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Let X be the unique solution started from x0 of the stochastic differential equation dXt = θ(t, Xt)dBt + b(t, Xt)dt, with B a standard Brownian motion. We consider an approximation of the volatility θ(t, Xt), the drift being considered as a nuisance parameter. The approximation is based on a discrete time observation of X and we study its rate of the convergence as a process. A goodness-of-fit test is also constructed.

Introduction

Let X be a one-dimensional diffusion process defined by (1.1)

X t = x 0 + t 0 θ(s, X s )dB s + t 0 b(s, X s )ds, t ∈ [0, 1],
where x 0 ∈ R and B is a standard one-dimensional Brownian motion. Assume that b and θ are unknown functions and that one observes X at discrete moments i 2 n : i = 0, . . . , 2 n -1 of the finite time interval [0, 1]. One can ask two natural questions:

1. Is it possible to construct an estimator for the diffusion coefficient? 2. Given a known function ϑ, is it possible to decide if ϑ = θ or not?

These two questions are classical and, in general, to answer the second question, one uses the result of the first one.

Florens-Zmirou [START_REF] Florens-Zmirou | On estimating the diffusion coefficient from discrete observations[END_REF] was the first to answer the first question. In the case when θ = θ(x) is a smooth function, a pointwise estimator for θ(x) 2 (when the trajectory of the diffusion visits x) based on a discrete approximation of the local time is proposed. The rate of convergence which was obtained is 2 αn , α < 1 3 . When θ has only Besov smoothness, asymptotically minimax estimators can be constructed using wavelet basis (see Hoffmann [START_REF] Hoffmann | L p estimation of the diffusion coefficient[END_REF]) and their rate of convergence are 2 ns (1+2s) (if θ ∈ B spq ). In the simpler case when the diffusion coefficient does not depend on X t but only on t, Genon-Catalot et al. [START_REF] Genon-Catalot | Non-parametric estimation of the diffusion coefficient by wavelets methods[END_REF] constructed a non-parametric estimator for θ = θ(t). More precisely, one observes

X t = x 0 + t 0 θ(s)dB s + t 0 b(s, X s )ds, t ∈ [0, 1],
and one proceeds in two steps: firstly, one constructs the estimator of 1 0 h(s)θ(s) 2 ds (h being any smooth function) given by (1.2)

2 n -1 i=0 h( i 2 n ) X i+1 2 n -X i 2 n 2 , n ∈ N,
and, secondly, one recovers the function θ 2 by using a wavelets basis. The rate of convergence which was obtained is 2 n 2 (see also Hoffmann [START_REF] Hoffmann | Minimax estimation of the diffusion coefficient through irregular samplings[END_REF] for a study in Besov spaces). What kind of result can be obtained by using the estimator (1.2) for the setting (1.1)? The present paper is an attempt to answer this question and we emphasize that our main interest is to construct a goodness-of-fit test. Precisely, a known function ϑ being given, we want to decide if ϑ = θ or not. For that, we need some results on the convergence in law associated to a correct renormalization of (1.2). There are several works related to this topic: see, for instance, Jacod [START_REF] Jacod | Limit of random measures associated with the increments of a Brownian semimartingale[END_REF] (unpublished work), Delattre and Jacod [START_REF] Delattre | A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors[END_REF], Becker [START_REF] Becker | Théorèmes limites pour des processus discretisés[END_REF], Barndorff-Nielsen and Shephard [START_REF] Barndorff-Nielsen | Realized power variation and stochastic volatility models[END_REF]. However, for the sake of completeness of this paper, we preferred to prove here all the results that we stated.

Let us then consider (1.1) with unknown functions θ and b. Based on the observations of X at discrete moments, we infer on θ(t, X t ) 2 through the estimation of the primitive process

(1.3) I(t) := t 0 θ(s, X s ) 2 ds, t ∈ [0, 1].
We consider the sequence of estimators given by (1.2) with h = 1 [0,t] . Precisely, we set:

(1.4)

I n (t) := [2 n t]-1 i=0 X i+1 2 n -X i 2 n 2 , t ∈ [0, 1], n ∈ N.
It is classical that, for each t ≥ 0, I n (t) converges in probability towards I(t) (see for instance Berman [START_REF] Berman | Sign-invariant random variables and stochastic processes with sign-invariant increments[END_REF]) and one can prove that lim n→∞ I n = I almost surely uniformly on [0, 1]. Here, we study the convergence in distribution of I n -I as a process. In a certain sense, the rate of convergence which we obtain is 2 n 2 (see Corollary 2.3 and Proposition 2.4 below) and, at least from a theoretical point of view, it suffices to differentiate I(t) to recover the square of the volatility θ(t, X t ).

Let us briefly explain our approach. By means of Girsanov's theorem, we reduce the estimation of the diffusion coefficient of X t = x 0 + t 0 θ(s, X s )dB s + a drift term , to the estimation of the martingale coefficient of the semimartingale Y t = x 0 + t 0 σ(s, B s )dB s + a finite variation term , with unknown σ linked to θ (the observations are Y i 2 n , i = 0, 1, . . . , 2 n -1). The semimartingale model has, from our point of view, an interest by itself and our analysis is performed using stochastic calculus. We used similar ideas in Gradinaru and Nourdin [START_REF] Gradinaru | Approximation at first and second order of m-order integrals of the fractional Brownian motion and of certain semimartingales[END_REF] when studying the convergence at first and second order of approximations t 0 X s+ε -Xs √ ε m ds of m-order stochastic integrals (the main difference is that, in the present case, we are working with sum approximations instead of integral approximations and with the Skorokhod topology instead the uniform topology). Although some results of convergence in law could be obtained by using some of results in references which we already quoted, the proofs given in the present paper maybe bring out a simple self-contained approach.

We turn now to the second question, which is somehow the novelty of the present work, that is the attempt to construct goodness-of-fit tests for this problem. Consider the diffusion X given by (1.1) and let ϑ be a known function. We introduce a test statistic T n for testing the hypothesis (H): ϑ 2 = θ 2 against (A): ϑ 2 = θ 2 . We evaluate the type I error probability and we prove that, under (A), T n → ∞ almost surely, as n → ∞ (see Proposition 3.3 below).

As for the case of the diffusion X, we study the goodness-of-fit test problem linked to Y : if ψ is a known function, we observe the semimartingale ϕ(B t ) with ϕ unknown, and we test (

H): ψ(| • |) = ϕ(| • |) against ( A): ψ(| • |) = ϕ(| • |) (see Proposition 3.1 below).
Our method also applies for some cases when ϕ is not a bijection.

The paper is organised as follows. In the next section, we state the results concerning the rate of convergence. Section 3 is devoted to the construction of goodness-of-fit tests. The proofs are given in Section 4.

Convergence in distribution of the approximations 2.1 Semimartingale model

Let Y be a semimartingale given by (2.1)

Y t = x 0 + t 0 σ(s, B s )dB s + t 0 M s ds, t ∈ [0, 1],
where

σ ∈ C 1,2 ([0, 1] × R; R)
has bounded derivatives with respect to the second variable and M is a continuous adapted process. We denote by J n and J the processes on [0, 1] given respectively by

(2.2) J n (t) := [2 n t]-1 i=0 Y i+1 2 n -Y i 2 n

2

, n ∈ N, and J(t

) := t 0 σ(s, B s ) 2 ds,
and one can prove that, as n → ∞, J n converges toward J, almost surely uniformly on [0, 1]. All processes will be considered as random elements of the space D([0, 1]; R) of càdlàg real functions on [0, 1] endowed with the Skorokhod topology (see [START_REF] Billingsley | Convergence of probability measures[END_REF], p. 128).

We can state the following (see also [START_REF] Barndorff-Nielsen | Realized power variation and stochastic volatility models[END_REF], [START_REF] Becker | Théorèmes limites pour des processus discretisés[END_REF] and the unpublished work [START_REF] Jacod | Limit of random measures associated with the increments of a Brownian semimartingale[END_REF] for some similar questions):

Theorem 2.1 As n → ∞, (2.3) 2 n 2 ( J n -J) law -→ √ 2 • 0 σ(s, β (1) s ) 2 dβ (2) s ,
in the Skorokhod topology, where β (1) and β (2) are two independent standard Brownian motions.

Let us remark that the unknown function σ appears in the limit (2.3). To avoid this, we point out the following:

Proposition 2.2 Assume that σ ≡ 0. Set (2.4) V n (t) := 2 n [2 n t]-1 i=0 Y i+1 2 n -Y i 2 n 4 , t ∈ [0, 1], n ∈ N.
Then, we have, for fixed t ∈ (0, 1], as n → ∞,

(2.5) 2 n 2 V n (t) -1 2 J n (t) -J(t) law -→ 2 3 N (0, 1).

Diffusion model

Let us turn to the study of the strong solution of the stochastic differential equation (1.1).

Here and elsewhere we denote (Ω, F, P) the probability space and we assume that:

θ ∈ C 1,2 ([0, 1] × R; R)
has bounded derivatives with respect to the second variable

and b ∈ C 1,1 ([0, 1] × R; R) is

bounded with a bounded derivative with respect to the second variable

To study the convergence in distribution, we shall assume henceforth that

(2.6) θ is elliptic: inf (t,x)∈[0,1]×R |θ(t, x)| > 0 and (2.7) sup (t,x)∈[0,1]×R ∂ ∂t x x 0 dy θ(t, y) < ∞.
Clearly, (2.7) is trivially fulfilled if θ does not depend on t. We shall denote

(2.8) g(t, x) := x x 0 dy θ(t, y) , G(t, x) := (t, g(t, x)), F (t, x) := G -1 (t, x) =: (t, f (t, x)).
The existence of F is a consequence of the Hadamard-Lévy theorem (see, for instance, [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF] p. 130). We set B t := g(t, X t ) or equivalently X t = f (t, B t ). Thanks to Itô's formula, by (1.1), we can write

B t = B t - t 0 C s ds, with C s := -{ b θ -( ∂θ ∂x )/2 + ( ∂g ∂s )}(s, X s ). By (2.7) we deduce that ∂g ∂s is bounded on [0, 1] × R and, using (2.6), that b θ is bounded on [0, 1] × R. Consequently, the Novikov criterion, that is E exp 1 2 1 0 C 2
s ds < ∞, is easily verified. By applying Girsanov's theorem, we deduce that B is a Brownian motion under the probability Q given by (2.9) dQ = exp(

1 0 C s dB s - 1 2 1 0 C 2 s ds)dP =: exp(Z)dP.
Hence, we can write,

(2.10)

dX t = θ(t, X t )dB t + b(t, X t )dt = θ(t, f (t, B t ))d B t + M t dt,
where

M t = {[( ∂θ ∂x )/2 -( ∂g ∂s )]θ}(t, f (t, B t ))
. Thus X is related, by change of probability, to Y given by (2.1). Therefore, by using Theorem 2.1 and Proposition 2.2, we obtain (see also [START_REF] Delattre | A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors[END_REF] for some results concerning the convergence in law):

Corollary 2.3 1. As n → ∞, (2.11) 2 n 2 ( I n -I) law -→ √ 2 • 0 θ(s, f (s, β (1) s )) 2 dβ (2)
s , under Q in the Skorokhod topology. Here, β (i) ; i = 1, 2, are two independent standard Brownian motions under Q and f is given by the last inequality in (2.8).

Set

(2.12)

U n (t) := 2 n [2 n t]-1 i=0 X i+1 2 n -X i 2 n 4 , t ∈ [0, 1], n ∈ N.
Then, we have, for fixed t ∈ (0, 1], as n → ∞,

(2.13) 2 n 2 U n (t) -1 2 I n (t) -I(t) law -→ 2 3 N (0, 1), under Q.
If we want to use the initial probability P, the following proposition explains the rate 2 n 2 of convergence and allows to construct an asymptotic confidence interval for I(t), both under P:

Proposition 2.4 1. Let γ > 1 2 .
We have, for fixed t ∈ (0, 1]:

(2.14) ∀R > 0 : lim n→∞ P 2 nγ U n (t) -1 2 I n (t) -I(t) ≥ R = 1.
2. Let κ > 0 be such that E P (Z 2 ) ≤ κ 2 with Z given by (2.9). Let φ κ : [0, 1] → [0, e -κ ] be the continuous bijection given by φ κ (x) = x e -κ

√

x . We have, for fixed t ∈ (0, 1] and for all η > 0:

(2.15) lim sup

n→∞ P 2 n 2 U n (t) -1 2 I n (t) -I(t) ≥ η ≤ φ -1 κ 1 √ 2π |x|≥ q 3 2 η e -x 2 2 dx .
3 Goodness-of-fit test

Semimartingale model

Let us denote by C b,0 the set of non constant analytic functions ψ : R → R, with bounded first and second derivatives such that ψ(0) = 0. We observe a semimartingale of the form Y t = ϕ(B t ), t ∈ [0, 1], with ϕ ∈ C b,0 unknown :

{Y i 2 n : i = 0, 1, . . . , [2 n t] -1}. If ψ ∈ C b,0 is known, we are interested by testing the hypothesis ( H) : ϕ(| • |) = ψ(| • |) against the alternative ( A) : ϕ(| • |) = ψ(| • |).
More precisely, we study the following two situations: ψ is a strictly monotone bijection or ψ verifies ψ 2 = F (ψ), with F a real C 1 -function.

Let us remark that if ψ is a strictly monotone bijection then it is classical to test if ψ -1 (Y t ) is a standard Brownian motion. Indeed, it can be performed as follows: we need to investigate if 2

n 2 ψ -1 (Y 1 2 n ), 2 n 2 (ψ -1 (Y 2 2 n ) -ψ -1 (Y 1 2 n )), . . . , 2 n 2 (ψ -1 (Y 1 ) -ψ -1 (Y 1-1 2 n
)) is a sample of the standard Gaussian distribution. Here we propose an alternative procedure which can be applied even if ψ is not a bijection.

If at least one of the observed values {Y i 2 n , i = 0, 1, . . . , [2 n t] -1} lies outside of the range of ψ, ( H) is rejected. Otherwise, we set, for t ∈ [0, 1] and n ∈ N:

(3.1) Jint n (t) :=                  2 -n [2 n t]-1 i=0 (ψ • ψ -1 )(Y i 2 n ) 2 , if ψ is a strictly monotone bijection 2 -n [2 n t]-1 i=0 F (Y i 2 n ), if ψ verifies ψ 2 = F (ψ) with F a C 1 (R; R).
Let us note that if ψ is a strictly monotone bijection verifying at same time ψ 2 = F (ψ), then (ψ • ψ -1 ) 2 = F and Jint n is well defined. An example of a strictly monotone bijection (resp. a function verifying ψ 2 = F (ψ)) is arctan x (resp. sin x).

Recall that J n is given by (2.2) and V n by (2.4).

Proposition 3.1 Introduce the decision statistic:

(3.2) T n (t) = 3 2 2 n 2 V n (t) -1 2 J n (t) -Jint n (t) , t ∈ [0, 1], n ∈ N 1.
Assume that ( H) holds. Then for all t ∈ (0, 1]:

(3.3) T n (t) law -→ |N |, as n → ∞,
where N is a standard Gaussian random variable.

2. Assume that ( A) holds. Then, for all t ∈ (0, 1]:

(3.4) T n (t) a.s.
-→ ∞, as n → ∞. All computations below can be made using, for instance, a Matlab procedure. We observe n = log 2 (10000) values of a path Y given by Figure 1. We note that Y t ∈ [-1, 1] when t ∈ [0, 1]. Hence, if we suspect that Y t = ϕ(B t ), we are looking for a function ϕ the range of which is contained in [-1, 1]. For instance, we shall test ( H) with the monotone bijection ψ(x) =2 π arctan x. In this case, we obtain

T n (1)(ω) = 3 2 2 n 2 V n (1)(ω) -1 2 J n (1)(ω) -Jint n (1)(ω) = 36.9889 .
Since P(|N | > 36.9889) < 10 -2 , N ∼ N (0, 1), we can reject ( H) by using (3.3).

Let us now test ( H) with ψ(x) = sin x which verifies ψ 2 = F (ψ) with F (x) = 1x 2 . We obtain

T n (1)(ω) = 3 2 2 n 2
V n (1)(ω)

-1

Diffusion model

Let us denote by C b,± the set of the non constant analytic functions ϑ : R → R, with bounded first and second derivatives, which does not vanish. Assume, to simplify, that we observe a diffusion X of the form (3.5)

X t = x 0 + t 0 θ(X s )dB s + t 0 b(s, X s )ds, t ∈ [0, 1],
with θ ∈ C b,± unknown and b ∈ C 1 (R) known or unknown : {X i 2 n : i = 0, 1, . . . , [2 n t] -1}. If ϑ ∈ C b,± is known, we are interested by testing the hypothesis (H) : θ 2 = ϑ 2 against of the alternative (A) :

θ 2 = ϑ 2 .
We set

(3.6) Iint n (t) := 2 -n [2 n t]-1 i=0 ϑ(X i 2 n ) 2 , t ∈ [0, 1], n ∈ N,
and we recall that I n and U n are given by (1.4) and (2.12) respectively.

Proposition 3.3 Introduce the decision statistic T n given by:

(3.7) T n (t) = 3 2 2 n 2 U n (t) -1 2 I n (t) -Iint n (t) , t ∈ [0, 1], n ∈ N.
1. Assume that (H) holds. Then, for all η > 0 and for fixed t ∈ (0, 1]:

(3.8) lim sup n→∞ P (T n (t) ≥ η) ≤ φ -1 κ 1 √ 2π |x|≥η e -x 2 2 dx .
2. Assume that (A) holds. Then, for all t ∈ (0, 1]:

(3.9) T n (t) a.s.
-→ ∞, as n → ∞.

Example 3.4 Let us describe an example of application of this test. All computations below can be made using again a Matlab procedure. We observe n = log 2 (10000) values of a path X (see Figure 2 is not a constraint. We test (H) with ϑ(x) = 2 + cos x, that is let us inspect that X verifies

X 0 = 5 and dX t = (2 + cos X t )dB t -dt, t ∈ [0, 10].
In this case, we obtain

T n (10)(ω) = 3 2 2 n 2 U n (10)(ω) -1 2 I n (10)(ω) -Iint n (10)(ω) = 115.2572
and we have (see (2.9)):

Z = 10 0 C s dB s - 1 2 10 0 C 2 s ds, with |C s | = 1 2 + cos(X s ) - sin X s 2 ≤ 3 2 .
This implies that E P (Z 2 ) ≤ 82440 32 , hence we can choose κ = 51. Since φ -1

κ 1 √ 2π |x|≥115
.2572 e -x 2 2 dx < 10 -2 , we can reject (H).

Proofs

Proof of Theorem 2.1 First, by using a localization argument, it is not very difficult to prove that the finite variation part of Y does not have any contribution to the limit. Consequently, in the following, we shall suppose that M ≡ 0 in (2.1). We can write

J n (t) -J(t) = j n (t) + r n (t) with j n (t) := 2 [2 n t]-1 i=0 σ( i 2 n , B i 2 n ) 2 i+1 2 n i 2 n dB s s i 2 n dB u , and 
r n (t) := 2 [2 n t]-1 i=0 i+1 2 n i 2 n (σ(s, B s ) -σ( i 2 n , B i 2 n ))dB s s i 2 n σ( i 2 n , B i 2 n )dB u + i+1 2 n i 2 n σ(s, B s )dB s s i 2 n (σ(u, B u ) -σ( i 2 n , B i 2 n ))dB u - t [2 n t] 2 n σ(s, B s ) 2 ds.
Thanks to the classical Burkholder-Davis-Gundy inequality and using the fact that σ has bounded derivatives with respect to the second variable, we can prove that

lim n→∞ E{ sup t∈[0,1] |2 n 2 r n (t)| 2 } = 0.
Consequently, to obtain the convergence (2.3), it suffices to show that 2

n 2 j n converges in distribution to √ 2 • 0 σ(s, β (1) 
s ) 2 dβ (2)
s , as we can see by the following classical lemma which is a consequence of Theorem 4.1, p. 25 in [START_REF] Billingsley | Convergence of probability measures[END_REF] : 

n → ∞, X n law -→ X and E{sup t∈[0,1] |Y n (t)| 2 } → 0. Then, as n → ∞, X n + Y n law -→ X .
Let us introduce, for n ∈ N, the process Z n given by:

(4.1) Z n (t) = 2 1+ n 2 [2 n t]-1 i=0 i+1 2 n i 2 n dB s s i 2 n dB u = 2 n 2 [2 n t]-1 i=0 B i+1 2 n -B i 2 n 2 - 1 2 n , t ∈ [0, 1].
We split the proof of the convergence of 2

n 2 j n = • 0 σ(s, B s )dZ n (s) into several steps:
a) Convergence in law in the particular case where σ ≡ 1.

Let {N i } i∈N be a sequence of independent standard Gaussian random variables. We have, for all n ∈ N:

2 n 2 [2 n t]-1 i=0 B i+1 2 n -B i 2 n 2 - 1 2 n (law) = 2 -n 2 [2 n t]-1 i=0 (N 2 i -1).
Then, the convergence in law when σ ≡ 1 is an immediate consequence of the functional central limit theorem.

b) Convergence in law for any function σ. i) We can write Z n (t) = Zn (t) -R n (t), where the martingale Zn is given by:

Zn (t) := 2 t 0 dB s s 0 dB u f n (s, u), f n (s, u) = 2 n 2 2 n -1 i=0 1 [ i 2 n , i+1 2 
n ) (s)1 [ i 2 n ,1] (u),
and the remainder by 

R n (t) := 2 1+ n 2 t [2 n t] 2 n dB s s [2 n t] 2 n dB u . It is not difficult to show that lim n→∞ E{sup t∈[0,1] |R n (t)| 2 } = 0.
dB v t u ds f n (s, u) f n (s, v) + 4 t 0 ds s 0 du f n (s, u) 2 .
On the one hand, note that

4 t 0 ds s 0 duf n (s, u) 2 = 2 [2 n t] 2 n + 2 1+n t - [2 n t] 2 n 2 → 2 t, as n → ∞.
Thanks to the isometry formula, we have, on the other hand,

E t 0 dB u u 0 dB v t u ds f n (s, u) f n (s, v) 2 = 2 2n+1 [2 n t]-1 i=0 i+1 2 n i 2 n du u i 2 n dv i+1 2 n u ds s u dw + 2 2n+1 t [2 n t] 2 n du u [2 n t] 2 n dv t u ds s u dw = O( 1 2 n ),
as n → ∞. So, we deduce that L 2lim n→∞ [ Zn , Zn ](t) = 2 t.

ii) By using the stochastic version of Fubini theorem, the covariation between Zn and B verifies

[ Zn , B](t) = 2 1+ n 2   [2 n t]-1 i=0 i+1 2 n i 2 n dB u i+1 2 n u ds + t [2 n t] 2 n dB u t u ds   .
We deduce that

E [ Zn , B](t) 2 = 2 n+2   [2 n t]-1 i=0 i+1 2 n i 2 n du i+1 2 n u ds 2 + t [2 n t] 2 n (t -u) 2 du   = O( 1 2 n ) → 0, as n → ∞.
iii) With a similar reasoning, we can prove that

L 2 -lim n→∞ [ Zn , B]([ Zn , Zn ] -1 (t)) = 0.
iv) Let us denote by β n the Dubins-Schwarz Brownian motion associated to Zn . By the steps i)-iii) and by the asymptotic version of Knight's theorem (see, for instance, [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], p.

524), we deduce, as n → ∞, (B, β n ) law -→ (β (1) , β (2) ), where β (1) and β (2) are two independent standard Brownian motions. Since L 2lim n→∞ [ Zn , Zn ](t) = 2t, we get that, as n → ∞, (B, Zn ) law -→ (β (1) , √ 2 β (2) ). Set ι(t) = t, t ∈ [0, 1]. Then, (ι, B, Zn ) law -→ (ι, β (1) , √ 2 β (2) ), as n → ∞ and, thanks to Lemma 4.1,

(4.2) (ι, B, Z n ) law -→ (ι, β (1) , √ 2 β (2) ), as n → ∞.
Since σ is a continuous function, we have (σ(ι, B)

2 , Z n ) law -→ (σ(ι, β (1) ) 2 , √ 2 β (2)
), as n → ∞. Using the result concerning the convergence in distribution of stochastic integrals (see Jakubowski et al. [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF]), we obtain, as n → ∞,

2 n 2 j n = • 0 σ(s, B s ) 2 dZ n (s) law -→ √ 2 • 0 σ(s, β (1) s ) 2 dβ (2) s .
Indeed, it suffices to verify the uniform tightness hypothesis of the result in [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF], p. 125: ∀t ≥ 0, ∀A predictable process bounded by 1, ∀n ∈ N,

P t 0 A s dZ n (s) > R ≤ 1 R 2 E      2 1+ n 2 [2 n t]-1 i=0 A i 2 n i+1 2 n i 2 n dB s s i 2 n dB u   2    ≤ cst R 2 .
Consequently, the proof of (2.3) is done.

Proof of Proposition 2.2 We denote by S n the process given by

S n (t) = 2 n [2 n t]-1 i=0 B i+1 2 n -B i 2 n 4 , t ∈ [0, 1], n ∈ N.
us note that, for any t ∈ [0, 1], S n (t) converges towards 3t, a deterministic limit, in probability, as n → ∞. Indeed, for fixed t ≥ 0, S n (t) has the same law as 2 -n [2 n t]-1 i=0 N 4 i with {N i } i∈N a sequence of independent standard Gaussian random variables. The convergence is then obtained by the law of large numbers. We deduce, by using (4.2), that, as n → ∞,

(ι, B, Z n , S n ) law -→ (ι, β (1) , √ 2 β (2) , 3 ι),
with β (1) and β (2) again two independent standard Brownian motions and ι(t) = t, t ∈ [0, 1]. Moreover, by a similar reasoning as in step iv) of the proof of Theorem 2.1, for fixed t ∈ [0, 1], we obtain firstly, as n → ∞,

t 0 σ(s, B s ) 2 dZ n (s), t 0 σ(s, B s ) 4 dS n (s) law -→ √ 2 t 0 σ(s, β (1) s ) 2 dβ (2) s , 3 t 0 σ(s, β (1) 
s ) 4 ds and secondly, as n → ∞,

2 n 2 ( J n (t) -J(t)), V n (t) law -→ √ 2 t 0 σ(s, β (1) s ) 2 dβ (2) s , 3 t 0 σ(s, β (1) s ) 4 ds .
Finally, since the function (x, y) → x √ y is continuous on R × R * + , we deduce that, as n → ∞,

2 n 2 V n (t) -1 2 ( J n (t) -J(t)) law -→ 2 3 t 0 σ(s, β (1) 
s ) 2 dβ (2) s t 0 σ(s, β (1) 
s ) 4 ds 1 2

.

By the independence between β (1) and β (2) , it is easy to see that, for any fixed t ∈]0, 1],

2 3 t 0 σ(s, β (1) 
s ) 2 dβ (2) s t 0 σ(s, β (1) 
s ) 4 ds

1 2 law = 2 3 N (0, 1).
The proof of (2.5) is done.

Proof of Proposition 2.4 We begin by stating the following: Lemma 4.2 Let φ κ as in Proposition 2.4. We have, for any set A ∈ F,

Q(A) ≥ φ κ (P(A)), or equivalently: P(A) ≤ φ -1 κ (Q(A)). In particular, if (A m ) is a sequence of sets in F such that Q(A m ) → 0 (resp. → 1), then P(A m ) → 0 (resp. → 1), as m → ∞. (4.3) 
Let us finish the proof of Proposition 2.4. We fix t ∈ (0, 1] and let R > 0. We can write, for all n 0 ∈ N and n ≥ n 0 , Q 2 nγ U n (t)

-1 2 I n (t) -I(t) ≥ R ≥ Q 2 n 2 U n (t) -1 2 I n (t) -I(t) ≥ R 2 n 0 (γ-1 2 ) -→ n→∞ Q 2 3 |N | ≥ R 2 n 0 (γ-1 2 ) -→ n→∞ 1.
Here and below we denote by N a standard Gaussian random variable under Q. Consequently, by using Lemma 4.2, we obtain the first part of Proposition 2.4. For the second part, by using succesively Lemma 4.2 and (2.13), we see that lim sup We then have

J n (t) = [2 n t]-1 i=0 ψ(B i+1 2 n ) -ψ(B i 2 n ) 2 = [2 n t]-1 i=0 ψ (B i 2 n ) 2 (B i+1 2 n -B i 2 n ) 2 + (ψ ψ )(B i 2 n )(B i+1 2 n -B i 2 n ) 3 + r n (t),
with sup n≥1 E {|2 n r n (t)|} < +∞.

Moreover, we also have

E      [2 n t]-1 i=0 (ψ ψ )(B i 2 n )(B i+1 2 n -B i 2 n ) 3   2    = [2 n t]-1 i,j=0 E (ψ ψ )(B i 2 n )(ψ ψ )(B j 2 n )(B i+1 2 n -B i 2 n ) 3 (B j+1 2 n -B j 2 n ) 3 = 15 • 2 -3n [2 n t]-1 i=0 E (ψ ψ )(B i 2 n ) 2 ≤ 15 • 2 -2n ψ 2 ∞ ψ 2 ∞ .
Consequently,

J n (t) -Jint n (t) = [2 n t]-1 i=0 ψ (B i 2 n ) 2 (B i+1 2 n -B i 2 n ) 2 - 1 2 n + rn (t),
with sup n≥1 E {|2 n rn (t)|} < +∞.

Finally, we can finish the proof of (3.3) as in the proof of Theorem 2.2. Now, let us prove (3.4) by considering the two situations:

i) The case when ψ is a monotone bijection. We have, for fixed t ∈]0, 1],

J n (t) -Jint n (t) a.s.

-→ 

Figure 1 :

 1 Figure 1: Observed semimartingale

Figure 2 :

 2 Figure 2: Observed diffusion
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 41 Consider {X n : n ∈ N} and {Y n : n ∈ N} two sequences of random elements with values in D([0, 1]; R) (or càdlàg real stochastic processes starting from 0). Assume that, as

n→∞ P U n (t) - 1 2 2 n 2 ≤ lim sup n→∞ φ - 1 κQ U n (t) - 1 2 2 n 2 =

 1221122 I n (t) -I(t) ≥ β I n (t) -I(t) ≥ β φ -1 κ (Q( 2/3|N | ≥ β)).Proof of Lemma 4.2 We have, by using succesively Jensen and Cauchy-Schwarz inequalities,Q(A) = E P (e Z 1 A ) ≥ exp 1 P(A) A Z(ω)dP(ω) P(A) = exp E P (Z1 A ) P(A) P(A) ≥ φ κ (P(A)).Proof of Proposition 3.1 Let us first prove(3.3). Assume that ( H) holds and fix t ∈ [0, 1].

  B u ) 2 -(ψ • ψ -1 • ϕ)(B u ) 2 )du , as n → ∞. Assume that P t 0 (ϕ (B u ) 2 -(ψ • ψ -1 • ϕ)(B u ) 2 )du = 0 > 0.

  Again, by Lemma 4.1, it suffices to study the convergence in distribution of Zn . We fix t ∈ [0, 1]. By applying succesively Itô's formula and the stochastic version of Fubini theorem (see, for instance,[START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], p. 175), the quadratic variation of Zn verifies

	[ Zn , Zn ](t) = 8	t	dB u	u
	0		0	

J n (1)(ω) -Jint n (1)(ω) = 0.6759 . Since P(|N | > 0.6759) = 0.5, we can not reject ( H).
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It follows that the law of the random variable t 0 (ϕ (B u ) 2 -(ψ • ψ -1 • ϕ)(B u ) 2 )du is not absolutely continuous with respect to the Lebesgue measure. At this level, we need the following: Lemma 4.3 Let h be a real analytic function and let T ∈ (0, 1]. The law of T 0 h(B u )du is absolutely continuous with respect to the Lebesgue measure if and only if h ≡ cst.

Admit this result (which proof is postponed to the end of this section). We deduce that 2 . By a connectedness argument, we obtain that ϕ = ε ψ • ψ -1 • ϕ, with ε ∈ {±1}. Then ϕ is one-to-one and we have ϕ • ϕ -1 = ε ψ • ψ -1 or equivalently (ϕ -1 ) = ε(ψ -1 ) . We finally obtain that ϕ -1 (x) = ε ψ -1 (x) for all x ∈ R, or equivalently ϕ(x) = ψ(εx) for all x ∈ R. This is a contradiction with ( A) ! Consequently, almost surely

)du does not vanish and (3.4) holds.

ii) The case when ψ 2 = F (ψ). In this case:

Again, it follows that the law of the random variable t 0 (ϕ (B u ) 2 -F (ϕ)(B u ))du is not absolutely continuous with respect to the Lebesgue measure. Again by using Lemma 4.3, we obtain that ϕ 2 = F (ϕ) and then 2ϕ ϕ = ϕ F (ϕ). On the one hand, by real analycity of ϕ, the set {x : ϕ (x) = 0} is dense in R and it allows us to simplify: 2ϕ = F (ϕ). On the other hand, we have ϕ 2 (0) = F (0) = ψ 2 (0) and ϕ(0) = ψ(0). By uniqueness of the Cauchy problem, we deduce ϕ(|

Proof of Proposition 3.3 If we assume that (H) holds, then (3.8) is a consequence of the first point of Proposition 3.1 and Lemma 4.2. Assume that (A) holds. We have, for fixed t ∈ (0, 1],

Once more, it follows that the law of the random variable t 0 (θ(X u ) 2ϑ(X u ) 2 )du is not absolutely continuous with respect to the Lebesgue measure. We need a similar result as Lemma 4.3: Lemma 4.4 Let h be a real analytic function and let T ∈ (0, 1]. The law of T 0 h(X u )du is absolutely continuous with respect to the Lebesgue measure if and only if h ≡ cst.

Using this result, we deduce that ϑ 2θ 2 = c, c ∈ R. Moreover, necessarily c = 0 because

This is a contradiction with (A) ! Proof Lemma 4.3 and 4.4 We use the Malliavin calculus. By Theorem 2.1.3 in [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] p. 87, we know that if F lies in the Sobolev-Malliavin space D 1,2 and if T 0 (D t F ) 2 dt > 0 almost surely then the law of F is absolutely continuous with respect to the Lebesgue measure on R.

Firstly, if

We have P(∀t, D t F = 0) = P(∀t, h (B t ) = 0). If we assume that P(∀t, h (B t ) = 0) > 0 then, in particular, P(h (B T ) = 0) > 0. Since h is analytic and the random variable B T is absolutely continuous with respect to the Lebesgue measure, we deduce that h ≡ 0. The conclusion of the Lemma 4.3 follows easily.

Secondly, if F = T 0 h(X u )du with X given by (3.5), then

and the conclusion of the Lemma 4.4 follows as previously.