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Various paths properties of a stochastic process are obtained under mild conditions which allow for the integrability of the characteristic function of its increments and for the dependence among them. The main assumption is closely related to the notion of local asymptotic self-similarity. New results are obtained for the class of multifractional random processes.

Introduction

Let X = (X(t), t ∈ R + ) be a real valued separable random process with Borel sample functions. For any Borel set B, the occupation measure of X on B is defined as follows

µ B (A) = λ{s ∈ B : X(s) ∈ A} for all A ∈ B(R),
where λ is the Lebesgue measure on R + . If µ B is absolutely continuous with respect to the Lebesgue measure on R, we say that X has a local time on B and define its local time, L(B, .), to be the Radon-Nikodym derivative of µ B . Here x is the so-called space variable, and B is the time variable. Sometimes, we write L(t, x) instead of L([0, t], x).

The relation between the smoothness of the local time in its variables and the irregularity of the underlying process has been investigated by S. Berman for Gaussian processes; for instance, if L(t, x) is jointly continuous, then X is nowhere differentiable and has uncountable level sets, see for example [START_REF] Berman | Gaussian processes with stationary increments: local times and sample function properties[END_REF][START_REF] Berman | Harmonic analysis of local times and sample functions of Gaussian processes[END_REF][START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF] for details. The computations required to establish the joint continuity of the local time in the Gaussian case were based on the concept of local nondeterminism [START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF]. In Berman's papers, the smoothness of L(t, x) in time and space was important to prove the irregularity of the original process.

Geman and Horowitz have obtained in a series of papers weaker conclusions under more general conditions; for instance, the irregularity of the sample paths of X was based on the continuity of the local time only as a function of the time parameter, we refer to [START_REF] Geman | Occupation densities[END_REF] for a survey in this area. Berman has extended in [START_REF] Berman | Local nondeterminism and local times of general stochastic processes[END_REF] his definition of local nondeterminism to a wide class of stochastic processes, and has refined his previous results under an assumption of higher order integrability of the local time instead of the smoothness in the space variable. Recently, Kôno and Shieh [START_REF] Kôno | Local times and related sample path properties of certain self-similar processes[END_REF] have refined the previous results for the class of self similar processes with stationary increments under additional assumptions on the joint density of (X(t), X(s)). Their conclusions have been given in terms of the exponent of self-similarity. Our results may be considered as a continuation in this direction. The assumptions on the process X considered in this paper are framed on the characteristic function of the one-dimensional increments of X (assumption (H) in Section 2) and on the dependence among these increments (assumption (H m ) in Section 2). These assumptions are weak enough to include existing methods related to the Fourier analytic approach initiated by S. Berman, especially various notions of local nondeterminism. They are applicable to cases where the marginal laws and the dependence structure up to a certain order k are known, but where the law of the process itself is unknown, such as the weak Brownian motion of order k (cf. [START_REF] Föllmer | On weak Brownian motions of arbitrary order[END_REF]).

Assumption (H) is closely related to the notion of local asymptotic self-similarity. A real valued stochastic process {X(t), t ∈ R + } is said to be locally asymptotically self similar (lass for brevity), if there exists a non-degenerate process {Y (t), t ∈ R + }, such that for every t ∈ R + :

lim ρ→0 + X(t + ρu) -X(t) ρ H = Y (u), u ∈ R + , (1) 
where the convergence is in the sense of the finite dimensional distributions and 0 < H < 1 is the lass exponent. Y is called the tangent process at t and if Y is unique in law, it has stationary increments and it is self similar with exponent H (c.f. [START_REF] Falconer | Tangent fields and the local structure of random fields[END_REF]). Conversely, note that any non degenerate H-self similar process X with stationary increments is H-lass and its tangent process is X itself. The notion of lass processes was introduced in Benassi et al. [START_REF] Benassi | Elliptic Gaussian random processes[END_REF] and Lévy-Véhel and Peltier [START_REF] Lévy-Véhel | Multifractional Brownian motion : definition and preliminary results[END_REF] in order to relax the self-similarity property of fractional Brownian motion. Various examples of lass processes appear nowadays in the literature; for example, filtered white noises [START_REF] Benassi | Identification of filtered white noises[END_REF] and the multi-scale fractional Brownian motion [START_REF] Guerbaz | Hölder conditions for the local times of multiscale fractional Brownian motion[END_REF]. An important class of lass processes are multifractional processes, for which the H-lass parameter is no more constant but a regular function of time, such as multifractional Brownian motions [START_REF] Benassi | Elliptic Gaussian random processes[END_REF][START_REF] Lévy-Véhel | Multifractional Brownian motion : definition and preliminary results[END_REF] and the linear multifractional stable process [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF].

The paper is organized as follows. In Section 2, we introduce our assumptions and explain how they are related to the study of lass processes. The continuity of the local time and related irregularity properties of the underlying process are obtained in Section 3 under assumption (H). The joint continuity of the local time required initially in the Gaussian case and the higher order integrability in the space variable assumed in [START_REF] Berman | Local nondeterminism and local times of general stochastic processes[END_REF] are circumvented. Section 4 contains results on the Hausdorff measure and the Hausdorff dimension of the progressive level sets. In Section 5 the joint continuity and Hölder conditions of local time are shown under assumptions (H) and (H m ), and the Hausdorff dimension of level sets at deterministic levels is deduced. The higher smoothness of the local time in the space variable is studied in Section 6. In section 7 we verify (H) and (H m ) for some classes of processes, including sub-Gaussian processes and linear multifractional stable processes. We show how the lass property helps to verify the local nondeterminism of Gaussian multifractional processes. In this sense this paper may be considered as a continuation of previous work [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF][START_REF] Boufoussi | Sample path properties of the local time of multifractional Brownian motion[END_REF][START_REF] Guerbaz | Local time and related sample paths of filtered white noises[END_REF][START_REF] Guerbaz | Hölder conditions for the local times of multiscale fractional Brownian motion[END_REF] on local times of Gaussian multifractional processes. Let us finally mention that an incorrect result in [START_REF] Cohen | From self-similarity to local self-similarity : the estimation problem, Fractals: Theory and Applications in Engineering[END_REF] on the equivalence of versions of the multifractional Brownian motion has been cited in [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF]. Proposition 7.2 of this paper proves the local nondeterminism for all versions and confirms therefore the correctness of the results in [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF] not only for the moving average version, but also for the harmonisable version of the multifractional Brownian motion.

Assumptions

Let {X(t), t ∈ [0, T ]} be a real valued separable stochastic process with measurable sample paths. The first assumption concerns the integrability of the characteristic function of the increment X(t) -X(s), for 0 < s < t ≤ T < ∞, s and t sufficiently close. Assumption (H) : There exist positive numbers (ρ 0 , H) ∈ (0, +∞)×(0, 1) and a positive function ψ ∈ L 1 (R) such that for all λ ∈ R, t, s ∈ [0, T ], 0 < |t -s| < ρ 0 we have

E exp iλ X(t) -X(s) |t -s| H ≤ ψ(λ).
Comments 1.

1. If X is H-self similar with stationary increments, the assumption (H) is reduced to : ψ(λ) = |E e iλX (1) | belongs to L 1 (R), which is a classical condition in the investigation of local times of H-self similar processes with stationary increments (see [START_REF] Kôno | Local times and related sample path properties of certain self-similar processes[END_REF]).

2. Assumption (H) is closely related to the study of lass processes. Indeed, according to (1), we have

lim ρ→0 + E exp iλ X(t + ρ) -X(t) ρ H = E exp(iλY (1)) .
Then in view of the first comment and the fact that Y is H-self similar with stationary increments, (H) seems to be natural for the study of local times of lass processes. We refer to [START_REF] Benassi | Elliptic Gaussian random processes[END_REF] for a use of (H) for computing the Hausdorff dimension of the graph of lass processes.

The second assumption characterizes the dependence among the finite-dimensional increments of X :

Assumption (H m ) : There exist m ≥ 2 and positive constants δ and c, both may depend on m, such that for all t 1 , ..., t m with 0 := t 0 < t 1 < t 2 < ... < t m ≤ T, and |t m -t 1 | ≤ δ, we have

E exp i m j=1 u j [X(t j ) -X(t j-1 )] ≤ m j=1 E exp (icu j [X(t j ) -X(t j-1 )]) , for all u 1 , ..., u m ∈ R. Comments 2.
1. If X has independent increments, then (H m ) holds for all m ≥ 2 trivially. When (H m ) holds for all m ≥ 2, we say that X has characteristic function locally approximately independent increments (see [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF], Definition 2.5). This concept is called in the literature the local nondeterminism (LND), and classical examples of LND processes are the fractional Brownian motion (fBm) and the linear fractional stable motion (LFSM) (see [START_REF] Kôno | Local times and related sample path properties of certain self-similar processes[END_REF]). 3. According to Lemma 2.1 in Berman [START_REF] Berman | Self-intersections and local nondeterminism of Gaussian processes[END_REF], a sufficient condition for (H m ) to hold for a centered Gaussian process is as follows: There exists m ≥ 2 such that

lim ε→0 sup 0≤tm-t 1 <ε max i =j |Cov [X(t i ) -X(t i-1 ), X(t j ) -X(t j-1 )] | V ar[X(t i ) -X(t i-1 )]V ar[X(t j ) -X(t j-1 )] < 1 m -1 .
For m = 2, corresponding to (H 2 ), the preceding condition becomes

lim ε 0 sup 0<t-s≤ε |Cov[X(t) -X(s), X(s)]| V ar[X(t) -X(s)]V ar[X(s)] < 1.
According to Theorem 3.1 in [START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF], this is the necessary and sufficient condition for a Gaussian Markov process to be LND.

We end this section by recalling the notion of approximate moduli of continuity. First, t is said to be a point of dispersion (resp. a point of density) for a bounded Lebesgue measurable set F if

lim ε→0 λ{F ∩ (t -ε, t + ε)} ε = 0, ( resp. = 1)
where λ denotes Lebesgue measure. The approximate lim sup of a function f (s) for s → t is at least y if t is not a point of dispersion for the set {s : f (s) ≥ y}. We refer to Geman and Horowitz ( [START_REF] Geman | Occupation densities[END_REF], Appendix page 22) for details and to Example 1 in the same reference for geometric interpretation. We note that

-∞ ≤ lim inf s→t f (s) ≤ ap -lim sup s→t f (s) ≤ lim sup s→t f (s) ≤ +∞ (2) 
We will use C, C 1 , ... to denote unspecified positive finite constants which may not necessarily be the same at each occurrence.

Continuity in time and applications

Our first result in this section is the following Theorem 3.1. Suppose that {X(t), t ∈ [0, T ]} satisfies (H). Then, almost surely i) X has a local time L(t, x), continuous in t for a.e. x ∈ R and L(t, .) ∈ L 2 (dx × P).

ii)

ap -lim sup

s→t |X(t) -X(s)| |t -s| 1+H φ(|t -s|) = +∞ for all t ∈ [0, T ],
where φ(r), r ≥ 0 is any right-continuous function decreasing to 0 as r 0.

Remark 3.1. It's straightforward from (i) of the previous theorem and Theorem A of Geman [START_REF] Geman | A note on the continuity of local times[END_REF] that, with probability one,

ap -lim s→t |X(t) -X(s)| |t -s| = +∞, for a.e. t ∈ [0, T ].
The following is an immediate consequence of Theorem 3.1.

Corollary 3.2. With probability one, X(., w) is nowhere Hölder continuous of any order greater than 1 + H.

Proof of Theorem 3.1. Let I be an interval of length smaller than ρ 0 . For all s, t ∈ I, we have

P (|X(t) -X(s)| ≤ ε) = P |X(t) -X(s)| |t -s| H ≤ ε |t -s| H = 1 2π ε/|t-s| H -ε/|t-s| H R E exp iλ X(t) -X(s) |t -s| H exp (-iλx) dλdx ≤ ε π|t -s| H R ψ(λ)dλ
Then,

I I sup ε>0 1 ε P (|X(t) -X(s)| ≤ ε) dsdt ≤ 1 π R ψ(λ)dλ I I 1 |t -s| H dsdt < +∞, (3) 
since 0 < H < 1. Therefore, by using Theorem 21.15 in [START_REF] Geman | Occupation densities[END_REF], L(t, x) exists and it belongs to L 2 (dx × P). Furthermore, (3) implies that

I sup ε>0 1 ε P (|X(t) -X(s)| ≤ ε) ds < +∞, for a.e. t ∈ I.
Then, according to Theorem B in Geman [START_REF] Geman | A note on the continuity of local times[END_REF], the result of the theorem holds for any interval in [0, T ] of length smaller than ρ 0 . Moreover, since [0, T ] is a finite interval, we can obtain the local time on [0, T ] by a standard patch-up procedure, i.e. we partition

[0, T ] into ∪ n i=1 [T i-1 , T i ] and define L([0, T ], x) = n i=1 L([T i-1 , T i ],
x), where T 0 = 0 and T n = T .

The proof of (ii) will be an application of Theorem 1 of [START_REF] Berman | The modulator of the local time[END_REF] to the sample paths of X. Hence, we shall estimate the so called modulator of local time defined as follows

M (t) = 2 2 n j=1 R L 2 j -1 2 n , j 2 n , x dx 1/2 , (4) 
whenever

2 -n-1 ≤ t ≤ 2 -n . Now, consider [α, β] ⊂ [0, T ] with β -α < ρ 0 .
It follows from the occupation density formula and Parseval equation that

E R L 2 ([α, β], x)dx = E R L([α, β], x) L([α, β], x)dx = β α β α R E exp (iu(X(t) -X(s))) dudtds. (5) 
Combining the change of variable v = (t -s) H u and (H), we obtain that ( 5) is smaller than

β α t α 1 (t -s) H dsdt R ψ(x)dx ≤ C(β -α) 2-H . (6) 
Therefore,

EM 2 (2 -n ) ≤ C(2 -n ) 1-H . (7) 
Consequently

lim inf n→+∞ 2 n EM 2 (2 -n ) 1/2 (2 -n ) 1+H φ(2 -n ) 1/2 ≤ C lim inf n→+∞ (2 n ) 1+(1-(2-H))/2-(1+H)/2 φ 1/2 (2 -n ) = 0.
Since, by Lemma 2.1 in [START_REF] Berman | The modulator of the local time[END_REF], the modulator is increasing in t, then

lim inf t→0 t -1 EM 2 (t) 1/2 t 1+H φ(t) 1/2 = 0.
Therefore, (1.6) in Theorem 1 of Berman [START_REF] Berman | The modulator of the local time[END_REF] holds for almost all sample functions. This completes the proof of (ii) .

We can get a better result for the prescribed local regularity, at a fixed point t, as follows

Proposition 3.3. If {X(t), t ∈ [0, T ]} satisfies (H), then for every t ∈ [0, T ], the process X is a J H (t) (Jarnik) function on t; i.e. ap -lim sup s→t |X(t) -X(s)| |t -s| H φ(|t -s|) = +∞, almost surely
where φ(r), r ≥ 0 is any right-continuous function decreasing to 0 as r 0.

Now for the pointwise Hölder exponent of a stochastic process X at t 0 , defined by

α X (t 0 , ω) = sup α > 0, lim ρ→0 X(t 0 + ρ, ω) -X(t 0 , ω) ρ α = 0 , (8) 
the result of the previous proposition implies Corollary 3.4. The pointwise Hölder exponent of X at any point t is almost surely smaller or equal to H.

Remark 3.2. Proposition 3.3 in [START_REF] Benassi | Identification and properties of real harmonizable fractional Lévy motions[END_REF] gives an analogous result for lass processes with exponent H.

We need the following modification of Lemma 2.2 in Berman [START_REF] Berman | Local nondeterminism and local times of general stochastic processes[END_REF] for the proof.

Lemma 3.1. Let f (t), 0 ≤ t ≤ T be a deterministic real valued measurable function which has a local time L(t, x) and let δ(s), s > 0, be a positive nondecreasing function such that for every

0 ≤ t ≤ T lim inf s→0 (δ(s)) 1/2 s R L 2 ([t -s, t + s], x)dx 1/2 = 0. (9) 
Then ap -lim sup

s→t |f (t) -f (s)| δ(|t -s|) = +∞. (10) 
Proof. According to Lemma 2.1 in [START_REF] Berman | Local nondeterminism and local times of general stochastic processes[END_REF], for arbitrary M > 0, 0 ≤ t ≤ T , and s > 0, we have

(2s) -1 λ{t : |t -t | ≤ s, |f (t ) -f (t)| < M δ(|t -t |)} ≤ (2M δ(s)) 1/2 2s R L 2 ([t -s, t + s], x)dx 1/2 . (11) 
By ( 9), the right hand side of [START_REF] Berman | The modulator of the local time[END_REF] has lim inf equal to zero. Hence, t is not a density point for the set,

s : |f (t) -f (s)| δ(|t -s|) < M .
Therefore, it is not a dispersion point for the complementary set,

s : |f (t) -f (s)| δ(|t -s|) ≥ M .
Consequently the approximate limsup of the ratio is at least equal to M. Since M is arbitrary, the conclusion follows.

Proof of Proposition 3.3. It suffices to show that for every 0 ≤ t ≤ T , the assumption (9) holds almost surely for δ(s) = s H φ(s). This holds if the random variable

Λ(s) = (δ(s)) 1/2 s R L 2 ([t -s, t + s], x)dx 1/2
converges to 0 in probability as s tends to 0. Moreover, using Markov's inequality, we have for arbitrary ε > 0

P (Λ(s) > ε) ≤ s H φ(s)s -2 ε -2 E R L 2 ([t -s, t + s], x)dx ≤ Cs H φ(s)s -2 ε -2 (2s) 2-H ,
where the last inequality follows from ( 5) and ( 6). The last term is equal to 2 2-H Cε -2 φ(s), which tends to zero as s tends to 0 by the assumption on φ. This completes the proof.

Hausdorff measure and dimension

Firstly, we recall the definition of the φ-Hausdorff measure and dimension. Let Φ be the class of functions φ : (0, 1) → (0, 1) which are right continuous and increasing with φ(0

+ ) = 0. The φ-Hausdorff measure H φ (A) of a Borel subset A of R is defined by H φ (A) = lim inf ε 0 ∞ n=1 φ(|I n |) : {I n } n∈N is a countable cover of A by compact intervals with length |I n | ≤ ε .
And the Hausdorff dimension of A is defined by

dim A = inf{α / H φ (A) = 0, φ(r) = r α } = sup{α / H φ (A) = +∞, φ(r) = r α }. Theorem 4.1. Suppose that {X(t), t ∈ [0, T ]} satisfies (H), and let Z t = {s ∈ [0, T ]/X(s) = X(t)} be the progressive level set. Consider the measure function φ(r) = r (1-H)/2 | log(r)| θ , θ > 1/2. Then P H φ (Z t ) = +∞ for a.e. t = 1. (12) 
Furthermore, if (H 2 ) holds and if, for any β < H, X satisfies a uniform Hölder condition of order β almost surely, then for almost every t ≥ 0

P(dim Z t = 1 -H) = 1. ( 13 
)
Remark 4.1. Benassi et al. [START_REF] Benassi | Elliptic Gaussian random processes[END_REF] have computed the Hausdorff dimension of the graph of lass processes under similar assumptions.

Proof. The inequality [START_REF] Berman | Gaussian processes with stationary increments: local times and sample function properties[END_REF] implies

∞ n=1 EM 2 (2 -n ) [φ(2 -n )] 2 ≤ C ∞ n=1 (2 -n ) 1-H (2 -n ) 1-H n 2θ < +∞.
Then, according to Theorem 2 and (4.6) in Berman [START_REF] Berman | The modulator of the local time[END_REF], [START_REF] Berman | Self-intersections and local nondeterminism of Gaussian processes[END_REF] is proved. We prove [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF] in two steps, by finding upper and lower bounds which appear to be identical. Upper bound : We first prove that for almost every t

dim Z t ≤ 1 -H, almost surely. ( 14 
)
For any t ∈ [0, T ], consider t 0 ∈ [0, T ] such that 0 < |t -t 0 | < ρ 0 . Then, according (H 2 ), we have R Ee ixX(t) dx ≤ R Ee ixX(t 0 ) Ee ix(X(t)-X(t 0 )) dx, ≤ R ψ(x)dx × 1 |t -t 0 | H .
It follows that X(t) has a bounded continuous density function p t (y). Furthermore, for any t, take t 0 = t(1 -T ρ 0 (T + ρ 0 ) 2 ), hence t 0 ∈ [0, T ], with |t -t 0 | < ρ 0 and by the inverse Fourier transform we get

P (|X(t) -x| ≤ u) ≤ C π (T + ρ 0 ) 2H u (T ρ 0 ) H × 1 t H (15) 
Even though the processes considered in this paper are not necessarily Gaussian, the main ingredients needed to prove [START_REF] Boufoussi | Sample path properties of the local time of multifractional Brownian motion[END_REF] are the existence of a continuous density, the inequality (15) and the Hölder continuity of X. The proof follows now the same lines as the first part of the proof of Theorem 2.1 in Berman [START_REF] Berman | Gaussian processes with stationary increments: local times and sample function properties[END_REF]. We omit the details here.

Lower bound : Let us first recall the following property of the Hausdorff dimension: For any countable sequence of sets E 1 , E 2 , .... we have

dim ∞ i=1 E i = sup i≥1 dim E i . (16) 
Now since R + is a countable union of finite intervals, it suffices to prove the result for any I of small length. Let us prove that for any |I| < ρ 0 , we have

dim{s ∈ I/X(s) = X(t)} ≥ 1 -H
We adapt the argument of Berman [START_REF] Berman | Gaussian processes with stationary increments: local times and sample function properties[END_REF]. Using Parseval's identity, we obtain

H(s, t) := R L(t, x)L(s, x)dx, = R t 0 s 0 exp (iu(X(t ) -X(s ))) ds dt du.
Furthermore, from a standard approximation, we have for any Borel function g(s, t)

I I g(s, t)H(ds, dt) = +∞ -∞ I I g(s, t)L(dt, x)L(ds, x)dx. (17) 
Then by Fubini's theorem, for every 0 < γ < 1 -H, we have

E I I 1 |t -s| γ H(ds, dt) = R I I 1 |t -s| γ E exp (iu(X(t) -X(s))) dsdtdu ≤ R ψ(u)du I I 1 |t -s| H+γ dsdt, (18) 
where we have used the assumption (H) to obtain the last inequality. Since 0 < γ < 1-H, the second integral in ( 18) is finite. Then by Fubini's theorem and ( 17) we have

I I 1 |t -s| γ L(ds, x)L(dt, x) < ∞,
for almost all x ∈ R, almost surely. This implies that

I I 1 |u -v| γ L(du, X(t))L(dv, X(t)) < ∞, for almost all t ∈ I almost surely. ( 19 
)
According to Theorem 6.3 in Geman and Horwitz [START_REF] Geman | Occupation densities[END_REF], the measure L(., X(t)) is a positive measure on I for almost all t ∈ I, almost surely. It follows from Lemma 1.5 in Berman [START_REF] Berman | Gaussian processes with stationary increments: local times and sample function properties[END_REF] that the random measure L(., X(t)) is supported on Z t . Moreover Z t is closed, since X is continuous almost surely. Hence, combining Frostman's theorem (see e.g. Adler [START_REF] Adler | The Geometry of Random Fields[END_REF] page 196) and ( 19), we have almost surely dim Z t ≥ 1 -H for almost all t ∈ I.

Joint continuity of local times

Now, we turn to the problem of studying the existence of jointly continuous local times. Throughout this section, we assume the supplementary integrability condition [START_REF] Geman | Occupation densities[END_REF] which is verified for a wide class of stochastic processes including Gaussian and stable processes.

Theorem 5.1. Let {X(t), t ∈ [0, T ]}, be a stochastic process starting from zero and satisfying assumptions (H) and (H m ) for all m ≥ 2, where ψ satisfies

|u|≥1 |u| 1-H H ψ(u)du < ∞. ( 20 
)
Then X has a jointly continuous local time L(t, x), such that for any compact K ⊂ R and any interval I with length less than ρ 0 [the constant appearing in the assumption (H)],

we have

(i) If 0 < ξ < 1 ∧ 1-H 2H , then |L(I, x) -L(I, y)| ≤ η|x -y| ξ , for all x, y ∈ K (ii) If 0 < δ < 1 -H, then sup x∈K L(I, x) ≤ η|I| δ ,
where η is a random variable, almost surely positive and finite.

Proof. It is well known that proving the joint continuity of the local times and the Hölder conditions (i) and (ii) is straightforward, when estimating the moments of local times. According to Geman and Horowitz [START_REF] Geman | Occupation densities[END_REF], equation (25.5) and (25.7), the following expressions for the moments of local times hold : for any x, y ∈ R, t, t + h ∈ [0, T ] and any m ≥ 2,

E [L(t + h, x) -L(t, x)] m = 1 (2π) m [t,t+h] m R m e -ix P m j=1 u j E e i P m j=1 u j X(t j ) du 1 ...du m dt 1 ...dt m , (21) 
and for any even integer m ≥ 2,

E [L(t + h, y) -L(t, y) -L(t + h, x) + L(t, x)] m = 1 (2π) m [t,t+h] m R m m j=1 e -iyu j -e -ixu j E e i P m j=1 u j X(t j ) du 1 ...du m dt 1 ...dt m . ( 22 
)
We estimate only [START_REF] Guerbaz | Hölder conditions for the local times of multiscale fractional Brownian motion[END_REF], since ( 21) is treated in a same manner. By using the elementary inequality |1 -e iθ | ≤ 2 1-ξ |θ| ξ for all 0 < ξ < 1 and any θ ∈ R, we obtain

E [L(t + h, y) -L(t, y) -L(t + h, x) + L(t, x)] m (23) 
≤ |y -x| mξ π -m [t,t+h] m R m m j=1 |u j | ξ E exp i m j=1 u j X(t j ) du 1 ...du m dt 1 ...dt m .
Furthermore, in order to use (H m ), we replace the integration over the domain [t, t + h] by the integration over the subset t < t 1 < ... < t m < t + h. We deal now with the inner multiple integral over the u's. Change the variables of integration by means of the transformation

u j = v j -v j+1 , j = 1, ..., m -1; u m = v m .
Then the linear combination in the exponent in ( 23) is transformed according to

m j=1 u j X(t j ) = m j=1 v j (X(t j ) -X(t j-1 )),
where

t 0 = 0. Since |a -b| ξ ≤ |a| ξ + |b| ξ , for all 0 < ξ < 1, it follows that m j=1 |u j | ξ = m-1 j=1 |v j -v j+1 | ξ |v m | ξ ≤ m-1 j=1 (|v j | ξ + |v j+1 | ξ )|v m | ξ . (24) 
Moreover, the last product is at most equal to a finite sum of terms each of the form m j=1 |v j | ξε j , where ε j = 0, 1, or 2 and m j=1 ε j = m. Combining (H), (H m ) for all m ≥ 2, and the change of variable v j (t j -t j-1 ) H = θ j , ( 23) becomes

E [L(t + h, y) -L(t, y) -L(t + h, x) + L(t, x)] m (25) ≤ C m m j=1 R |θ j | ξε j ψ(θ j )dθ j |y -x| mξ π -m t<t 1 ...<tm<t+h m j=1 (t j -t j-1 ) -H(1+ξε j ) dt 1 ...dt m .
Furthermore, for |u| ≥ 1, we have |u| ξε j ≤ |u| 2ξ , then

R |u| ξε j ψ(u)du = 1 -1 |u| ξε j ψ(u)du + |u|≥1 |u| ξε j ψ(u)du ≤ 1 -1 ψ(u)du + |u|≥1 |u| 2ξ ψ(u)du.
Combining the fact that ψ belongs to L 1 (R) and ( 20), we obtain that the last integrals are finite. Moreover, by an elementary calculation, for all m ≥ 1, h > 0 and b j < 1,

t<s 1 <...<sm<t+h m j=1 (s j -s j-1 ) -b j ds 1 ...ds m = h m- P m j=1 b j m j=1 Γ(1 -b j ) Γ(1 + m -m j=1 b j )
, where s 0 = t. It follows that ( 25) is dominated by

C m |y -x| mξ |h| m(1-H(1+ξ)) Γ(1 + m(1 -H(1 + ξ)) ,
where we have used m j=1 ε j = m. The rest of the proof follows now the lines of the proofs of Theorems 26.1 and 27.1 of Geman and Horowitz [START_REF] Geman | Occupation densities[END_REF]. Therefore it will be omitted here.

We can now establish the following result on the uniform dimension of the level set which improves [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF] under the assumption (H m ) for all m ≥ 2, Proposition 5.1. Suppose that {X(t), t ∈ [0, T ]} is β-Hölder continuous for any β < H and satisfies the assumptions of the previous theorem. Then, with probability one, for any interval I, we have

dim{t ∈ I/X(t) = x} = 1 -H,
for all x such that L(I, x) > 0.

Proof. The proof of the upper bound appears already in that of [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF], and the proof of the lower bound follows from Theorem 5.1 (ii) and Theorem 8.7.4 in Adler [START_REF] Adler | The Geometry of Random Fields[END_REF].

Regularity of the local time in the space variable

It is known that the Brownian motion local time satisfies a Hölder condition of any order smaller than 1/2, but not of order 1/2. The situation seems to be quite different for a large class of non Markovian Gaussian processes considered in the works of Berman [START_REF] Berman | Harmonic analysis of local times and sample functions of Gaussian processes[END_REF] and Geman and Horowitz [START_REF] Geman | Occupation densities[END_REF], where the authors have given several conditions that imply the higher smoothness of the local time as a function of x. These results have been extended to a wide class of self similar stochastic processes with stationary increments by Kôno and Shieh [START_REF] Kôno | Local times and related sample path properties of certain self-similar processes[END_REF]. These results extend as follows

Theorem 6.1. Assume that {X(t), t ∈ [0, T ]} satisfies (H) with R |u| 2r ψ(u)du < ∞,
for some nonnegative integer r such that H < 1 2r + 1

. Then, the k-th derivatives,

L (k) (T, x), of L(T, .) exist up to k = r almost surely. Moreover L (k) (T, x) ∈ L 2 (dx × P).
Proof. Let I ⊂ [0, T ] with length at most ρ 0 . Using the change of variables v |t -s| H = u and (H) we obtain

E +∞ -∞ I I |u| 2r exp (iu(X(t) -X(s))) dsdtdu ≤ I I dsdt |t -s| H(2r+1) R |v| 2r |ψ(v)|dv,
which is finite by the assumptions of the theorem. Then, the conclusion follows from the Fourier inversion formula (c.f. Berman [START_REF] Berman | Harmonic analysis of local times and sample functions of Gaussian processes[END_REF]) and by a standard patch-up procedure.

Remark that the function ψ plays in our proof the role of φ(x) = Ee ixX (1) for H-self similar processes with stationary increments in the proof of Theorem 5.1 in [START_REF] Kôno | Local times and related sample path properties of certain self-similar processes[END_REF]. By using this remark, we can also extend Theorem 5.2 in [START_REF] Kôno | Local times and related sample path properties of certain self-similar processes[END_REF] to Theorem 6.2. Suppose that {X(t), t ∈ [0, T ]} satisfies (H) and (H m ) for some m ≥ 2 and

R |u| 2r+2/m+ε |ψ(u)|du < ∞,
for some nonnegative integer r and some ε > 0 such that H < 1 2r + 2/m + 1 . Then, the local time L(T, x) is of class C r in x. Moreover L (r) (T, x) is Hölder continuous of a certain order.

Examples and extensions

The local time and some related sample paths properties of self similar processes with stationary increments have been studied by Kôno and Shieh [23]. This class is covered by the results of the present paper and now under weaker conditions. We give in the sequel examples of lass processes for which our results hold and we explain how the self-similarity has been relaxed for these processes. We also generalize the results of the previous sections to multifractional processes.

Multifractional Brownian motions

The multifractional Brownian motion was introduced independently by Lévy-Véhel and Peltier [START_REF] Lévy-Véhel | Multifractional Brownian motion : definition and preliminary results[END_REF] and Benassi et al. [START_REF] Benassi | Elliptic Gaussian random processes[END_REF]. The definition due to Lévy-Véhel and Peltier is based on the moving average representation of fBm, where the constant Hurst parameter H is substituted by a functional H(t) as follows :

B(t) = 1 Γ(H(t) + 1/2) 0 -∞ [(t -u) H(t)-1/2 -(-u) H(t)-1/2 ] W (du) + t 0 (t -u) H(t)-1/2 W (du) ; t ≥ 0, (26) 
where

H(t) : [0, ∞) -→ [µ, ν] ⊂ (0, 1
) is a Hölder continuous function with exponent β > 0, W is the standard Brownian motion defined on (-∞, +∞). Benassi et al. [START_REF] Benassi | Elliptic Gaussian random processes[END_REF] defined the multifractional Brownian motion by means of the harmonisable representation of fBm as follows :

B(t) = R e itξ -1 |ξ| H(t)+1/2 W (dξ), (27) 
where W (ξ) is the Fourier transform of the series representation of white noise with respect to an orthonormal basis of L 2 (R). However, it is proved by Lévy Véhel and Peltier ( [START_REF] Lévy-Véhel | Multifractional Brownian motion : definition and preliminary results[END_REF], Proposition 5) and by Benassi et al. ([6], Theorem 1.7) that if H is β-Hölder continuous and sup t∈R + H(t) < β, the multifractional Brownian motion is lass. That is

lim ρ-→0 + law B(t + ρu) -B(t) ρ H(t) , u ∈ R = law{B H(t) (u), u ∈ R}, (28) 
where B H(t) is a fBm with Hurst parameter H(t).

In addition, Boufoussi et al. [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF] have proved that the mBm given by the moving average representation satisfies the assumptions (H) and (H m ) for all m ≥ 2. By using the lass property of the mBm, we give here a proof that both representations of mBm are LND .

Theorem 7.1. If H is β-Hölder continuous and sup t∈R + H(t) < β, then for every ε > 0, and any T > ε, the mBms given by ( 26) and ( 27) are locally nondeterministic on [ε, T ].

Proof. Let us use X to denote the two representations of the mBm. In a same way as in [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF], proof of Theorem 3.3, we prove that there exists δ > 0 such that

E(X(t) -X(s)) 2 > 0, whenever 0 < |s -t| < δ; E(X(t)) 2 > 0, for all t ∈ [ε, T ].
It remains to prove that X satisfies assumption (8) in [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF]. Fix t > 0, and using Lemma 3.1 in [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF], we obtain

V ar(X(s) -X(t)) ≤ C H(t) |s -t| 2H(t) , ∀ s ∈ [0, T ] Consequently, lim δ→0 V ar (Y t,δ (u m )/X(t), Y t,δ (u 1 ), ...., Y t,δ (u m-1 )) = V ar B H(t) (u m )/B H(t) (t), B H(t) (u 1 ), ..., B H(t) (u m-1 ) ≥ C H(t) [(u m -u m-1 ) ∧ (t -u m )] 2H(t) ,
where the last inequality follows from Lemma 7.1 in Pitt [START_REF] Pitt | Local times for Gaussian vector fields[END_REF]. The last term is strictly positive since 0 < u 1 < u 2 < ... < u m < t.

Mixed Gaussian processes

Let {W (t), t ∈ [0, T ]} be a standard Brownian motion and {B H (t), t ∈ [0, T ]} an independent fractional Brownian motion. Cheridito [START_REF] Cheridito | Mixed fractional Brownian motion[END_REF] has introduced the mixed fBm defined by Y = {W (t) + B H (t), t ∈ [0, T ]} in order to model stock prices with long range dependence.

Since W and B H are independent and both have smooth local time, it will be easy to see that Y has smooth local time. Moreover the moduli of continuity are obtained in terms of (H ∧

). We omit the details.

In the sequel we consider {X 1 (t), t ∈ [0, 1]} and {X 2 (t), t ∈ [0, 1]} two mean zero Gaussian processes, where X 1 is LND and X 2 , not necessarily independent of X 1 , but only negligible in the sense that

E (X 2 (t) -X 2 (s)) 2 = o E [X 1 (t) -X 1 (s)] 2 , as t → s. (30) 
Then, we prove that Lemma 7.1. The sum process X = X 1 + X 2 is LND on any interval J ⊂ [0, 1] of small length.

Proof. The idea of the proof is inspired from that used in Guerbaz [START_REF] Guerbaz | Local time and related sample paths of filtered white noises[END_REF] to prove that the filtered white noise is LND. We present it here for the sake of completeness.

By using the elementary inequality

(x + y) 2 ≥ x 2 2 -y 2 we obtain V ar m j=1 u j [X(t j ) -X(t j-1 )] ≥ 1 2 V ar m j=1 u j [X 1 (t j ) -X 1 (t j-1 )] -V ar m j=1 u j [X 2 (t j ) -X 2 (t j-1 )] .
Furthermore, since X 1 is LND, there exist δ m and C m such that for any

t 0 = 0 < t 1 < ... < t m < 1, with t m -t 1 < δ m , we have V ar( m j=1 u j [X(t j ) -X(t j-1 )]) (31) 
≥ C m 2 m j=1 u 2 j V ar(X 1 (t j ) -X 1 (t j-1 )) -m m j=1 u 2 j V ar(X 2 (t j ) -X 2 (t j-1 ))
Moreover, according to (30), for 0 < ε m < Cm 2m , there exists δ m such that

V ar(X 2 (t j ) -X 2 (t j-1 )) V ar(X 1 (t j ) -X 1 (t j-1 )) ≤ ε m , for all t j -t j-1 ≤ δ m . Therefore V ar( m j=1 u j [X(t j ) -X(t j-1 )]) ≥ C m 2 -mε m m j=1 u 2 j V ar(X 1 (t j ) -X 1 (t j-1 ))
Furthermore, (30) implies that there exists a constant C > 0 such that V ar(X 1 (t j ) -X 1 (t j-1 )) ≥ CV ar(X(t j ) -X(t j-1 ))

Therefore, it suffices now to choose

δ m < δ m ∧ δ m ,
and to consider

C m = C m 2 -mε m ,
and the lemma is proved.

Multifractional Gaussian processes

The multifractional Gaussian process (MGP) has been introduced in [START_REF] Benassi | Identifying the multifractional function of a Gaussian process[END_REF] as follows :

X(t) = R a(t, λ)(e itλ -1) |λ| 1/2+H(t) W (dλ)
where W (dλ) is the random Brownian measure on L 2 (R).

When H is constant, this process is a Filtered White Noise ( [START_REF] Benassi | Identification of filtered white noises[END_REF], in short FWN). Moreover, if a(t, λ) = 1, a MGP is a mBm.

Assume that a(t, λ) is C 2 (R 2 ; R), and that there exists a function a ∞ (t) = 0 such that lim |λ|→∞ a(t, λ) = a ∞ (t) and that σ(t, λ) = a(t, λ) -a ∞ (t) satisfies :

∂ i+j σ(t, λ) ∂ i t∂ j λ ≤ C |λ| j+η , (32) 
for i, j = 0, 1, 2 and η > 0 such that 0 < H + η < 1.

The particular case of FWN has been studied in Guerbaz [START_REF] Guerbaz | Local time and related sample paths of filtered white noises[END_REF]. We now prove that the MGP satisfies the assumptions (H) and (H m ) for all m ≥ 2. The assumption (H) may be deduced from Proposition 1 in [START_REF] Benassi | Identifying the multifractional function of a Gaussian process[END_REF]. To prove that X is LND, we first write

X(t) = a ∞ (t) B(t) + R σ(t, λ)(e itλ -1) |λ| 1/2+H(t) W (dλ),
where B is the mBm given by [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF]. Since a ∞ (t) belongs to C 2 (R) and Theorem 7.1 implies that B is LND, we conclude easily that the Gaussian process X 1 (t) = a ∞ (t) B(t) is LND. Moreover, by using (32), we obtain that the process

X 2 (t) = R σ(t, λ)(e itλ -1) |λ| 1/2+H(t) dW (λ), satisfies E (X 2 (t) -X 2 (s)) 2 = o E (X 1 (t) -X 1 (s)) 2 , as t → s.
Then Lemma 7.1 achieves the proof.

Sub-Gaussian processes

Let X = {X(t), t ∈ [0, T ]} be a Gaussian process and let Z a nonnegative α/2-stable random variable, where 1 < α < 2, i.e., for λ > 0, E exp(-λZ) = exp(-λ α/2 ).

Assume that the random variable Z is independent of X. The α-stable process Y = {Y (t) = Z 1/2 X(t), t ∈ [0, T ]} is called a sub-Gaussian process with underlying Gaussian process X. We have the following result Proposition 7.2.

1. If V ar(X(t) -X(s)) ≥ C|t -s| 2H for some 0 < H < 1, C > 0 and t, s sufficiently close. Then Y satisfies the assumption (H).

2. If X satisfies (H m ) for some m ≥ 1, then Y satisfies the same.

Proof. 1. Since X is a centered Gaussian process

E exp iλ Y (t) -Y (s) |t -s| H = E E exp iZ 1/2 λ X(t) -X(s) |t -s| H /Z = E exp -Z λ 2 2 V ar(X(t) -X(s)) |t -s| 2H .
And since Z is α/2-stable random variable, then the last expression becomes

exp -|λ| α V ar(X(t) -X(s)) α/2 2 α/2 |t -s| αH .
Finally, the assumption on X in the first point implies that the last expression is dominated by

ψ(λ) = exp - C α/2 2 α/2 |λ| α ,
which belongs to L 1 (R). Consequently, Y satisfies the assumption (H).

2. Assume that X satisfies (H m ) for some m ≥ 2. Then, there exist two positive constants c m and δ m , such that for all 0 = t 0 < t 1 < t 2 < ... < t m ≤ T , with |t m -t 1 | ≤ δ m , we have

E exp i m j=1 u j [X(t j ) -X(t j-1 )] ≤ m j=1 E exp (ic m u j [X(t j ) -X(t j-1 )]) ,
for all u 1 , ....., u m ∈ R. Since X is a Gaussian process, the previous expression reads

exp - 1 2 V ar m j=1 u j [X(t j ) -X(t j-1 )] ≤ exp - 1 2 c m m j=1 u 2 j V ar[X(t j ) -X(t j-1 )]
Moreover, using the fact that the function u α/2 is concave for 0 < α < 2, and conditioning in the same manner as above we obtain

E exp i m j=1 u j [Y (t j ) -Y (t j-1 )] = exp   - 1 2 α/2 V ar m j=1 u j [X(t j ) -X(t j-1 )] α/2   ≤ exp - 1 2 α/2 c α/2 m m 1-α/2 m j=1 u α j (V ar[X(t j ) -X(t j-1 )]) α/2 = m j=1 E exp [iC m u j (Y (t j ) -Y (t j-1 ))] ,
where

C m = √ cm m 1-α 2α
.

Linear multifractional stable processes

The linear multifractional stable process (LMSP) is defined by the stochastic integral

Ψ α H(t) (t) = R a (t -u) H(t)-1/α + -(-u) H(t)-1/α + + b (t -u) H(t)-1/α - -(-u) H(t)-1/α - M α,β (du); t ∈ R, (33) 
where M α,β (du) is a (strictly) α-stable, independently scattered random measure with control measure ds, and skewness intensity β(.) ∈ [-1, 1], u ∈ R. This process was introduced by Stoev and Taqqu in [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF] as a natural generalization of the linear fractional stable process to the case where the self-similarity parameter H is no more constant, but a regular function of time.

According to Stoev and Taqqu ([28]), Theorem 5.1), the LMSP is a lass process. Its tangent process at each t 0 is a linear fractional stable process with parameter H(t 0 ).

We are interested in this paragraph in deriving sufficient conditions for the existence and the regularity of the local time of LMSP. We restrict ourselves for simplicity to the case a = 1 and b = β(.) = 0; i.e. we consider the process

Ψ α H(t) (t) = R (t -u) H(t)-1/α + -(-u) H(t)-1/α + dZ α (u), t ≥ 0, (34) 
where Z α is a Lévy α-stable motion. Boufoussi et al. [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF] have investigated the case α = 2, corresponding the mBm, i.e., M α,β is the random Brownian measure on L 2 (R). The authors have assumed H to be κ-Hölder continuous with sup t∈R + H(t) < κ. This condition was needed to prove some estimates which imply the existence and the regularity of the local time of mBm. We extend their results here to the LMSP under weaker conditions. We can now prove the following existence result Proof. The first part will be proved if we show that the LMSP satisfies (H). On the other hand, denoting by span(Ψ α H(u) (u), u ≤ s) the subspace spanned by (Ψ α H(u) (u), u ≤ s) and with the notation of [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF], we have for any 0

≤ s ≤ t such that |t -s| < 1, Ψ α H(t) (t) -Ψ α H(s) (s) α α ≥ Ψ α H(t) (t) -Ψ α H(s) (s) -span(Ψ α H(u) (u), u ≤ s) α α = Ψ α H(t) (t) -span(Ψ α H(u) (u), u ≤ s) α α = t s (t -u) α(H(t)-1/α) du = 1 αH(t) (t -s) α(H(t)-1/α)+1 = 1 αH(t) (t -s) αH(t) (35) ≥ 1 αµ (t -s) αµ , (36) 
where µ = sup t∈R + H(t). Therefore,

E exp   iu Ψ α H(t) (t) -Ψ α H(s) (s) |t -s| µ   = exp -|u| α Ψ α H(t) (t) -Ψ α H(s) (s) α α |t -s| αµ ≤ exp - |u| α αµ ,
which belongs to L 1 (R). Then, the LMSP satisfies (H), and the first part is proved. Let's now prove the second point : Let According to Theorem 2.6 in [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF], proving that the LMSP satisfies (H m ) is equivalent to prove that Proposition 7.4. The LMSP is locally nondeterministic on every interval [ , T ], for any 0 < < T < ∞.

Proof. To prove the LND for the LMSP we shall verify assumptions (a), (b) and (c) of Definition 2.4 in [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF]. First, let us denote for simplicity K(t, u) = (t -u)

H(t)-1/α + -(-u) H(t)-1/α + .
Since K(t, u) α = t H(t) K(1, u) α , then (a) holds away from the origin. The second condition in Definition 2.4 in [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF] follows from (4.11) in [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF]. It remains to show that the LMSP satisfies the last assumption, i.e. Proof. The proof follows the same lines as in ([13], Theorem 3.5), but here we use LND in the sense of Nolan [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF] instead of Berman [START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF]. 

lim
H(t), (45) 
with positive probability.

Proof. We omit the proof which uses a chaining argument similar to that of Theorem 4.2 in [START_REF] Boufoussi | On the local time of multifractional Brownian motion[END_REF].

  [a, b] be an interval with small length. Since the local time exists on the interval [a, b], then according to Geman and Horowitz [[20], Theorem 21.9 ] the following holds R
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 76 Assume 1 ≤ α < 2 and H is ρ-Hölder continuous with 1/α ≤ H(t) < ρ for all t ≥ 0. Then, for any interval [a, b] ⊂ R + and every u ∈ R, the linear multifractional stable process Ψ α H satisfies dim{t ∈ [a, b], Ψ α H (t) = u} = 1 -min [a,b]
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 2 Observe that the assumption (H m ) is decreasing in m in the sense that if (H m ) is satisfied then (H m-1 ) holds. Hence, (H 2 ) is the minimal condition. We need sometimes only (H 2 ), nevertheless we give in Section 7 examples of processes satisfying (H m ) for all m ≥ 2.

  Theorem 7.3. The LMSP {Ψ α H(t) (t), t ∈ [0, T ]} has almost surely a local time L(t, x), continuous with respect to time and such that L(T, .) ∈ L 2 (dx × P). Conversely, assume that H is continuous and denote by α H its pointwise Hölder exponent, then if H(t) ≤ α H (t), the existence of square integrable local time on small intervals implies that 0 < H(t) < 1 almost everywhere.

  (t) -Ψ α H(s) (s)] = exp -|θ| α Ψ α H(t) (t) -Ψ α H(s) (s) α αOn the other hand, by Theorem 2.1 in[START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF], for all 1 ≤ α < 2 we haveΨ α H(t) (t) -Ψ α H(s) (s) α α ≤ C α |t -s| αH(t) + |H(t) -H(s)| α . (38)Since H(t) ≤ α H (t), then for all t, s close, the expression (38) becomesHence H(t) < 1 for almost every t ∈ [a, b]. Since R is a countable union of small intervals, the result is proved.

	Moreover	
	E exp iθ[Ψ α H(t) Ψ α H(t) (t) -Ψ α H(s) (s) α α ≤ C α,H |t -s| αH(t) .	(39)
	Combining (37) and (39) we obtain that
	b	b
		|t -s| -H(t) dsdt < ∞.
	a	a
			(37)

E exp iθ[Ψ α H(t) (t) -Ψ α H(s) (s)] dsdtdθ < ∞.

  inf -t m-1 ) αH(tm) ,(41)where we have used (35) to obtain the last inequality. Combining (38) and (41), we obtain that the ratio in (40) is at least equal toC α,H(tm) (t m -t m-1 ) αH(tm) |t m -t m-1 | αH(tm) + |H(t m ) -H(t m-1 )| α = C α,H(tm) 1 + |H(t m ) -H(t m-1 )| (t m -t m-1 ) H(tm) -s)H(t) = 0. Then (40) holds and Ψ α H is LND. Our main result in this paragraph reads Theorem 7.5. Assume 1 ≤ α < 2 and H is continuous with H(t) < α H (t). Then, the LMSP Ψ α H has jointly continuous local times L(t, x). It satisfies for any compact U ⊂ R (i) where γ < 1 -H(t) and |h| < η, η being a small random variable almost surely positive and finite, (ii) for any I ⊂ [0, T ],

	|H(t) -H(s)| (t sup Since H(t) ≤ α H (t), lim t-s→0 x∈U |L(t + h, x) -L(t, x)| |h| γ	< +∞ a.s.,	(43)
				sup x,y∈U,x =y	|L(I, x) -L(I, y)| |x -y| ζ	< +∞ a.s.,	(44)
							
	where ζ <		1 2 sup H(t)	-	1 2	 ∧ 1.
			I			
		c 0 + 0<tm-t 1 ≤c	Ψ α H(tm) (t α	> 0.	(40)
	Since					
				Ψ α H(tm) (t α
				≥	1 αµ	(t m α -1
							.	(42)

m ) -span(Ψ α H(t i ) (t i ), i = 1, ..., m -1) α α Ψ α H(tm) (t m ) -Ψ α H(t m-1 ) (t m-1 ) α m ) -span(Ψ α H(t i ) (t i ), i = 1, ..., m -1) α α ≥ Ψ α H(tm) (t m ) -span(Ψ α H(u) (u), u ≤ t m-1 ) α
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Then, for all points t < t 1 < ... < t m < t + δt, we have V ar(X(t m ) -X(t m-1 )) ≤ 2V ar(X(t m ) -X(t)) + 2V ar(X(t m-1 ) -X(t))

V ar(X(t m )/X(t 1 ), ..., X(t m-1 ))

Moreover, if we add X(t) to the conditional set we obtain

where the last equality follows from the fact that

Let t m -t = u m δ with 0 < u m < t. Therefore, the fraction in (29) becomes

where we denote for simplicity