
algorithm PrecDetLU which takes into account the

A log(d) log(n)log(D/d)
log(D/d)

d
log(App(n))log(Dn

dApp(N)
)

bccstk817 7845 36169 6294 0.802 25923 16540

bccstk485 3903 21921 2538 0.650 16225 8234

bccstk138 2576 5040 139 0.054 3880 299

mmca180 1663 7341 571 0.343 7375 537

mccf765 5503 32451 2626 0.477 32483 2594

grenoble115 2243 2136 36 0.016 1526 646

grenoble185 3072 2785 3 0.001 2777 11

grenoble216a 423 131 9 0.021 124 16

grenoble216b 4110 3278 193 0.047 683 2788

grenoble343 678 209 8 0.012 201 16

grenoble512 1009 303 15 0.015 306 12

grenoble1107 15639 14002 2707 0.173 7184 9525

random200 3986 4255 0 0 4255 0

random500 9961 10952 4 0 10956 0

random800 15944 17797 1 0 17798 0

random1000 19931 22407 0 0 22404 3

hilbert100 19737 1 1690 0.086 130 1561

hilbert200 79472 1 6493 0.082 290 6204

hilbert300 179207 1 14323 0.080 424 13900

hilbert400 318942 1 26509 0.083 563 25947

hilbert600 718412 1 59948 0.083 848 59101

hilbert800 1277881 1 103581 0.081 1133 102449

hilbert1000 1997351 1 164550 0.082 1424 163127

Table 2: The size of the numerator n and de-
nominator d of det(A), the size of the denom-
inator over-approximation D/d computed by
PrecDetLU and PrecMatLU; the numera-
tor approximation App(n) obtained as sm in
PrecMatDixon, and the size of the part re-
maining to compute. sm depends on n and
the over-approximation D/d.

Matrix RatLU PrecDetLUPrecMatLUPrecMatDixon

bccstk817 * 789.02 553.624 318.62

bccstk485 278.964 143.888 95.836 57.144

bccstk138 4.12 1.868 1.324 0.764

mmca180 14.404 5.896 3.644 1.604

mccf765 * 585.724 416.352 128.24

grenoble115 1.444 0.591813 0.456 0.288

grenoble185 5.86 2.34 1.456 0.468

grenoble216a 1.052 0.268 0.248 0.26

grenoble216b 10.448 3.852 2.204 2.128

grenoble343 4.292 0.924 0.832 0.732

grenoble512 14.844 2.868 2.48 1.072

grenoble1107 * 698.436 519.368 367.448

random200 24.096 10.776 3.996 2.980

random500 432.448 180.448 71.492 54.996

random800 1715.316 789.154 331.008 205.188

random1000 * 1572.024 662.956 403.232

hilbert100 17.860 0.664 0.548 0.712

hilbert200 330.280 11.104 10.52 11.312

hilbert300 * 59.144 65.236 66.872

hilbert400 * 200.844 252.676 265.276

hilbert600 * 1072.754 1664.738 1735.574

hilbert800 * 3476.188 6299.98 8830.372

hilbert1000 * 8870.534 18466.348 19328.66

Table 3: Timing comparison for 4 rational
determinant strategies. All times in seconds.
Best times in bold.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

)

n

Rational determinant computation − timings comparison

RatLU
PrecDetLU

PrecDetLUsym
PrecMatLU

PrecMatDixon
Maple

Figure 1: Comparison of the timings for
the exact computation of the rational de-
terminant of Hilbert matrices. The results
for algorithms RatLU, PrecDetLU, Prec-
MatLU and PrecMatDixon implemented in
LinBox and Maple Determinant procedure
are shown. Algorithm PrecDetLU is used
in the classic and symmetric variant, which
takes into account the Hankel structure of
the matrix. All times in seconds.

Hankel structure of the matrix.

6. CONCLUSIONS
It this paper we have presented four strategies for
exact computation of the determinant of a ratio-
nal matrix. We have evaluated the performance of
these algorithms on several sets of matrices. The
performance of the algorithms suggests that there
exists a clear division between the matrices given as
a rational approximation (by decimal fractions) of
real valued matrices and the matrices with a great
diversity of the denominators of the entries. For
the first case, matrix preconditioning which leads
to a integer matrix is proposed, which allows us
to use integer determinant algorithms, see solution
PrecMatDixon. For the second case, determinant
preconditioning is preferred, which does not lead
to matrix coefficient blow-up. In general, precon-
ditioning proved more useful than rational recon-
struction tools, although better early termination
methods where the modulus M is linear in the size
of the output n and d can bring a change, see [14,
17].

An adaptive solution should be able to choose the
best storage method and homomorphic imaging scheme,
and work independently of the determinant over-
approximation.

We propose the following solution, which incorpo-
rates the elements of all algorithms

1. Compute D = πDi, Ã; set N = 1;

2. If logp(‖Ã‖ < C) compute N = sm(‖Ã‖) - see
alg. PrecMatDixon

3. Compute the modular image of the rational
matrix A and integer matrix Ã, determine
whether to use PrecDetLU or PrecMatLU based
on the timings.

4. Run the ET CRA loop for D
N

· det(A) using
PrecDetLU or PrecMatLU.

5. From time to time check by rational recon-
struction the early termination condition on
det(A) - see RatLU.

This algorithm can be further developed to com-
pute other invariant factors as in alg. PrecMat-
Dixon if relevant. Notice, that the cost of intro-
ducing solution RatLU to the adaptive algorithm
is virtually that of rational reconstruction.

Further work can include intertwining algorithms
RatLU and PrecDetLU to include the use of less
exact determinant preconditioners, which potentially
are not a multiple of d. The aim would to re-
duce a factor of the denominator by precondition-
ing and reconstruct the remaining part by rational
reconstruction. The strategy should be effective,
if the over-approximation caused by precondition-
ing is reduced but a large fraction of the denomi-
nator is obtained at the same time. For example,
D = πDi/gcd(Di) could be considered.

Further work can then focus on the implementation
of the solution in the case of sparse matrices and
on the parallelization of the algorithms.

In this paper we have considered the case of dense
matrices in the analysis of the complexity of the
strategies as well as in the implementation. How-
ever, sparse matrix counterparts of the algorithms
can also be used. For the modular determinant
computation one could used the algorithm of Wiede-
mann [19] that computes the determinant by find-
ing the characteristic polynomial of the matrix. In
alg. PrecMatDixon the sparse solver of [11] can be
used.

The strategies described in this paper contain ele-
ments that allow parallelization. This concerns in
particular the CRA loop, where several iterations
can be performed at the same time, see [3]. The
question of an optimally distributed early termina-
tion in the case of integer Chinese reconstruction

(alg. PrecDetLU, PrecMatLU, PrecMatDixon) as
well as the rational reconstruction (alg. RatLU)
has not yet been addressed. For a parallel p-adic
lifting for alg. PrecMatDixon, see [5].

In this paper we have developed and compared four
strategies to compute the rational determinant of
a matrix. We have proposed two preconditioning
methods that allow us to transfer the problem from
rational to integer domain. We believe that the ap-
proach described in this article can also be applied
in other problems of exact computation in ratio-
nal numbers such as rank computation or system
solving.

7. REFERENCES
[1] J. Abbott, M. Bronstein, T. Mulders. Fast

deterministic computation of determinants of
dense matrices. ISAAC’1999, pp. 197-204,
ACM Press, 1999.

[2] J. Dixon. Exact Solution of Linear Equations
Using P -Adic Expansions. Numer.Math.

40(1), pp. 137-141, 1982.

[3] J.G. Dumas. Calcul parallele du polynome
minimal entier en Athapascan-1 et Linbox.
RenPar’2000. pp119-124. 2000.

[4] J.G. Dumas, D. Saunders, G. Villard. On
Efficient Sparse Integer Matrix Smith Normal
Form Computations. Journal of Symbolic

Computations. 32 (1/2), pp. 71-99, 2001.

[5] J.G. Dumas, W. Turner, Z. Wan. Exact
Solution to Large Sparse Integer Linear
Systems. ECCAD’2002, 2002.

[6] J.G. Dumas, T. Gautier, C. Pernet. FFLAS:
Finite field linear algebra subroutines.
ISSAC’2002. 2002.

[7] J.G. Dumas, T. Gautier, M. Giesbrecht, P.
Giorgi, B. Hovinen, E. Kaltofen, D. Saunders,
W. Turner, G. Villard. LinBox: A Generic
Library for Exact Linear Algebra.
ICMS’2002. 2002.

[8] J.G. Dumas, P. Giorgi, C. Pernet. FFPACK:
finite field linear algebra package.
ISSAC’2004. 2004.

[9] J.G. Dumas, A. Urbańska. An introspective
algorithm for the integer determinant.
Research report.
http://arxiv.org/abs/cs.SC/0511066.

[10] W. Eberly, M. Giesbrecht, G. Villard. On
computing the determinant and Smith form
of an integer matrix. Proc. 41st FOCS, pp.
675-687, 2000.

[11] W. Eberly, M.Giesbrecht, P. Giorgi, A.
Storjohann, G. Villard. Solving Sparse
Integer Linear Systems. ISSAC’2006. 2006.

[12] J. von Gathen, J. Gerhard. Modern Computer
Algebra. Cambridge University Press 1999.

[13] E. Kaltofen, G. Villard. On the complexity of
computing determinants. Computational

Complexity, 31(3-4), pp. 91–130, 2005.

[14] S. Khodadad and M. Monagan. Fast rational
function reconstruction. ISSAC’2005, pp.
184–90. ACM Press, New York, 2006.

[15] T. Mulders, A. Storjohann. Diophantine
Linear System Solving. ISAAC’1999, pp.
181-188. 1999.

[16] A.Storjohann. The shifted number system for
fast linear algebra on integer matrices.
Journal of Complexity, 21(4), pp. 609–650,
2005.

[17] Z. Olesh, A. Storjohann. The vector rational
function reconstruction problem. WWCA

2006.

[18] P.S. Wang. A p-adic Algorithm for Univariate
Partial Fractions. Proc. of the 4th ACM

Symp. on Symb. and Alg. Comp. pp 212-217.
1981.

[19] D. Wiedemann. Solving sparse linear
equations over Finite Fields. IEEE Trans.

Inf. Theory, pp. 54-62. 1986.

[20] Matrix Market.
http://math.nist.gov/MatrixMarket/

[21] GNU Multiprecision Package.
http://www.swox.com/gmp/

[22] Givaro library.
http://ljk.imag.fr/CASYS/LOGICIELS/givaro/

