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Institut de Mathématiques Élie Cartan, Université Henri Poincaré,
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Abstract: Let X be the unique solution started from x0 of the stochastic differential equation dXt =
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1 Introduction

Let X be a one-dimensional diffusion process defined by

(1.1) Xt = x0 +

∫ t

0
θ(s,Xs)dBs +

∫ t

0
b(s,Xs)ds, t ∈ [0, 1],

where x0 ∈ R and B is a standard one-dimensional Brownian motion. Assume that b and θ
are unknown functions and that one observes X at discrete moments

{
i

2n : i = 0, . . . , 2n − 1
}

of the finite time interval [0, 1]. One can ask two natural questions:

1. Is it possible to construct an estimator for the diffusion coefficient?

2. Given a known function ϑ, is it possible to decide if ϑ = θ or not?

These two questions are classical and, in general, to answer the second question, one uses the
result of the first one.
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Florens-Zmirou [7] was the first to answer the first question. In the case when θ = θ(x) is
a smooth function, a pointwise estimator for θ(x)2 (when the trajectory of the diffusion visits
x) based on a discrete approximation of the local time is proposed. The rate of convergence
which was obtained is 2αn, α < 1

3 . When θ has only Besov smoothness, asymptotically
minimax estimators can be constructed using wavelet basis (see Hoffmann [11]) and their

rate of convergence are 2
ns

(1+2s) (if θ ∈ Bspq).
In the simpler case when the diffusion coefficient does not depend on Xt but only on t,

Genon-Catalot et al. [8] constructed a non-parametric estimator for θ = θ(t). More precisely,
one observes

Xt = x0 +

∫ t

0
θ(s)dBs +

∫ t

0
b(s,Xs)ds, t ∈ [0, 1],

and one proceeds in two steps: firstly, one constructs the estimator of
∫ 1
0 h(s)θ(s)

2ds (h being
any smooth function) given by

(1.2)

2n−1∑

i=0

h(
i

2n
)
(
X i+1

2n
−X i

2n

)2
, n ∈ N,

and, secondly, one recovers the function θ2 by using a wavelets basis. The rate of convergence
which was obtained is 2

n
2 (see also Hoffmann [10] for a study in Besov spaces).

What kind of result can be obtained by using the estimator (1.2) for the setting (1.1)? The
present paper is an attempt to answer this question and we emphasize that our main interest
is to construct a goodness-of-fit test. Precisely, a known function ϑ being given, we want to
decide if ϑ = θ or not. For that, we need some results on the convergence in law associated
to a correct renormalization of (1.2). There are several works related to this topic: see, for
instance, Jacod [12] (unpublished work), Delattre and Jacod [6], Becker [3], Barndorff-Nielsen
and Shephard [2]. However, for the sake of completeness of this paper, we preferred to prove
here all the results that we stated.

Let us then consider (1.1) with unknown functions θ and b. Based on the observations of
X at discrete moments, we infer on θ(t,Xt)

2 through the estimation of the primitive process

(1.3) I(t) :=

∫ t

0
θ(s,Xs)

2ds, t ∈ [0, 1].

We consider the sequence of estimators given by (1.2) with h = 1[0,t]. Precisely, we set:

(1.4) În(t) :=

[2nt]−1∑

i=0

(
X i+1

2n
−X i

2n

)2
, t ∈ [0, 1], n ∈ N.

It is classical that, for each t ≥ 0, În(t) converges in probability towards I(t) (see for instance
Berman [4]) and one can prove that limn→∞ În = I almost surely uniformly on [0, 1]. Here,
we study the convergence in distribution of În − I as a process. In a certain sense, the rate
of convergence which we obtain is 2

n
2 (see Corollary 2.3 and Proposition 2.4 below) and, at

least from a theoretical point of view, it suffices to differentiate I(t) to recover the square of
the volatility θ(t,Xt).

Let us briefly explain our approach. By means of Girsanov’s theorem, we reduce the
estimation of the diffusion coefficient of Xt = x0 +

∫ t

0 θ(s,Xs)dBs + a drift term , to the
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estimation of the martingale coefficient of the semimartingale Yt = x0 +
∫ t

0 σ(s,Bs)dBs +
a finite variation term , with unknown σ linked to θ (the observations are Y i

2n
, i = 0, 1, . . . , 2n−

1). The semimartingale model has, from our point of view, an interest by itself and our analy-
sis is performed using stochastic calculus. We used similar ideas in Gradinaru and Nourdin [9]

when studying the convergence at first and second order of approximations
∫ t

0

(
Xs+ε−Xs√

ε

)m

ds

of m-order stochastic integrals (the main difference is that, in the present case, we are working
with sum approximations instead of integral approximations and with the Skorokhod topol-
ogy instead the uniform topology). Although some results of convergence in law could be
obtained by using some of results in references which we already quoted, the proofs given in
the present paper maybe bring out a simple self-contained approach.

We turn now to the second question, which is somehow the novelty of the present work,
that is the attempt to construct goodness-of-fit tests for this problem. Consider the diffusion
X given by (1.1) and let ϑ be a known function. We introduce a test statistic Tn for testing
the hypothesis (H): ϑ2 = θ2 against (A): ϑ2 6= θ2. We evaluate the type I error probability
and we prove that, under (A), Tn → ∞ almost surely, as n→ ∞ (see Proposition 3.3 below).

As for the case of the diffusion X, we study the goodness-of-fit test problem linked to Y :
if ψ is a known function, we observe the semimartingale ϕ(Bt) with ϕ unknown, and we test
(H̃): ψ(| · |) = ϕ(| · |) against (Ã): ψ(| · |) 6= ϕ(| · |) (see Proposition 3.1 below). Our method
also applies for some cases when ϕ is not a bijection.

The paper is organised as follows. In the next section, we state the results concerning the
rate of convergence. Section 3 is devoted to the construction of goodness-of-fit tests. The
proofs are given in Section 4.

2 Convergence in distribution of the approximations

2.1 Semimartingale model

Let Y be a semimartingale given by

(2.1) Yt = x0 +

∫ t

0
σ(s,Bs)dBs +

∫ t

0
Msds, t ∈ [0, 1],

where

σ ∈ C1,2([0, 1] × R; R) has bounded derivatives with respect to the second variable

and M is a continuous adapted process.
We denote by Ĵn and J the processes on [0, 1] given respectively by

(2.2) Ĵn(t) :=

[2nt]−1∑

i=0

(
Y i+1

2n
− Y i

2n

)2
, n ∈ N, and J(t) :=

∫ t

0
σ(s,Bs)

2ds,

and one can prove that, as n→ ∞, Ĵn converges toward J , almost surely uniformly on [0, 1].
All processes will be considered as random elements of the space D([0, 1]; R) of càdlàg real

functions on [0, 1] endowed with the Skorokhod topology (see [5], p. 128).
We can state the following (see also [2],[3] and the unpublished work [12] for some similar

questions):
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Theorem 2.1 As n→ ∞,

(2.3) 2
n
2 (Ĵn − J)

law−→
√

2

∫ •

0
σ(s, β(1)

s )2dβ(2)
s ,

in the Skorokhod topology, where β(1) and β(2) are two independent standard Brownian mo-
tions.

Let us remark that the unknown function σ appears in the limit (2.3). To avoid this, we point
out the following:

Proposition 2.2 Assume that σ 6≡ 0. Set

(2.4) V̂n(t) := 2n

[2nt]−1∑

i=0

(
Y i+1

2n
− Y i

2n

)4
, t ∈ [0, 1], n ∈ N.

Then, we have, for fixed t ∈ (0, 1], as n→ ∞,

(2.5) 2
n
2

(
V̂n(t)

)− 1
2
(
Ĵn(t) − J(t)

)
law−→

√
2

3
N (0, 1).

2.2 Diffusion model

Let us turn to the study of the strong solution of the stochastic differential equation (1.1).
Here and elsewhere we denote (Ω,F ,P) the probability space and we assume that:

θ ∈ C1,2([0, 1] × R; R) has bounded derivatives with respect to the second variable

and

b ∈ C1,1([0, 1] × R; R) is bounded with a bounded derivative with respect to the second
variable

To study the convergence in distribution, we shall assume henceforth that

(2.6) θ is elliptic: inf
(t,x)∈[0,1]×R

|θ(t, x)| > 0

and

(2.7) sup
(t,x)∈[0,1]×R

∣∣∣∣
∂

∂t

∫ x

x0

dy

θ(t, y)

∣∣∣∣ <∞.

Clearly, (2.7) is trivially fulfilled if θ does not depend on t. We shall denote

(2.8) g(t, x) :=

∫ x

x0

dy

θ(t, y)
, G(t, x) := (t, g(t, x)), F (t, x) := G−1(t, x) =: (t, f(t, x)).

The existence of F is a consequence of the Hadamard-Lévy theorem (see, for instance, [1] p.
130). We set B̃t := g(t,Xt) or equivalently Xt = f(t, B̃t). Thanks to Itô’s formula, by (1.1),
we can write

B̃t = Bt −
∫ t

0
Csds,
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with Cs := −{ b
θ
− ( ∂θ

∂x
)/2 + (∂g

∂s
)}(s,Xs). By (2.7) we deduce that ∂g

∂s
is bounded on [0, 1]×R

and, using (2.6), that b
θ

is bounded on [0, 1]×R. Consequently, the Novikov criterion, that is

E
(
exp 1

2

∫ 1
0 C

2
sds
)
< ∞, is easily verified. By applying Girsanov’s theorem, we deduce that

B̃ is a Brownian motion under the probability Q given by

(2.9) dQ = exp(

∫ 1

0
Cs dBs −

1

2

∫ 1

0
C2

sds)dP =: exp(Z)dP.

Hence, we can write,

(2.10) dXt = θ(t,Xt)dBt + b(t,Xt)dt = θ(t, f(t, B̃t))dB̃t +Mtdt,

where Mt = {[( ∂θ
∂x

)/2− (∂g
∂s

)]θ}(t, f(t, B̃t)). Thus X is related, by change of probability, to Y
given by (2.1). Therefore, by using Theorem 2.1 and Proposition 2.2, we obtain (see also [6]
for some results concerning the convergence in law):

Corollary 2.3 1. As n→ ∞,

(2.11) 2
n
2 (În − I)

law−→
√

2

∫ •

0
θ(s, f(s, β(1)

s ))2 dβ(2)
s , under Q

in the Skorokhod topology. Here, β(i); i = 1, 2, are two independent standard Brownian
motions under Q and f is given by the last inequality in (2.8).

2. Set

(2.12) Ûn(t) := 2n

[2nt]−1∑

i=0

(
X i+1

2n
−X i

2n

)4
, t ∈ [0, 1], n ∈ N.

Then, we have, for fixed t ∈ (0, 1], as n→ ∞,

(2.13) 2
n
2

(
Ûn(t)

)− 1
2
(
În(t) − I(t)

)
law−→

√
2

3
N (0, 1), under Q.

If we want to use the initial probability P, the following proposition explains the rate 2
n
2 of

convergence and allows to construct an asymptotic confidence interval for I(t), both under P:

Proposition 2.4 1. Let γ > 1
2 . We have, for fixed t ∈ (0, 1]:

(2.14) ∀R > 0 : lim
n→∞

P

(
2nγ

(
Ûn(t)

)− 1
2
∣∣∣În(t) − I(t)

∣∣∣ ≥ R

)
= 1.

2. Let κ > 0 be such that EP(Z2) ≤ κ2 with Z given by (2.9). Let φκ : [0, 1] → [0, e−κ] be

the continuous bijection given by φκ(x) = x e
− κ

√

x . We have, for fixed t ∈ (0, 1] and for
all η > 0:

(2.15) lim sup
n→∞

P

(
2

n
2

(
Ûn(t)

)− 1
2
∣∣∣În(t) − I(t)

∣∣∣ ≥ η

)
≤ φ−1

κ

(
1√
2π

∫

|x|≥
q

3
2
η

e−
x2

2 dx

)
.
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3 Goodness-of-fit test

3.1 Semimartingale model

Let us denote by Cb,0 the set of non constant analytic functions ψ : R → R, with bounded
first and second derivatives such that ψ(0) = 0.

We observe a semimartingale of the form Yt = ϕ(Bt), t ∈ [0, 1], with ϕ ∈ Cb,0 unknown :
{Y i

2n
: i = 0, 1, . . . , [2nt]−1}. If ψ ∈ Cb,0 is known, we are interested by testing the hypothesis

(H̃) : ϕ(| · |) = ψ(| · |) against the alternative (Ã) : ϕ(| · |) 6= ψ(| · |). More precisely, we study
the following two situations: ψ is a strictly monotone bijection or ψ verifies ψ′2 = F (ψ), with
F a real C1-function.

Let us remark that if ψ is a strictly monotone bijection then it is classical to test if ψ−1(Yt)
is a standard Brownian motion. Indeed, it can be performed as follows: we need to investigate
if (

2
n
2ψ−1(Y 1

2n
), 2

n
2 (ψ−1(Y 2

2n
) − ψ−1(Y 1

2n
)), . . . , 2

n
2 (ψ−1(Y1) − ψ−1(Y1− 1

2n
))
)

is a sample of the standard Gaussian distribution. Here we propose an alternative procedure
which can be applied even if ψ is not a bijection.

If at least one of the observed values {Y i
2n
, i = 0, 1, . . . , [2nt]− 1} lies outside of the range

of ψ, (H̃) is rejected. Otherwise, we set, for t ∈ [0, 1] and n ∈ N:

(3.1) Ĵintn(t) :=





2−n

[2nt]−1∑

i=0

(ψ′ ◦ ψ−1)(Y i
2n

)2, if ψ is a strictly monotone bijection

2−n

[2nt]−1∑

i=0

F (Y i
2n

), if ψ verifies ψ′2 = F (ψ) with F a C1(R; R).

Let us note that if ψ is a strictly monotone bijection verifying at same time ψ′2 = F (ψ),

then (ψ′ ◦ ψ−1)2 = F and Ĵintn is well defined. An example of a strictly monotone bijection
(resp. a function verifying ψ′2 = F (ψ)) is arctan x (resp. sinx).

Recall that Ĵn is given by (2.2) and V̂n by (2.4).

Proposition 3.1 Introduce the decision statistic:

(3.2) T̃n(t) =

√
3

2
2

n
2

(
V̂n(t)

)− 1
2
∣∣∣Ĵn(t) − Ĵintn(t)

∣∣∣ , t ∈ [0, 1], n ∈ N

1. Assume that (H̃) holds. Then for all t ∈ (0, 1]:

(3.3) T̃n(t)
law−→|N |, as n→ ∞,

where N is a standard Gaussian random variable.

2. Assume that (Ã) holds. Then, for all t ∈ (0, 1]:

(3.4) T̃n(t)
a.s.−→∞, as n→ ∞.
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Figure 1: Observed semimartingale

Example 3.2 Let us describe an example of application of this test. All computations below
can be made using, for instance, a Matlab procedure. We observe n = log2(10000) values of
a path Y given by Figure 1. We note that Yt ∈ [−1, 1] when t ∈ [0, 1]. Hence, if we suspect
that Yt = ϕ(Bt), we are looking for a function ϕ the range of which is contained in [−1, 1].
For instance, we shall test (H̃) with the monotone bijection ψ(x) = 2

π
arctan x. In this case,

we obtain

T̃n(1)(ω) =

√
3

2
2

n
2

(
V̂n(1)(ω)

)− 1
2
∣∣∣Ĵn(1)(ω) − Ĵintn(1)(ω)

∣∣∣ = 36.9889 .

Since P(|N | > 36.9889) < 10−2, N ∼ N (0, 1), we can reject (H̃) by using (3.3).
Let us now test (H̃) with ψ(x) = sinx which verifies ψ′2 = F (ψ) with F (x) = 1− x2. We

obtain

T̃n(1)(ω) =

√
3

2
2

n
2

(
V̂n(1)(ω)

)− 1
2
∣∣∣Ĵn(1)(ω) − Ĵintn(1)(ω)

∣∣∣ = 0.6759 .

Since P(|N | > 0.6759) = 0.5, we can not reject (H̃).

3.2 Diffusion model

Let us denote by Cb,± the set of the non constant analytic functions ϑ : R → R, with bounded
first and second derivatives, which does not vanish.

Assume, to simplify, that we observe a diffusion X of the form

(3.5) Xt = x0 +

∫ t

0
θ(Xs)dBs +

∫ t

0
b(s,Xs)ds, t ∈ [0, 1],

with θ ∈ Cb,± unknown and b ∈ C1(R) known or unknown : {X i
2n

: i = 0, 1, . . . , [2nt] − 1}.
If ϑ ∈ Cb,± is known, we are interested by testing the hypothesis (H) : θ2 = ϑ2 against of

the alternative (A) : θ2 6= ϑ2.
We set

(3.6) Îintn(t) := 2−n

[2nt]−1∑

i=0

ϑ(X i
2n

)2, t ∈ [0, 1], n ∈ N,

7



and we recall that În and Ûn are given by (1.4) and (2.12) respectively.

Proposition 3.3 Introduce the decision statistic Tn given by:

(3.7) Tn(t) =

√
3

2
2

n
2

(
Ûn(t)

)− 1
2
∣∣∣În(t) − Îintn(t)

∣∣∣ , t ∈ [0, 1], n ∈ N.

1. Assume that (H) holds. Then, for all η > 0 and for fixed t ∈ (0, 1]:

(3.8) lim sup
n→∞

P (Tn(t) ≥ η) ≤ φ−1
κ

(
1√
2π

∫

|x|≥η

e−
x2

2 dx

)
.

2. Assume that (A) holds. Then, for all t ∈ (0, 1]:

(3.9) Tn(t)
a.s.−→∞, as n→ ∞.

Example 3.4 Let us describe an example of application of this test. All computations below
can be made using again a Matlab procedure. We observe n = log2(10000) values of a path
X (see Figure 2 below). Considering the diffusion on the time interval [0, 10] instead of [0, 1]

0 1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4

6

Figure 2: Observed diffusion

is not a constraint. We test (H) with ϑ(x) = 2 + cos x, that is let us inspect that X verifies

X0 = 5 and dXt = (2 + cosXt)dBt − dt, t ∈ [0, 10].

In this case, we obtain

Tn(10)(ω) =

√
3

2
2

n
2

(
Ûn(10)(ω)

)− 1
2
∣∣∣În(10)(ω) − Îintn(10)(ω)

∣∣∣ = 115.2572

and we have (see (2.9)):

Z =

∫ 10

0
CsdBs −

1

2

∫ 10

0
C2

sds, with |Cs| =

∣∣∣∣
1

2 + cos(Xs)
− sinXs

2

∣∣∣∣ ≤
3

2
.

This implies that EP(Z2) ≤ 82440
32 , hence we can choose κ = 51.

Since φ−1
κ

(
1√
2π

∫
|x|≥115.2572 e

−x2

2 dx

)
< 10−2, we can reject (H).
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4 Proofs

Proof of Theorem 2.1 First, by using a localization argument, it is not very difficult to prove
that the finite variation part of Y does not have any contribution to the limit. Consequently,
in the following, we shall suppose that M ≡ 0 in (2.1).

We can write
Ĵn(t) − J(t) = jn(t) + rn(t)

with

jn(t) := 2

[2nt]−1∑

i=0

σ(
i

2n
, B i

2n
)2
∫ i+1

2n

i
2n

dBs

∫ s

i
2n

dBu,

and

rn(t) := 2

[2nt]−1∑

i=0

(∫ i+1
2n

i
2n

(σ(s,Bs) − σ(
i

2n
, B i

2n
))dBs

∫ s

i
2n

σ(
i

2n
, B i

2n
)dBu

+

∫ i+1
2n

i
2n

σ(s,Bs)dBs

∫ s

i
2n

(σ(u,Bu) − σ(
i

2n
, B i

2n
))dBu

)
−
∫ t

[2nt]
2n

σ(s,Bs)
2ds.

Thanks to the classical Burkholder-Davis-Gundy inequality and using the fact that σ has
bounded derivatives with respect to the second variable, we can prove that

lim
n→∞

E{ sup
t∈[0,1]

|2n
2 rn(t)|2} = 0.

Consequently, to obtain the convergence (2.3), it suffices to show that 2
n
2 jn converges in

distribution to
√

2
∫ •
0 σ(s, β

(1)
s )2 dβ

(2)
s , as we can see by the following classical lemma which

is a consequence of Theorem 4.1, p. 25 in [5] :

Lemma 4.1 Consider {Xn : n ∈ N} and {Yn : n ∈ N} two sequences of random elements
with values in D([0, 1]; R) (or càdlàg real stochastic processes starting from 0). Assume that,

as n→ ∞, Xn
law−→X and E{supt∈[0,1] |Yn(t)|2} → 0. Then, as n→ ∞, Xn + Yn

law−→X .

Let us introduce, for n ∈ N, the process Zn given by:

(4.1) Zn(t) = 21+ n
2

[2nt]−1∑

i=0

∫ i+1
2n

i
2n

dBs

∫ s

i
2n

dBu = 2
n
2

[2nt]−1∑

i=0

[(
B i+1

2n
−B i

2n

)2
− 1

2n

]
, t ∈ [0, 1].

We split the proof of the convergence of 2
n
2 jn =

∫ •
0 σ(s,Bs)dZn(s) into several steps:

a) Convergence in law in the particular case where σ ≡ 1.
Let {Ni}i∈N be a sequence of independent standard Gaussian random variables. We have, for
all n ∈ N:

2
n
2

[2nt]−1∑

i=0

[(
B i+1

2n
−B i

2n

)2
− 1

2n

]
(law)
= 2−

n
2

[2nt]−1∑

i=0

(N2
i − 1).

Then, the convergence in law when σ ≡ 1 is an immediate consequence of the functional
central limit theorem.

9



b) Convergence in law for any function σ.
i) We can write Zn(t) = Z̃n(t) −Rn(t), where the martingale Z̃n is given by:

Z̃n(t) := 2

∫ t

0
dBs

∫ s

0
dBufn(s, u), fn(s, u) = 2

n
2

2n−1∑

i=0

1[ i
2n , i+1

2n )(s)1[ i
2n ,1](u),

and the remainder by Rn(t) := 21+ n
2

∫ t
[2nt]
2n

dBs

∫ s
[2nt]
2n

dBu. It is not difficult to show that

limn→∞ E{supt∈[0,1] |Rn(t)|2} = 0. Again, by Lemma 4.1, it suffices to study the convergence

in distribution of Z̃n. We fix t ∈ [0, 1]. By applying succesively Itô’s formula and the stochastic
version of Fubini theorem (see, for instance, [15], p. 175), the quadratic variation of Z̃n verifies

[Z̃n, Z̃n](t) = 8

∫ t

0
dBu

∫ u

0
dBv

∫ t

u

ds fn(s, u) fn(s, v) + 4

∫ t

0
ds

∫ s

0
du fn(s, u)2.

On the one hand, note that

4

∫ t

0
ds

∫ s

0
dufn(s, u)2 = 2

[2nt]

2n
+ 21+n

(
t− [2nt]

2n

)2

→ 2 t, as n→ ∞.

Thanks to the isometry formula, we have, on the other hand,

E

{[∫ t

0
dBu

∫ u

0
dBv

∫ t

u

ds fn(s, u) fn(s, v)

]2
}

= 22n+1

[2nt]−1∑

i=0

∫ i+1
2n

i
2n

du

∫ u

i
2n

dv

∫ i+1
2n

u

ds

∫ s

u

dw

+ 22n+1

∫ t

[2nt]
2n

du

∫ u

[2nt]
2n

dv

∫ t

u

ds

∫ s

u

dw = O(
1

2n
),

as n→ ∞. So, we deduce that L2 − limn→∞[Z̃n, Z̃n](t) = 2 t.

ii) By using the stochastic version of Fubini theorem, the covariation between Z̃n and B
verifies

[Z̃n, B](t) = 21+ n
2




[2nt]−1∑

i=0

∫ i+1
2n

i
2n

dBu

∫ i+1
2n

u

ds+

∫ t

[2nt]
2n

dBu

∫ t

u

ds


 .

We deduce that

E
{

[Z̃n, B](t)2
}

= 2n+2




[2nt]−1∑

i=0

∫ i+1
2n

i
2n

du

(∫ i+1
2n

u

ds

)2

+

∫ t

[2nt]
2n

(t− u)2du


 = O(

1

2n
) → 0,

as n→ ∞.

iii) With a similar reasoning, we can prove that

L2 − lim
n→∞

[Z̃n, B]([Z̃n, Z̃n]−1(t)) = 0.
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iv) Let us denote by βn the Dubins-Schwarz Brownian motion associated to Z̃n. By the
steps i)-iii) and by the asymptotic version of Knight’s theorem (see, for instance, [15], p.

524), we deduce, as n→ ∞, (B,βn)
law−→ (β(1), β(2)), where β(1) and β(2) are two independent

standard Brownian motions. Since L2 − limn→∞[Z̃n, Z̃n](t) = 2t, we get that, as n → ∞,

(B, Z̃n)
law−→ (β(1),

√
2 β(2)). Set ι(t) = t, t ∈ [0, 1]. Then, (ι, B, Z̃n)

law−→ (ι, β(1),
√

2 β(2)), as
n→ ∞ and, thanks to Lemma 4.1,

(4.2) (ι, B,Zn)
law−→ (ι, β(1),

√
2β(2)), as n→ ∞.

Since σ is a continuous function, we have (σ(ι, B)2, Zn)
law−→ (σ(ι, β(1))2,

√
2 β(2)), as n →

∞. Using the result concerning the convergence in distribution of stochastic integrals (see
Jakubowski et al. [13]), we obtain, as n→ ∞,

2
n
2 jn =

∫ •

0
σ(s,Bs)

2 dZn(s)
law−→

√
2

∫ •

0
σ(s, β(1)

s )2 dβ(2)
s .

Indeed, it suffices to verify the uniform tightness hypothesis of the result in [13], p. 125:
∀t ≥ 0, ∀A predictable process bounded by 1, ∀n ∈ N,

P

(∣∣∣∣
∫ t

0
As dZn(s)

∣∣∣∣ > R

)
≤ 1

R2
E






21+ n

2

[2nt]−1∑

i=0

A i
2n

∫ i+1
2n

i
2n

dBs

∫ s

i
2n

dBu




2
 ≤ cst

R2
.

Consequently, the proof of (2.3) is done.

Proof of Proposition 2.2 We denote by Sn the process given by

Sn(t) = 2n

[2nt]−1∑

i=0

(
B i+1

2n
−B i

2n

)4
, t ∈ [0, 1], n ∈ N.

Let us note that, for any t ∈ [0, 1], Sn(t) converges towards 3t, a deterministic limit, in

probability, as n→ ∞. Indeed, for fixed t ≥ 0, Sn(t) has the same law as 2−n
∑[2nt]−1

i=0 N4
i with

{Ni}i∈N a sequence of independent standard Gaussian random variables. The convergence is
then obtained by the law of large numbers.
We deduce, by using (4.2), that, as n→ ∞,

(ι, B, Zn, Sn)
law−→ (ι, β(1),

√
2β(2), 3 ι),

with β(1) and β(2) again two independent standard Brownian motions and ι(t) = t, t ∈ [0, 1].
Moreover, by a similar reasoning as in step iv) of the proof of Theorem 2.1, for fixed t ∈ [0, 1],
we obtain firstly, as n→ ∞,

(∫ t

0
σ(s,Bs)

2 dZn(s),

∫ t

0
σ(s,Bs)

4 dSn(s)

)
law−→

(√
2

∫ t

0
σ(s, β(1)

s )2dβ(2)
s , 3

∫ t

0
σ(s, β(1)

s )4ds

)
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and secondly, as n→ ∞,

(
2

n
2 (Ĵn(t) − J(t)), V̂n(t)

)
law−→

(√
2

∫ t

0
σ(s, β(1)

s )2dβ(2)
s , 3

∫ t

0
σ(s, β(1)

s )4ds

)
.

Finally, since the function (x, y) 7→ x√
y

is continuous on R × R∗
+, we deduce that, as n→ ∞,

2
n
2

(
V̂n(t)

)− 1
2

(Ĵn(t) − J(t))
law−→
√

2

3

∫ t

0 σ(s, β
(1)
s )2dβ

(2)
s

(∫ t

0 σ(s, β
(1)
s )4ds

) 1
2

.

By the independence between β(1) and β(2), it is easy to see that, for any fixed t ∈]0, 1],

√
2

3

∫ t

0 σ(s, β
(1)
s )2dβ

(2)
s

(∫ t

0 σ(s, β
(1)
s )4ds

) 1
2

law
=

√
2

3
N (0, 1).

The proof of (2.5) is done.

Proof of Proposition 2.4 We begin by stating the following:

Lemma 4.2 Let φκ as in Proposition 2.4. We have, for any set A ∈ F ,

(4.3) Q(A) ≥ φκ(P(A)), or equivalently: P(A) ≤ φ−1
κ (Q(A)).

In particular, if (Am) is a sequence of sets in F such that Q(Am) → 0 (resp. → 1), then
P(Am) → 0 (resp. → 1), as m→ ∞.

Let us finish the proof of Proposition 2.4. We fix t ∈ (0, 1] and let R > 0. We can write,
for all n0 ∈ N and n ≥ n0,

Q

(
2nγ

(
Ûn(t)

)− 1
2
∣∣∣În(t) − I(t)

∣∣∣ ≥ R

)

≥ Q

(
2

n
2

(
Ûn(t)

)− 1
2
∣∣∣În(t) − I(t)

∣∣∣ ≥ R

2n0(γ− 1
2
)

)

−→
n→∞

Q

(√
2

3
|N | ≥ R

2n0(γ− 1
2
)

)
−→
n→∞

1.

Here and below we denote by N a standard Gaussian random variable under Q. Consequently,
by using Lemma 4.2, we obtain the first part of Proposition 2.4. For the second part, by using
succesively Lemma 4.2 and (2.13), we see that

lim sup
n→∞

P

((
Ûn(t)

)− 1
2
∣∣∣În(t) − I(t)

∣∣∣ ≥ β

2
n
2

)

≤ lim sup
n→∞

φ−1
κ

(
Q

((
Ûn(t)

)− 1
2
∣∣∣În(t) − I(t)

∣∣∣ ≥ β

2
n
2

))

= φ−1
κ (Q(

√
2/3|N | ≥ β)).
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Proof of Lemma 4.2 We have, by using succesively Jensen and Cauchy-Schwarz inequalities,

Q(A) = EP(eZ1A) ≥ exp

[
1

P(A)

∫

A

Z(ω)dP(ω)

]
P(A) = exp

[
EP(Z1A)

P(A)

]
P(A) ≥ φκ(P(A)).

Proof of Proposition 3.1 Let us first prove (3.3). Assume that (H̃) holds and fix t ∈ [0, 1].
We then have

Ĵn(t) =

[2nt]−1∑

i=0

(
ψ(B i+1

2n
) − ψ(B i

2n
)
)2

=

[2nt]−1∑

i=0

ψ′(B i
2n

)2(B i+1
2n

−B i
2n

)2 + (ψ′ψ′′)(B i
2n

)(B i+1
2n

−B i
2n

)3 + rn(t),

with
sup
n≥1

E {|2nrn(t)|} < +∞.

Moreover, we also have

E








[2nt]−1∑

i=0

(ψ′ψ′′)(B i
2n

)(B i+1
2n

−B i
2n

)3




2


=

[2nt]−1∑

i,j=0

E
[
(ψ′ψ′′)(B i

2n
)(ψ′ψ′′)(B j

2n
)(B i+1

2n
−B i

2n
)3(B j+1

2n
−B j

2n
)3
]

= 15 · 2−3n

[2nt]−1∑

i=0

E
[
(ψ′ψ′′)(B i

2n
)2
]
≤ 15 · 2−2n‖ψ′‖2

∞‖ψ′′‖2
∞.

Consequently,

Ĵn(t) − Ĵintn(t) =

[2nt]−1∑

i=0

ψ′(B i
2n

)2
[
(B i+1

2n
−B i

2n
)2 − 1

2n

]
+ r̃n(t),

with
sup
n≥1

E {|2nr̃n(t)|} < +∞.

Finally, we can finish the proof of (3.3) as in the proof of Theorem 2.2.
Now, let us prove (3.4) by considering the two situations:

i) The case when ψ is a monotone bijection. We have, for fixed t ∈]0, 1],

∣∣∣Ĵn(t) − Ĵintn(t)
∣∣∣ a.s.−→

∣∣∣∣
∫ t

0
(ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2)du

∣∣∣∣ , as n→ ∞.

Assume that

P

(∫ t

0
(ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2)du = 0

)
> 0.
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It follows that the law of the random variable
∫ t

0 (ϕ′(Bu)2 − (ψ′ ◦ψ−1 ◦ϕ)(Bu)2)du is not ab-
solutely continuous with respect to the Lebesgue measure. At this level, we need the following:

Lemma 4.3 Let h be a real analytic function and let T ∈ (0, 1]. The law of
∫ T

0 h(Bu)du is
absolutely continuous with respect to the Lebesgue measure if and only if h 6≡ cst.

Admit this result (which proof is postponed to the end of this section). We deduce that
ϕ′2 − (ψ′ ◦ ψ−1 ◦ ϕ)2 = c, c ∈ R. Moreover, necessarily c = 0 because

0 < P

(∫ t

0
(ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2)du = 0

)
= P(c t = 0).

Consequently, ϕ′2 = (ψ′ ◦ ψ−1 ◦ ϕ)2. By a connectedness argument, we obtain that ϕ′ =
εψ′ ◦ ψ−1 ◦ ϕ, with ε ∈ {±1}. Then ϕ is one-to-one and we have ϕ′ ◦ ϕ−1 = εψ′ ◦ ψ−1 or
equivalently (ϕ−1)′ = ε(ψ−1)′. We finally obtain that ϕ−1(x) = εψ−1(x) for all x ∈ R, or
equivalently ϕ(x) = ψ(εx) for all x ∈ R. This is a contradiction with (Ã) ! Consequently,
almost surely

∫ t

0 (ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2)du does not vanish and (3.4) holds.

ii) The case when ψ′2 = F (ψ). In this case:

∣∣∣Ĵn(t) − Ĵintn(t)
∣∣∣ a.s.−→

∣∣∣∣
∫ t

0
(ϕ′(Bu)2 − F (ϕ)(Bu))du

∣∣∣∣ , as n→ ∞.

Assume that

P

(∫ t

0
(ϕ′(Bu)2 − F (ϕ)(Bu))du = 0

)
> 0.

Again, it follows that the law of the random variable
∫ t

0 (ϕ′(Bu)2 − F (ϕ)(Bu))du is not ab-
solutely continuous with respect to the Lebesgue measure. Again by using Lemma 4.3, we
obtain that ϕ′2 = F (ϕ) and then 2ϕ′ϕ′′ = ϕ′ F ′(ϕ). On the one hand, by real analycity of
ϕ, the set {x : ϕ′(x) 6= 0} is dense in R and it allows us to simplify: 2ϕ′′ = F ′(ϕ). On the
other hand, we have ϕ′2(0) = F (0) = ψ′2(0) and ϕ(0) = ψ(0). By uniqueness of the Cauchy
problem, we deduce ϕ(| · |) = ψ(| · |), which is a contradiction with (Ã).

Proof of Proposition 3.3 If we assume that (H) holds, then (3.8) is a consequence of the
first point of Proposition 3.1 and Lemma 4.2. Assume that (A) holds. We have, for fixed
t ∈ (0, 1], ∣∣∣În(t) − Îintn(t)

∣∣∣ a.s.−→
∣∣∣∣
∫ t

0
(θ(Xu)2 − ϑ(Xu)2)du

∣∣∣∣ , as n→ ∞.

Assume that

P

(∫ t

0
(θ(Xu)2 − ϑ(Xu)2)du = 0

)
> 0.

Once more, it follows that the law of the random variable
∫ t

0 (θ(Xu)2 − ϑ(Xu)2)du is not
absolutely continuous with respect to the Lebesgue measure. We need a similar result as
Lemma 4.3:

Lemma 4.4 Let h be a real analytic function and let T ∈ (0, 1]. The law of
∫ T

0 h(Xu)du is
absolutely continuous with respect to the Lebesgue measure if and only if h 6≡ cst.
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Using this result, we deduce that ϑ2 − θ2 = c, c ∈ R. Moreover, necessarily c = 0 because

0 < P

(∫ t

0
(θ(Xu)2 − ϑ(Xu)2)du = 0

)
= P(c t = 0).

This is a contradiction with (A) !

Proof Lemma 4.3 and 4.4 We use the Malliavin calculus. By Theorem 2.1.3 in [14] p. 87,

we know that if F lies in the Sobolev-Malliavin space D1,2 and if
∫ T

0 (DtF )2dt > 0 almost
surely then the law of F is absolutely continuous with respect to the Lebesgue measure on R.

Firstly, if F =
∫ T

0 h(Bu)du, then DtF =
∫ T

0 Dt(h(Bu))du =
∫ T

t
h′(Bu)du. We have

P(∀t, DtF = 0) = P(∀t, h′(Bt) = 0). If we assume that P(∀t, h′(Bt) = 0) > 0 then, in
particular, P(h′(BT ) = 0) > 0. Since h is analytic and the random variable BT is absolutely
continuous with respect to the Lebesgue measure, we deduce that h′ ≡ 0. The conclusion of
the Lemma 4.3 follows easily.

Secondly, if F =
∫ T

0 h(Xu)du with X given by (3.5), then

DtF =

∫ T

0
Dt(h(Xu))du = θ(Xt)

∫ T

t

h′(Xu) exp(

∫ u

0
θ′(Xv)dBv+

∫ u

0
(b′−1

2
θ′2)(Xv)dv)du

and the conclusion of the Lemma 4.4 follows as previously.
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