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On Wiener type filters in SPECT

For 2D data with Poisson noise we give explicit formulas for the optimal spaceinvariant Wiener type filter with some a priori geometric restrictions on the window function. We show that, under some natural geometric condition, this restrictedly optimal Wiener type filter admits a very efficient approximation by an approximately optimal filter with unknown object power spectrum. Generalizations to the case of some more general noise model are also given. Proceeding from these results we (a) explain, in particular, an efficiency of some well-known "1D" approximately optimal space-invariant Wiener type filtering scheme with unknown object power spectrum in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging based on the classical FBP algorithm or its iterative use and (b) propose also an efficient 2D approximately optimal space-invariant Wiener type filter with unknown object power spectrum for SPECT imaging based on the generalized FBP algorithm (implementing the explicit formula for the nonuniform attenuation correction) and/or the classical FBP algorithm (used iteratively). An efficient space-variant version of the latter 2D filter is also announced. Numerical examples illustrating the aforementioned results in the framework of simulated SPECT imaging are given.

Introduction

In the single-photon emission computed tomography (SPECT) one considers a body containing radioactive isotopes emitting photons. The emission data in SPECT consist in the radiation measured outside the body by a family of detectors during some fixed time. The basic problem of SPECT consists in finding the distribution of these isotopes in the body from the emission data and some a priori information concerning the body. Usually this a priori information consists in the photon attenuation coefficient in the points of body, where this coefficient is found in advance by the methods of the transmission computed tomography. Under some conditions, this attenuation coefficient can be also approximately found directly from the emission data in the frameworks of the "identification" problem. In 2D SPECT, that is when the problem is restricted to a fixed two-dimensional plane Ξ intersecting the body and identified with R 2 , the emission data are modeled, in some approximation, as 2D attenuated ray transform with Poisson noise (or, more precisely, as a function p of formula (1.4) given below). Let us remind now related mathematical definitions.

The 2D attenuated ray transformation P a is defined by the formula

P a f (γ) = R exp (-Da(sθ ⊥ + tθ, θ))f (sθ ⊥ + tθ)dt, γ = (s, θ) ∈ R × S 1 , θ ⊥ = (-θ 2 , θ 1 ) for θ = (θ 1 , θ 2 ) ∈ S 1 , (1.1a) Da(x, θ) = +∞ 0 a(x + tθ)dt, (x, θ) ∈ R 2 × S 1 , (1.1b)
where a and f are real-valued, sufficiently regular functions on R 2 with sufficient decay at infinity, a is a parameter (the attenuation coefficient), Da is the divergent beam transform of a, f is a test function. In (1.1a) we interpret R × S 1 as the set of all oriented straight lines in R 2 . If γ = (s, θ) ∈ R × S 1 , then γ = {x ∈ R 2 : x = sθ ⊥ + tθ, t ∈ R} (modulo orientation) and θ gives the orientation of γ.

In SPECT, f ≥ 0 is the density of radioactive isotopes, a ≥ 0 is the linear photon attenuation coefficient of the medium, and, in some approximation, CP a f is the expected emission data (the expected sinogram), where C is a positive constant depending on detection parameters.

More precisely, saying about the emission data in 2D SPECT, we assume that

a(x) ≥ 0, f (x) ≥ 0, for x ∈ R 2 , a(x) ≡ 0, f (x) ≡ 0 for |x| ≥ R (1.2)
and consider in R × S 1 a discrete subset of the form Γ = {γ i,j = (s i , θ(ϕ j )) : s i = -R + (i -1)∆s, ϕ j = (j -1)∆ϕ, ∆s = 2R/(n s -1), ∆ϕ = 2π/n ϕ , i = 1, . . . , n s , j = 1, . . . , n ϕ }, (1.3)

where θ(ϕ) = (cos ϕ, sin ϕ), R is the radius of image support of (1.2), n s , n ϕ are sufficiently large natural numbers, and n ϕ is even. We say that Γ is a detector set. Note that Γ ⊂ {(s, θ) ∈ R × S 1 : |s| ≤ R}, where R is the number of (1.2).

In 2D SPECT, in some approximation, the emission data consist of a function p on Γ, where p(γ) is a realization of a Poisson variate p(γ)

with the mean M p(γ) = g(γ) = CP a f (γ) for any γ ∈ Γ and all p(γ), γ ∈ Γ, are independent.

(1.4)

In addition, it is assumed that C = C 1 t, where t is the detection time per projection and C 1 is independent of t. We say that p of (1.4) is the 2D attenuated ray transform (CP a f on Γ) with Poisson noise. For more information concerning the aforementioned basic points of SPECT, see, for example, [NW], [LM], [Br] and references therein.

In the present work we consider the following two problems: Problem 1.1. Find (as well as possible) g from p, where g and p are the function of (1.4).

Problem 1.2. Find (as well as possible) Cf from the p and a, where f , a and p are the function of (1.2), (1.4) and C is the constant of (1.4).

More precisely, in the present work we develop space-invariant Wiener type filtering approach (of [KDS]) for solving Problem 1.1 and apply this approach to solving Problem 1.2 in the framework of the scheme

Cf ≈ P -1 a Wp, (1.5)
where W is a filter for solving Problem 1.1 and P -1 a is an inversion method for P a for the noiseless case.

The main theoretical results of the present work can be summarized as follows: I. For the noise model (3.4) including (1.4), as a particular case, we give explicit formulas (3.7) for the optimal space-invariant Wiener type filter with a priori geometric restrictions (3.6) on the window function. For the Poisson case, these formulas are completed also by (3.21). These results are given as Theorem 3.1 and Corollary 3.1 of Section 3. We say that the filter of Theorem 3.1 is restrictedly optimal in the Wiener sense and denote it as W r.o. . It is assumed that the object power spectrum |ĝ| 2 and the variance parameter V = (n s n ϕ ) -1/2 Dp(0) are known in this filter.

II. For the case when |ĝ| 2 and V are not known, we approximate W r.o. as A by formulas (4.7)-(4.9), (4.11). For the Poisson case, where V is not an additional parameter to |ĝ| 2 (see (3.21)), these formulas are completed also by (4.12). We show that, at least for the Poisson case, A is a very efficient approximation to W r.o. if geometric condition (4.13) is fulfilled for each j ∈ Î. Moreover, for the Poisson case with unknown |ĝ| 2 , we consider the approximately optimal filter A with adequate level sets S α of (4.9) as a reasonable approximation to "fully" optimal filter W opt of (3.3). See Section 4 for details.

III. We show that in an important particular case, under the Poisson assumptions, our filter A is reduced to the well-known "one-dimensional" filter A 1d going back to [KDS]. This permits to explain a relative efficiency of the "1D" filtering scheme of [KDS] in SPECT and PET imaging based on the classical FBP algorithm (or its iterative use). Besides, by the symmetric choice (4.15), (4.16) of the level sets S α , we reduce A to A sym . We consider A sym as an efficient "2D" approximation to W opt of (3.3) for the Poisson model (3.1) with sufficiently regular g for the case when |ĝ| 2 is unknown. (We do not know whether the filter A sym in its precise form of Section 4 was mentioned in the literature.) See Section 4 for details.

IV. An efficient space-variant version A sym l 1 ,l 2 of the space-invariant filter A sym is announced in Section 5 (in Subsection 5.3).

The aforementioned theoretical results were developed in the framework of applications to Problems 1.1 and 1.2. However, these results contribute to the general theory of filters of the Wiener type and, therefore, are not limited by particular tomographical applications considered in the present work.

Actually, in the present work, as P -1 a of (1.5) we use the explicit formula of [No] and the iterative method of [MNOY]. Related results are reminded in Section 6.

As characteristics of filter efficiency we consider, in particular, the numbers describing image error and image bias. In the framework of the reconstruction (1.5) these numbers depend also on P -1 a . Related definitions are reminded in Section 7.

Numerical examples illustrating the aforementioned results on Problems 1.1 and 1.2 are given in Section 8. In these examples we consider a version of the well-known elliptical chest phantom used for numerical simulations of cardiac SPECT imaging. One can see, in particular, that in these examples the symmetric 2D approximately optimal spaceinvariant filter A sym of the present work (see Subsection 4.4) is more efficient than the space-invariant filters A simp , A 1d , Φ 1 , where A simp is the simplest approximation to W opt (see Subsection 4.1) , A 1d is the filter of [KDS] (see Subsection 4.3) and Φ 1 is the filter of [GN1] (see Subsection 5.1).

Finally, it should be mentioned also that the noise level in the emission data p of (1.4) is not space-invariant and in this respect all space-invariant filtering schemes are not optimal for Problems 1.1 and 1.2. Space-variant versions of the space-invariant data dependent filtering of [GN1] are constructed in [GN2] (see, in particular, Subsections 5.1, 5.2 of the present paper) . Space-variant versions of the space-invariant Wiener type filters considered in the present work are constructed and analyzed in [GN3]. In addition, our simplest space-variant version A sym l 1 ,l 2 of the space-invariant Wiener type filter A sym is already mentioned and illustrated numerically in Subsections 5.3 and 8.4. In particular, our best (iterative) reconstruction Cf 3 (of (8.11)) is obtained using namely A sym l 1 ,l 2 (for l 1 = l 2 = 8). To our knowledge no complete generalization to the space-variant case of the filtering approach of [KDS] was presented in the literature before the present work.

Frequency domain form of space invariant filters

Consider the functions p and g of (1.4). Suppose that

g(s i , θ(ϕ j )) ≡ 0, if ||s i | -R| < L, (2.1) 
where ∆s << L, where s i , ϕ j , R and ∆s are the numbers of (1.3). This condition can always be satisfied by zero-padding the data. Then p and g of (1.4) can be considered as functions on a discrete torus identified with Γ. Note that Γ of (1.3) can be identified with

I = {(i 1 , i 2 ) ∈ Z 2 : 0 ≤ i 1 ≤ n s -1, 0 ≤ i 2 ≤ n ϕ -1}. (2.2)
Let us suppose that n ϕ and n s of (1.3), (2.2) are even. Let

Î = {(j 1 , j 2 ) ∈ Z 2 : - n s 2 ≤ j 1 ≤ n s 2 -1, - n ϕ 2 ≤ j 2 ≤ n ϕ 2 -1}. (2.3) Let q L α (Γ ′ ) = (∆s∆ϕ γ∈Γ ′ |q(γ)| α ) 1/α , (2.4) u L α (I ′ ) = ( (i 1 ,i 2 )∈I ′ |u(i 1 , i 2 )| α ) 1/α , û L α ( Î′ ) = ( (j 1 ,j 2 )∈ Î′ |û(j 1 , j 2 )| α ) 1/α , (2.5)
where q, u, û are test functions on Γ ′ ⊆ Γ, I ′ ⊆ I, Î′ ⊆ Î, respectively, α ∈ N.

Let F denote the 2D discrete Fourier transformation

F : L 2 (I) → L 2 ( Î), (F u)(j 1 , j 2 ) = 1 √ n s n ϕ (i 1 ,i 2 )∈I u(i 1 , i 2 )× exp -2πi j 1 i 1 n s + j 2 i 2 n ϕ , (j 1 , j 2 ) ∈ Î, i = √ -1, (2.6)
where u is a test function on I.

To use F : L 2 (I) → L 2 ( Î) and F -1 : L 2 ( Î) → L 2 (I) for filtering p of (1.4) we use also, in particular, the identification operators

Λ : L 2 (Γ) → L 2 (I), (Λq)(i 1 , i 2 ) = q(γ i 1 ,i 2 ), (i 1 , i 2 ) ∈ I, (2.7) Λ -1 : L 2 (I) → L 2 (Γ), (Λu)(γ i 1 ,i 2 ) = u(i 1 , i 2 ), (i 1 , i 2 ) ∈ I, (2.8)
where γ i,j is defined in (1.3), q and u are test functions on Γ and I, respectively. A general linear space invariant filter in L 2 (Γ), where Γ is considered as a discrete torus, can be written in the form

W : L 2 (Γ) → L 2 (Γ), W = Λ -1 W Λ,
(2.9)

where

W : L 2 (I) → L 2 (I), W = F -1 Ŵ F, (2.10) Ŵ : L 2 ( Î) → L 2 ( Î), ( Ŵ û)(j) = Ŵ (j)û(j), j = (j 1 , j 2 ) ∈ Î, (2.11) 
where F , Λ, Λ -1 are defined in (2.6)-(2.8), Ŵ (j) is a real bounded function of j ∈ Î, (2.12a) Ŵ (-j) = Ŵ (j) for Ŵ considered as a periodic function on Z 2 with the fundamental domain Î, (2.12b) and û is a test function. Here the multiplication operator Ŵ of (2.11) is the frequency domain form of the space invariant filters W and W of (2.9), (2.10). In addition, Ŵ (j) is the related window function. Note also that in the simplest space-invariant data independent schemes for filtering p of (1.4) the window function Ŵ of (2.12) is given by

Ŵ (j) = ŵ1 2j 1 ω 1 n s ŵ2 2j 2 ω 2 n ϕ , j = (j 1 , j 2 ) ∈ Î, ω 1 > 0, ω 2 > 0, (2.13)
where ŵ1 (k), ŵ2 (k) are real-valued functions of k such that (2.14) where i ∈ {1, 2}. Here ω = (ω 1 , ω 2 ) is a filter parameter (and it is usually assumed that 0 < ω i ≤ 1, i ∈ {1, 2}).

ŵi (k) = ŵi (-k), k ∈ R, lim k→0 ŵi (k) = ŵi (0) = 1, ŵi (k) ≡ 0 for |k| > 1, ŵi (k 1 ) ≥ ŵi (k 2 ) for |k 1 | ≤ |k 2 |,

Optimal Wiener filter and its restrictedly optimal analogs

Suppose that:

g is some nonnegative function on Γ (and g ≡ 0), (3.1a) p(γ) is a Poisson variate with the mean M p(γ) = g(γ), γ ∈ Γ, and all p(γ), γ ∈ Γ, are independent, (3.1b)

p is a realization of p on Γ.

(3.1c)

Let W denote a filter of the form (2.9)-(2.12). Then it is well-known (see

[GB], [KDS]) that the mean µ(W, g) = M Wp -g 2 L 2 (Γ) (3.2)
is minimal with respect to W if and only if the window function Ŵ (j) of (2.11), (2.12) is given by

Ŵ (j) = Ŵ opt (j) def = |ĝ(j)| 2 |ĝ(j)| 2 + (n s n ϕ ) -1/2 ĝ(0) , j = (j 1 , j 2 ) ∈ Î, (3.3) 
where ĝ = F Λg (with F and Λ defined by (2.6), (2.7)). Note that results of such a type go back to [W] and, therefore, the filter W for p of (3.1), where the window function Ŵ of (2.11), (2.12) is given by (3.3), is usually referred (see, for example, [KDS], [C]) as an optimal Wiener filter. This filter is denoted as W opt in the present paper.

Note that an obvious obstacle for a direct use of the optimal Wiener filter W opt for solving Problem 1.1 consists in the fact that the window Ŵ opt of (3.3) is given in terms of g which is an unknown of Problem 1.1.

Below in this section, we generalize the "optimal" formula (3.3) to the case of some a priori geometric restrictions on the window function. In some cases such restrictions are rather natural and satisfactory and (that is the key point) result in "regularized" optimal filters which are much more appropriate for the case with unknown |ĝ| (than the initial optimal filter with Ŵ given by (3.3)). In our results on restrictedly optimal Wiener type filters we consider also some more general noise model than (3.1). Note that applications of restrictedly optimal Wiener type filters (of this section) to Problem 1.1 involve also approximations considered in Section 4.

Suppose that: g is a real function on Γ (and g ≡ 0), (3.4a) p(γ) is a real variate with the mean M p(γ) = g(γ), γ ∈ Γ, and all p(γ), γ ∈ Γ, are independent (and

Dp = M (p -M p) 2 ≡ 0), (3.4b)
p is a realization of p on Γ.

(3.4c)

One can see that the noise model (3.4) is more general than (3.1).

Let S 1 , . . . , S n * be subsets of Î such that

Î = ∪ n * α=1 S α , each S α = ∅, S α ∩ S β = ∅ if α = β, (3.5a) -S α = S β[α] (in Z 2 factorized to Î) for each S α , (3.5b)
where β[α] denotes β depending on α, Î is considered as a discrete torus and the factorization of Z 2 to Î is used because of the case when j ∈ Î but -j / ∈ Î. Now for the noise model (3.4) we consider the problem of finding W of the form (2.9)-(2.12) such that µ(W, g) of (3.2) is minimal for fixed g of (3.4) under the restrictions that Ŵ is constant on each fixed S α , α = 1, . . . , n * , (3.6)

where Ŵ is the window function of W. This problem is solved in the next Theorem:

Theorem 3.1. Let g and p be defined as in (3.4a), (3.4b). Let W denote a filter of the form (2.9)-(2.12) with a priori restrictions (3.6) on its window function Ŵ , where S 1 , . . . , S n * satisfy (3.5). Then µ(W, g) of (3.2) is minimal with respect to W if and only if

Ŵ (j) = Ŵ r.o. (j) def = Σ g,α(j) Σ g,α(j) + V , j ∈ Î, (3.7a) Σ g,α def = 1 |S α | i∈S α |ĝ(i)| 2 , α = 1, . . . , n * , V = (n s n ϕ ) -1/2 Dp(0), (3.7b) 
where ĝ = F Λg, Dp = F Λ( Dp) (with F and Λ defined by (2.6), (2.7)), |S α | denotes the number of elements in S α and α(j) denotes α such that j ∈ S α . The filter of the form (2.9)-(2.12) with the window given by (3.7) is denoted as W r.o. in the present paper. We say that W r.o. is a restrictedly optimal Wiener type filter for the noise model (3.4).

Proof of Theorem 3.1. Due to (3.2),(2.9)-(2.12) and the property

Λ -1 F -1 û 2 L 2 (Γ) = ∆s∆ϕ û 2 L 2 ( Î) , û ∈ L 2 ( Î), (3.8) we have that µ(W, g) = ∆s∆ϕM Ŵ p -ĝ 2 L 2 ( Î) , (3.9) 
where p = F Λp, ĝ = F Λg. Further,

M Ŵ p -ĝ 2 L 2 ( Î) (2.5),(3.5a) = M n * α=1 Ŵ p -ĝ 2 L 2 (S α ) = n * α=1 M Ŵ p -ĝ 2 L 2 (S α ) (3.6) = n * α=1 M ŵα p -ĝ 2 L 2 (S α ) , (3.10) 
where ŵα are real constants such that Ŵ ≡ ŵα on each fixed S α , α = 1, . . . , n * .

(3.11)

Due to (3.9)-(3.11), W minimizes µ(W, g) (for fixed g) if and only if for each α (and fixed g) w α minimizes μα ( ŵα , ĝ)

def = M ŵα p -ĝ 2 L 2 (S α ) , α = 1, . . . , n * . (3.12)
We have that

μα ( ŵα , ĝ) = M j∈S α ( ŵα p(j) -ĝ(j))( ŵα p(j) -ĝ(j)) = j∈S α M (( ŵα ) 2 |p(j)| 2 -ŵα (p(j)ĝ(j) + ĝ(j)p(j)) + |ĝ(j)| 2 ) = C g,α,2 ŵ2 α + C g,α,1 ŵα + C g,α,0 , (3.13) 
where

C g,α,2 = j∈S α M |p(j)| 2 , C g,α,1 = - j∈S α (ĝ(j)M p(j) + ĝ(j)M p(j)), C g,α,0 = j∈S α M |ĝ(j)| 2 .
(3.14)

In addition, C g,α,2 = 0 due to the assumption that Dp ≡ 0 and formula (3.17). Therefore, μα ( ŵα , ĝ) is minimal with respect to ŵα (for fixed g and α) if and only if 

ŵα = - C g,α,1 2C g,α,2 . ( 3 
M p(j) = ĝ(j), j ∈ Î, (3.16) M |p(j)| 2 = |ĝ(j)| 2 + V, j ∈ Î, V = (n s n ϕ ) -1/2 Dp(0).
(3.17) Formula (3.16) is rather obvious. Formula (3.17) follows from the definition p = F Λp (with F and Λ defined by (2.6), (2.7)) and the formulas

M |ξ| 2 = Dξ + |M ξ| 2 , (3.18) D(c 1 ξ 1 + c 2 ξ 2 ) = |c 1 | 2 Dξ 1 + |c 2 | 2 Dξ 2 , (3.19)
where ξ is a complex-valued variate, Dξ = M |ξ -M ξ| 2 , c 1 and c 2 are complex constants, ξ 1 and ξ 2 are independent complex-valued variates. Property (2.12b) for Ŵ of (3.7a) follows from (3.5b), (3.7) and the property |ĝ(-j)| = |ĝ(j)|.

Theorem 3.1 is proved.

Note that for the Poisson case (3.1)

Dp = M p = g (3.20)
and, consequently,

V = (n s n ϕ ) -1/2 ĝ(0), (3.21)
where V is the number of (3.17). For the Poisson case (3.1) formula (3.17) is, actually, a formula of [GB] (see also [KDS]). Theorem 3.1 and formula (3.21) imply the following corollary:

Corollary 3.1. For the Poisson model (3.1) the mean µ(W, g) of (3.2) is minimal with respect to W of the form (2.9)-(2.12) with a priori restrictions (3.6) if and only if Ŵ is given by (3.7) with V given by (3.21).

Note that if S α(j) = {j} for any j ∈ Î, (3.22)

then the window Ŵ = Ŵ r.o. of Corollary 3.1 is reduced to Ŵ opt of (3.3). Note, finally, that Theorem 3.1 and Corollary 3.1 admit straightforward generalizations to the case of any dimension (and, in particular, to the 3D case).

4. Approximations to the Wiener optimal filter and to its restrictedly optimal analogs 4.1. Simplest approximation A simp . To apply the Wiener optimal filter W opt to Problem 1.1 one needs to express approximately the window Ŵ opt of (3.2) in terms of the data p of (1.4), (3.1c). To construct such approximations one can proceed from formulas (3.16), (3.17), (3.21). In view of (3.3), (3.16), (3.17), (3.21), the simplest approximation to Ŵ opt is given by (see, for example, [KDS], [C]):

Ŵ opt (j) ≈ Âsimp (j), j ∈ Î, (4.1)
where

Âsimp (j) = |p(j)| 2 -(n s n ϕ ) -1/2 p(0) |p(j)| 2 if |p(j)| 2 -(n s n ϕ ) -1/2 p(0) > 0, Âsimp (j) = 0 if |p(j)| 2 -(n s n ϕ ) -1/2 p(0) ≤ 0, (4.2)
where p = F Λp (with F, Λ defined by (2.6), (2.7)).

The filter of the form (2.9)-(2.11) with the window given by (4.2) is denoted as A simp in the present paper. We consider A simp as the simplest approximation to W opt for the case of unknown |ĝ| 2 .

Note that p(j) is a good approximation to ĝ(j), |p(j)| 2 is a good approximation to |ĝ(j)| 2 + (n s n ϕ ) -1/2 ĝ(0) and Âsimp (j) is a good approximation to Ŵ opt (j) if

|ĝ(j)| ≫ ((n s n ϕ ) -1/2 ĝ(0)) 1/2 for fixed j ∈ Î. (4.3)
This statement follows from formulas (3.16), (3.17), (3.21) and their corollary that

Dp(j) = (n s n ϕ ) -1/2 ĝ(0), j ∈ Î, (4.4)
the Chebyshev inequality written in the form

P rob {|ξ -M ξ| ≤ ε|M ξ|} ≥ 1 - Dξ ε 2 |M ξ| 2 , (4.5)
where Dξ = M |ξ -M ξ| 2 , and the formulas

|ξ| 2 -M |ξ| 2 = |ξ| 2 -|M ξ| 2 -Dξ = (|ξ| -|M ξ|)(|ξ| + |M ξ|) -Dξ, ||ξ| 2 -M |ξ| 2 | ≤ |ξ -M ξ|(2|M ξ| + |ξ -M ξ|) + Dξ (for ξ = p(j)). (4.6)
As a rule, condition (4.3) is satisfied if j is sufficiently close to 0 but is not satisfied otherwise. Therefore, approximation (4.1), (4.2) to the Wiener optimal filter is not very efficient in the framework of applications to Problem 1.1 and 1.2 (numerical examples are given in Section 8) . Actually, more satisfactory approximations to the Wiener optimal filter can be given proceeding from Theorem 3.1 and Corollary 3.1 with appropriate subsets S α ; see Subsections 4.2-4.5.

General approximation A.

Consider the noise model (3.4). In a similar way with (4.1), (4.2), in view of formulas (3.7) (for the optimal window Ŵ r.o. with a priori restrictions (3.6)) and formulas (3.16), (3.17) (for M p and M |p| 2 ) we have that Ŵ r.o. (j) ≈ Â(j), j ∈ Î, (4.7)

where

Â(j) = Σ p,α(j) -V p Σ p,α(j) if Σ p,α(j) -V p > 0, Â(j) = 0 if Σ p,α(j) -V p ≤ 0, (4.8) 
where

Σ p,α(j) = 1 |S α(j) | i∈S α(j) |p(i)| 2 , j ∈ Î, V p ≈ V, (4.9)
where S α , |S α |, α(j) are the same that in (3.7), p = F Λp (with F, Λ defined by (2.6), (2.7)), V is the number of (3.7). In addition, as regards precise formulas for V p , see (4.11), (4.12). The filter of the form (2.9)-(2.12) with the window given by (4.8), (4.9) is denoted as A in the present paper.

If n s and n ϕ are sufficiently great and g is a sufficiently regular function on Γ considered as a discrete torus, then

|ĝ(j)| 2 ≈ 0 if j ∈ Î is sufficiently close to ∂ Î, (4.10)
where ∂ Î ⊂ Î is the boundary of Î in Z 2 . In this case, due to (3.17), (4.10), the approximation V p can be defined by the formula

V p = 1 |Ω| j∈Ω |p(j)| 2 , (4.11)
where Ω is a subset of Î, each point of Ω is sufficiently close to ∂ Î, |Ω| is the number of points in Ω and |Ω| is sufficiently great. Besides, for the Poisson case (3.1) the approximation V p can be defined as

V p = (n s n ϕ ) -1/2 p(0). (4.12)
Note that V p of (4.12) does not necessarily coincide completely with V p of (4.11) for the Poisson case.

All further considerations of this section are given for simplicity for the Poisson case (3.1) (if other indications are not given explicitly).

Note that if S α are given by (3.18), then the filter A with V p given by (4.12) is reduced to A simp of Subsection 4.1.

The principal advantage of the approximation (4.7) (for the Poisson case) in comparison with (4.1) consists in the fact that if

|S α(j) | is great enough in comparison with |j| for fixed j ∈ Î, (4.13)
where |j| is the distance from j to the origin 0 of Î in an appropriate norm, then (because of averaging in Σ g,α , Σ p,α of (3.7), (4.9)) Σ p,α(j) is a much better approximation to Σ g,α(j) + (n s n ϕ ) -1/2 ĝ(0) than |p(j)| 2 to |ĝ(j)| 2 + (n s n ϕ ) -1/2 ĝ(0) and, as a corollary, Â(j) is a much better approximation to Ŵ r.o. (j) than Âsimp (j) to Ŵ opt (j). Moreover, for appropriate subsets S α it turns out that  (of (4.8)) is, actually a considerably better approximation to Ŵ opt (of (3.3)) in the framework of applications to Problems 1.1 and 1.2 than A simp (of (4.2)).

4.3. One-dimensional approximation A 1d . Let the subsets S α of (3.5) be defined as

S α(j) = {z = (z 1 , z 2 ) ∈ Î : z 1 = j 1 } ∀ j = (j 1 , j 2 ) ∈ Î, (4.14)
where α(j) denotes α such that j ∈ S α . Then the filter A of Subsection 4.2 (for the Poisson case) is reduced to the "one-dimensional" approximately optimal Wiener type filter A 1d going back to [KDS]. Filters as A 1d are, actually, considered in the literature as rather satisfactory approximations to optimal filters as W opt in the framework of SPECT and PET imaging based on the classical FBP algorithm or its iterative use (see, for example,

[KDS], [SKC], [BCB], [C]).
Note that A 1d is not very interesting as an approximation to W opt in the framework of pure applications to Problem 1.1. The reason is that the subsets S α of (4.14) are not symmetric with respect to the indices z 1 and z 2 on Î and, therefore, A 1d is not symmetric with respect to s and ϕ variables on Γ. More precisely, due to (4.14) the window function Â1d (j), j = (j 1 , j 2 ), is independent of j 2 and, therefore, A 1d does not filtrate at all with respect to the angle variable ϕ on Γ. However, the classical FBP algorithm is not very sensitive to no filtering in the angle-direction of projections in the framework of the noise model (1.4). This together with Theorem 3.1, Corollary 3.1 and property (4.13) for S α of (4.14) is our explanation of the fact that the filter W = A 1d is rather efficient (in the class of space-invariant filters) in the framework of applications to Problem 1.2 via (1.5) with P -1 a based on iterations of the classical FBP algorithm (see Section 8 for numerical illustration).

4.4. Symmetric two-dimensional approximation A sym . As symmetric two-dimensional approximately optimal Wiener type filter we consider A sym defined as A of Subsection 4.2 with S α defined as

S α = {z = (z 1 , z 2 ) ∈ Î : τ α-1 ≤ max |z 1 |, n s n ϕ z 2 < τ α }, α = 1, . . . , n * , (4.15)
where τ 0 , . . . , τ n * are some appropriate fixed real numbers such that τ 0 = 0, τ α-1 < τ α (and S α = ∅), α = 1, . . . , n * , τ n * = (n s + 1)/2 and where we assume that n ϕ ≤ n s . Actually, in the numerical examples of present work we assume that n ϕ = n s and

τ 0 = 0, τ α = 1/2 + α, for α = 1, . . . , n * , n * = n s /2 = n ϕ /2. (4.16)
One can see that the subsets S α of (4.15), (4.16) are rather symmetric with respect to the indices z 1 and z 2 on Î in contrast with the subsets S α of (4.14).

Symmetric S α of (4.15), (4.16) are much more natural than asymmetric S α of (4.14) as level sets of filtering window in the framework of the noise model (3.1) as soon as the regularity of g of (3.1) is more or less similar with respect to each of the variables s and ϕ on Γ. As a result A sym is of interest as an approximation to W opt even in the framework of pure applications to Problem 1.1 in contrast with A 1d .

In addition, in the framework of further applications to Problem 1.2 via (1.5) (even with P -1 a consisting in the classical FBP algorithm used iteratively) A sym gives also considerably better results than A 1d . This advantage of A sym in comparison with A 1d is especially strong if P -1 a of (1.5) is the explicit formula of [No]. Numerical examples illustrating A sym in the framework of applications to Problems 1.1 and 1.2 are given in Section 8. An efficiency of A sym (in the class of space-invariant filters) in the framework of these applications is explained by Theorem 3.1, Corollary 3.1, property (4.13) and adequate geometry of the subsets S α of (4.15), (4.16).

4.5. Possibility of the "bowtie shape" geometry for S α . Finally, note that subsets S α (arising in (3.7), (4.8), (4.9)) with geometry even more appropriate for applications to Problems 1.1 and 1.2 than in (4.15), (4.16) can be constructed proceeding from the result (see [RL], [MN], [GouNol], [GN2] and figure 2(b) of the present paper) that the Fourier transform ĝ = F Λg, where g is the function of (1.4), is supported mainly in some rather specific domain (of bowtie shape) dependent on f and a. However, we will not develop this issue in the present work.

Some filtering schemes of [GN1], [GN2], [GN3]

All considerations of this section are given for simplicity for the Poisson model (3.1).

Space-invariant data dependent filter

Φ ε of [GN1].
The window function of the space-invariant data dependent filter Φ ε = Φ ε,ω of [GN1] is given by (2.13), where

ŵ1 (s) = ŵ2 (s) = sin(s) s 2 , ω 1 = ω 2 = ω (5.1)
and ω = ω(p, ε) is data dependent and is determined from the equation

p -Φ ε,ω p L 2 (Γ) Φ ε,ω p L 2 (Γ) ≈ ε p L 1 (Γ) p 2 L 2 (Γ) -p L 1 (Γ) 1/2
(5.2)

for any fixed realization p of p of (3.1). Here ε is a filter parameter and the "optimal" value for ε is 1. Actually, there is some similarity in geometric structure of the windows of Φ 1 and A sym .

Space-variant data dependent filter

Φ l 1 ,l 2 ,ε of [GN2]. Let Γ ∞ = {γ i,j : i ∈ Z, j = 1, . . . , n ϕ }, (5.3) 
where γ i,j are defined as in (1.3). One can see that

Γ = Γ ∞ ∩ {(s, θ) ∈ R × S 1 : |s| ≤ R} and that Γ ∞ is an extension of Γ. Let D γ,l 1 ,l 2 = {γ ′ = (s ′ , θ(ϕ ′ )) ∈ Γ ∞ : -[(l 1 -1)/2]∆s ≤ s ′ -s ≤ [l 1 /2]∆s, -[(l 2 -1)/2]∆ϕ ≤ ϕ ′ -ϕ ≤ [l 2 /2]∆ϕ}, γ = (s, θ(ϕ)) ∈ Γ, l 1 , l 2 ∈ N, l 1 ≤ n s , l 2 ≤ n ϕ ,
(5.4)

where [λ] is the integer part of real nonnegative λ. One can see that

D γ,l 1 ,l 2 is l 1 × l 2 neighborhood of γ ∈ Γ in Γ ∞ .
The space-variant data dependent filter Φ l 1 ,l 2 ,ε of [GN2] is defined by the formula

(Φ l 1 ,l 2 ,ε p)(γ) = (Φ ε (p D γ,l 1 ,l 2 ))(γ), γ ∈ Γ, (5.5) 
for any fixed p of (3.1), where D γ,l 1 ,l 2 is defined by (5.4), p D γ,l 1 ,l 2 is defined using zeropadding if Γ\D γ,l 1 ,l 2 = ∅, Φ ε is the filter of Subsection 5.1 with Γ replaced by D γ,l 1 ,l 2 . In addition, ε, l 1 , l 2 are filter parameters and the basic value for ε is 1. One can see that Φ l 1 ,l 2 ,ε is a space-variant version of Φ ε .

Space-variant approximately optimal Wiener type filter

A sym l 1 ,l 2 of [GN3]
. The space-variant approximately optimal Wiener type filter

A sym l 1 ,l 2 of [GN3] is defined by the formula (A sym l 1 ,l 2 p)(γ) = (A sym (p D γ,l 1 ,l 2 ))(γ), γ ∈ Γ, (5.6)
for any fixed p of (3.1), where p D γ,l 1 ,l 2 is the same that in (5.5), A sym is the filter of Subsection 4.4 with V p defined by (4.12) and Γ replaced by D γ,l 1 ,l 2 . In addition, l 1 , l 2 are filter parameters. One can see that A sym l 1 ,l 2 is a space-variant version of A sym . Numerical examples illustrating A sym l 1 ,l 2 in the framework of applications to Problems 1.1 and 1.2 are given in Section 8.

6. Reconstruction of Cf from CP a f and a First, we consider the following explicit inversion formula Cf = N a g, (6.1)

where g = CP a f ,

N a q(x) = 1 4π - ∂ ∂x 1 S 1 K(x, θ)θ 2 dθ + ∂ ∂x 2 S 1 K(x, θ)θ 1 dθ , (6.2a) K(x, θ) = exp [-Da(x, -θ)] qθ (xθ ⊥ ), (6.2b) qθ (s) = exp A θ (s)) cos (B θ (s)) H(exp (A θ ) cos (B θ ) q θ (s)+ exp A θ (s)) sin (B θ (s)) H(exp (A θ ) sin (B θ ) q θ (s), (6.2c) A θ (s) = 1 2 P a(s, θ), B θ (s) = H A θ (s), q θ (s) = q(s, θ), (6.2d)
where q is a test function, P = P 0 is the classical two-dimensional ray transformation (i.e. P 0 is defined by (1.1a) with a ≡ 0), H is the Hilbert transformation defined by the formula

H u(s) = 1 π p.v. R u(t) s -t dt, (6.3)
where u is a test function,

x = (x 1 , x 2 ) ∈ R 2 , θ = (θ 1 , θ 2 ) ∈ S 1 , θ ⊥ = (-θ 2 , θ 1 ), s ∈ R, dθ
is arc-length measure on the circle S 1 . In a slightly different form (using complex notations) formula (6.1) was obtained in [No]. Some new proofs of this formula were given in [Na] and [BS]. Formula (6.1) was successfully implemented numerically in [Ku] and [Na] via a direct generalization of the (classical) filtered back-projection (FBP) algorithm. However, this generalized FBP algorithm turned out to be less stable, in general, than its classical analogue. Some possibilities for improving the stability of SPECT imaging based on (6.1), (6.2) with respect to the Poisson noise in the emission data g were proposed, in particular, in [Ku] (preprint version), [GJKNT] and [GN]. Some fast numerical implementation of formula (6.1) was proposed in [BM].

Second, assuming (1.2), we consider the iterative reconstruction method with the following step. If Cf n is an approximation with the number n to Cf (as an approximation Cf n may have some negative values) and g = CP a f , then we

(1) compute

h n (s, θ) = (g(s, θ) + µ n ) P Cf n (s, θ) + µ n P a Cf n (s, θ) + µ n -µ n , (6.4)
where µ n is some sufficiently small positive constant depending on P a Cf n such that P a Cf n (s, θ) + µ n > 0 for (s, θ) ∈ R × S 1 , P = P 0 is defined by (1.1a) with a ≡ 0, (2) enforce the conditions 0 ≤ g(s, θ) ≤ h n (s, θ) ≤ exp (P a(s, θ))g(s, θ), (s, θ) ∈ R × S 1 , (6.5) and (3) compute Cf n+1 = P -1 h n (6.6) using (6.1) with a ≡ 0 (i.e. using a variant of the classical FBP algorithm). This step (i.e. the passage from Cf n to Cf n+1 via (6.4)-(6.6)) is a variation of the step of the iterative SPECT reconstruction algorithm of [MNOY] (see also [MIMIKIH] and [GJKNT]). This algorithm (with the step (6.4)-(6.6)) is rather stable or, more precisely, if a is not too strong, then its stability properties with respect to the Poisson noise in the emission data g are comparable with the stability properties of (6.1) for a ≡ 0 (i.e. with the stability properties of the classical FBP algorithm).

In the present work we improve the stability of SPECT reconstruction based on (6.1), (6.2) or/and on (6.4)-(6.6) with respect to the Poisson noise in the emission data g by means of approximately optimal space-invariant Wiener type filters (with unknown object power spectrum) of Section 4 and one of their space-variant versions (of [GN3]) mentioned in Section 5 (in Subsection 5.3).

Actually, in the present work we consider, mainly, the reconstructions Cf 1 and Cf 3 , where Cf 1 is reconstructed via (6.1), (6.2) and Cf 2 , Cf 3 are obtained proceeding from Cf 1 via (6.4)-(6.6). Actually, the iterations Cf 2 and Cf 3 are rather close to each other, but nevertheless Cf 3 is still somewhat more stable and more properly illustrates stability properties of the classical FBP algorithm used iteratively. This can be considered as a stabilization of (6.1) or as an acceleration of the iterative reconstruction based on (6.4)-(6.6).

Note also that in the numerical studies of the present work the attenuation map a and the emitter activity f (and all reconstructions of f ) are actually considered on X = {x i,j : x i,j = (-R + (i -1)∆s, -R + (j -1)∆s), ∆s = 2R/(n s -1), i = 1, . . . , n s , j = 1, . . . , n s }, (6.7)

where R, ∆s, n s are the same that in (1.3). See Sections 7 and 8 for further presentation of our numerical studies.

Characteristics of filter efficiency

We consider, in particular,

M k Wp = 1 k k i=1 Wp i on Γ, D k Wp = 1 k k i=1 (Wp i -M k Wp) 2 on Γ, (7.1) M k P -1 a Wp = 1 k k i=1 P -1 a Wp i on X, D k P -1 a Wp = 1 k k i=1 (P -1 a Wp i -M k P -1 a Wp) 2 on X, (7.2)
where W is a fixed filtering method for solving Problem 1.1, p is the Poisson field of (1.4), p 1 , . . . , p k are some k independent realizations of p, P -1 a is a fixed inversion method for P a of (1.1), (1.4) for the noiseless case. In addition, k is rather great so that

M k ≈ M = M ∞ , D k ≈ D = D ∞ .
The functions M k Wp and M k P -1 a Wp are used for evaluating the bias (or nonrandom errors) of W in comparison with g and P -1 a g, where g is the noiseless data of (1.4). For example, a typical bias effect of filtering consists in too strong smoothing some important image details. In turn, D k Wp and D k P -1 a Wp describe the variance of Wp and P -1 a Wp with respect to the mean results M k Wp and M k P -1 a Wp. We emphasize that definitions (7.1), (7.2), as well as (3.2) and (7.6), (7.7), do not mean that k independent realizations of p are available in practice. Images like the images of (7.2) are actually standard in tomographical studies, see, for example, [C].

We use also the following notations

ζ(q 2 , q 1 , Γ ′ ) = q 2 -q 1 L 2 (Γ ′ ) q 1 L 2 (Γ ′ ) , (7.3) 
where q 1 , q 2 are test functions on Γ ′ ⊆ Γ and • L 2 (Γ ′ ) is defined by (2.4), and (7.5) where u, u 1 , u 2 are test functions on X ′ ⊆ X. Note that for p and g of (1.4) the quantity ζ(p, g, Γ) is the noise level (in the L 2 -sense) of p on Γ.

η(u 1 , u 2 , X ′ ) = u 2 -u 1 L 2 (X ′ ) u 1 L 2 (X ′ ) , (7.4) u L n (X ′ ) = (∆s) 2 x∈X ′ |u(x)| n 1/n , n ∈ N,
In our studies we consider, in particular, the following numbers

e 1,k (W, g) = (M k (ζ(Wp, g, Γ)) 2 ) 1/2 = 1 k k i=1 (ζ(Wp i , g, Γ)) 2 ) 1/2 , b 1,k (W, g) = ζ(M k Wp, g, Γ), d 1,k (W, g) = D k Wp L 1 (Γ) 1/2 g L 2 (Γ) , (7.6) e 2,k (P -1 a , W, g) = (M k (η(P -1 a Wp, P -1 a g, X)) 2 ) 1/2 = 1 k k i=1 (η(P -1 a Wp i , P -1 a g, X)) 2 ) 1/2 , b 2,k (P -1 a , W, g) = η(M k P -1 a Wp, P -1 a g, X), d 2,k (P -1 a , W, g) = D k P -1 a Wp L 1 (X) 1/2 P -1 a g L 2 (X) , (7.7)
where W, P -1 a , p, p 1 , . . . , p k , M k Wp, D k Wp, M k P -1 a Wp, D k P -1 a Wp are the same that in (7.1), (7.2), g is the function of (1.4) and ζ, η, • L n (Γ) , • L n (X) are defined in (7.3), (7.4), (2.4), (7.5). One can see that the numbers e 1,k , b 1,k , d 1,k , e 2,k , b 2,k , d 2,k of (7.6), (7.7) have the following sense:

(1) e 1,k is a relative mean error, b 1,k is a relative mean bias and d 1,k is a relative mean deviation from the mean result (of k tests) for Wp with fixed g and

(2) e 2,k is a relative mean error, b 2,k is a relative mean bias and d 2,k is a relative mean deviation from the mean result (of k tests) for P -1 a Wp with fixed g. In addition,

(e 1,k ) 2 ≈ µ (7.8)
for e 1,k of (7.6) and µ of (3.2) (where W and g are the same that in (7.6)) and for sufficiently great k. Note also that

(e i,k ) 2 ≈ (b i,k ) 2 + (d i,k ) 2 , i = 1, 2, (7.9)
for e i,k , b i,k , d i,k , i = 1, 2, of (7.6), (7.7) with sufficiently great k.

To compare different filters we consider also the numbers

c 1,k (W, g) = (e 1,k (W, g)b 1,k (W, g)) 1/2 |e 1,k (Id, g) -e 1,k (W, g)| , (7.10) c 2,k (P -1 a , W, g) = (e 2,k (P -1 a , W, g)b 2,k (P -1 a , W, g)) 1/2 |e 2,k (P -1 a , Id, g) -e 2,k (P -1 a , W, g)| , (7.11)
where we use the same notations that in (7.1), (7.2), (7.6), (7.7) and, in addition, Id denotes the identity filter that is Id(p) = p. We consider c i,k as an error-bias trade-off coefficient between e i,k and b i,k , where we take also into account the initial error e initial i,k k (P -1 a , Id, g). This trade-off is better if c i,k is smaller.

, where i = 1, 2, e initial 1,k = e 1,k (Id, g), e initial 2,k = e 2,
In addition to the numbers e i,k , b i,k , d i,k , c i,k , i = 1, 2, of (7.6), (7.7), (7.10), (7.11), one can consider also similar numbers for Γ ′ ⊂ Γ in place of Γ in (7.6), (7.10) and X ′ ⊂ X in place of X in (7.7), (7.11). However, in the present paper we consider the global numbers of (7.6), (7.7), (7.10), (7.11) only. Additional local information on Wp and P -1 a Wp is available from related images.

Numerical examples

8.1. Preliminary remarks. We assume that n s = 128, n ϕ = 128 in (1.3), (2.2), (2.3), (6.7).

Given f and a on X, we assume that P a f is defined on Γ and is the numerical realization of (1.1) as in [Ku]. Given a on X and q on Γ, we assume that N a q is defined on X and denote the numerical realization of (6.2) as in [Ku], [Na] without any regularization.

Given Cf 1 and a on X and g on Γ, we assume that Cf m (Cf 1 , a, g) is defined on X and is obtained numerically proceeding from Cf 1 via (6.4)-(6.6) by m -1 steps without any regularization in (6.6) (here we do not assume that g = CP a f ).

In addition, the 2D discrete Fourier transform F Λq is considered on Î defined by (2.3) for any q on Γ.

Notice that all two-dimensional images of the present work, except the spectrum of projections, are drawn using a linear grayscale, in such a way that the dark gray color represents zero (or negative values, if any) and white corresponds to the maximum value of the imaged function. For the spectrum of projections, a non-linear grayscale was used, because of too great values of the spectrum for small frequencies.

8.2. Elliptical chest phantom. We consider a version of the elliptical chest phantom (used for numerical simulations of cardiac SPECT imaging; see [HL], [Br],[GN1]). This version is, actually, the same that in [GN1], [GN2] and its description consists in the following:

(1) The major axis of the ellipse representing the body is 30 cm.

(2) The attenuation map is shown in figure 1(a); the attenuation coefficient a is 0.04 cm -1 in the lung regions (modeled as two interior ellipses), 0.15 cm -1 elsewhere within the body ellipse, and zero outside the body.

(3) The emitter activity f is shown in figure 1(b); f is in the ratio 8:0:1:0 in myocardium (represented as a ring), lungs, elsewhere within the body, and outside the body.

(4) The attenuated ray transform g = CP a f and noisy emission data p of (1.4) are shown in figures 2(a), 2(c). In addition, the constant C was specified by the equation where p is the Poisson field of (1.4) for the case of our phantom.

g L 1 (Γ) / g 2 L 2 (Γ) = 0.30 (8.
In addition: for W = Id and P -1 a q = Cf 3 (N a q, a, q), (8.8)

η(Cf 1 , Cf 0 1 , X) = 1.58, η(Cf 3 , Cf 0 3 , X) = 0.74 (8.6) for Cf 0 1 , Cf 0 3 , Cf 1 , Cf 3 of (8.
where q is a test function on Γ.

We remind that we use the notations of Subsection 8.1 and Section 7. In particular, we use definitions of Section 7 with k = 200, where we consider that k = 200 is already sufficiently great for our numerical examples. In addition, we use i, j of (6.7) as coordinates on X in the profile indications. for W = W opt , W sym , A simp , A sym , where W opt is the optimal space-invariant Wiener filter (of Section 3) with the window function given by (3.3), W sym is the restrictly optimal space-invariant Wiener filter W r.o. (of Section 3) with the symmetric window function given by (3.7), (3.21), (4.15), (4.16), A simp is the space-invariant data dependent filter (of Section 4) with the window function defined by (4.2), A sym is the space-invariant data dependent filter (of Section 4) with the window function defined by (4.8), (4.9), (4.12), (4.15), (4.16).

We remind that: (1) in W opt and W sym it is assumed that |ĝ| 2 is known; (2) A simp is the simplest approximation to W opt for the case when |ĝ| 2 is not known; (3) A sym is a direct approximation to W sym and is a regularized approximation to W opt for the case when |ĝ| 2 is not known.

Table 1 shows the number ζ = ζ(Wp, g, Γ) and e 1,200 , b 1,200 , d 1,200 , c 1,k of (7.6), (7.10) for W = W opt , W sym , A simp , A 1d , A sym (and for the filters Φ 1 , Φ 8,8,1 , A sym 8,8 of [GN1], [GN2], [GN3], see Section 5 of the present paper).

Figures 6789and table 1 show that A simp is not a very efficient approximation to W opt , whereas A sym is a very efficient approximation to W sym . Moreover, Figures 6,9 and (related part of) table 1 show that, actually, A sym is also a rather efficient approximation to W opt in the framework of solving Problem 1.1. We remind that a theoretical explanation of these numerical results was given in Sections 3 and 4.

(8.9) is much more sensitive to residual noise in Wp than Cf 3 and that the residual noise in A simp p and A 1d p is rather strong. Therefore, to avoid too many images in our paper we do not show Cf 1 of (8.9) and related images for W = A simp , A 1d .

Similarly with the case of table 1, one can see that in our numerical examples namely A sym has the least c (i) 2,200 (that is the best trade-off between the error and bias numbers e ), i = 1, 3, among all space-invariant filters A simp , A 1d , A sym , Φ 1 mentioned in tables 2 and 3 for the case when |ĝ| 2 is not known.

To avoid too many images in our paper we do not show images obtained using Φ 1 of [GN1]. Actually, these images confirm that A sym works better than Φ 1 . Nevertheless, as it was already mentioned in Subsection 5.1 and will be mentioned in Subsection 8.4 there is also some similarity between Φ 1 and A sym . 8.4. Illustration of space-variant filtrations of [GN2] and [GN3]. An important property of the space-invariant filters Φ ε and A sym consists in the fact that they have efficient space-variant analogs Φ l 1 ,l 2 ,ε and A sym l 1 ,l 2 constructed in [GN2], [GN3] and mentioned in Subsections 5.2 and 5.3 of the present paper.

Figures 14(a 3 shows the numbers η (3) = η(Cf 3 , Cf 0 3 , X) for Cf 0 3 , Cf 3 of (8.3), (8.11) and e a Wp and P -1 a g = Cf 0 3 of (8.3) for (W 1 , W) = (A sym , A sym 8,8 ) and (W 1 , W) = (Φ 1 , Φ 8,8,1 ).

Note that the high-frequency component of the residual noise in Wp for W = A sym 8,8 , Φ 8,8,1 is less negligible than for W = A sym , Φ 1 and that (in general and in our case in particular) N a is rather sensitive to this noise component or, more precisely, much more sensitive than the classical FBP algorithm. In addition, W 1 p is used in (8.11) for the first approximation Cf 1 = N a W 1 p only and Wp is used in (8.11) in the framework of iterations of the classical FBP algorithm only. Therefore, to obtain the best Cf 3 we deal with W 1 = W in (8.11).

We do not show Wp for W = Φ 8,8,1 and Cf 3 of (8.11) and related images for W = Φ 8,8,1 , W 1 = Φ 1 . The reasons are that: (1) for our phantom (described in subsection 8.2) the aforementioned images are more or less similar to the corresponding images for W = A sym 8,8 and W 1 = A sym (actually, Wp and Cf 3 of (8.11) are somewhat more smooth for W = Φ 8,8,1 , W 1 = Φ 1 than for W = A sym 8,8 and W 1 = A sym ) and (2) we try to avoid too many images in our paper.

One can see that in our numerical examples among all filtering schemes mentioned in the present work (1) namely A sym 8,8 and Φ 8,8,1 have the best trade-off (the least c 1,200 )

between the error and bias numbers e 1,200 and b 1,200 for the case when |ĝ| is not known (see table 1) and ( 2) namely W = A sym 8,8 (with W 1 = A sym ) has the best trade-off (the least c

(3) 2,200 ) between the error and bias numbers e (3) 2,200 for the case when |ĝ| is not known (see table 3).

For more information on Φ l 1 ,l 2 ,ε see [GN2]. For more information on A sym l 1 ,l 2 (and on some other space-variant Wiener type filters for solving Problem 1.1 and Problem 1. 

2,200 of (7.7), (7.11) for W = W opt , W sym , A simp , A 1d , A sym , A sym 8,8 (with W 1 = A sym ), Φ 1 , Φ 8,8 (with W 1 = Φ 1 ) and P -1 a defined by (8.8).

Conclusion

For the Poisson model (3.1) and, more generally, for the noise model (3.4) we found explicit formulas for the optimal space-invariant Wiener type filter with a priori geometric restrictions (3.6) on the window function, see Theorem 3.1 and Corollary 3.1 of Section 3. We say that this filter is restrictedly optimal in the Wiener sense and denote it as W r.o. . It is assumed that the object power spectrum |ĝ| 2 and the variance parameter V are known in W r.o. . For the case when |ĝ| 2 and V are not known, we considered the data dependent spaceinvariant filter A approximating W r.o. by formulas of Subsection 4.2. We show that, at least for the Poisson case, this approximation (with V ≈ (n s n ϕ ) -1/2 p(0)) is very efficient if geometric condition (4.13) is fulfilled for each j ∈ Î. We say that A is approximately optimal in the Wiener sense.

We showed that in an important particular case, under the Poisson assumptions, our filter A is reduced to the well-known (see [KDS], [SKC], [BCB], [C]) "one-dimensional" filter A 1d going back to [KDS]. This permits to explain a relative efficiency of the "1D" filtering scheme of [KDS] in SPECT and PET imaging based on the classical FBP algorithm (or its iterative use). See Subsection 4.3.

By the symmetric choice (4.15), (4.16) of the level sets S α , we reduced A to A sym . We consider A sym as a reasonable "2D" approximation to the optimal Wiener type filter W opt of (3.3) for the Poisson model (3.1) with sufficiently regular g for the case when |ĝ| 2 is unknown. See Subsection 4.4.

In Subsection 5.3, an efficient space-variant version A sym l 1 ,l 2 of A sym is also presented. We do not know whether the space-invariant filter A sym in its precise form of Section 4 was mentioned in the literature. In any case our principal results concerning A sym consist in its justification proceeding from Theorem 3.1 and in its completely space-variant version A sym l 1 ,l 2 . To our knowledge no complete generalization to the space-variant case of the filtration approach of [KDS] was mentioned in the literature before the present work.

In Section 8, the optimal, restrictedly optimal and approximately optimal spaceinvariant Wiener (or Wiener type) filters W opt , W sym , A simp , A 1d , A sym and the spacevariant version A sym l 1 ,l 2 of A sym are illustrated by numerical examples in the framework of simulated SPECT imaging based on generalized and/or classical FBP algorithms. In addition, a numerical comparison (of the aforementioned filters) with the space-invariant Φ 1 and space-variant Φ l 1 ,l 2 ,1 data dependent filters of [GN1] and [GN2] is also given. One can see that in the numerical examples of Section 8 namely A sym gives the best results on the level of the error-bias trade-off among all filters A simp , A 1d , A sym , Φ 1 with unknown |ĝ| 2 and namely A sym 8,8 gives, in particular, the best iterative reconstruction Cf 3 on the level of the error-bias trade-off among all filters A simp , A 1d , A sym , Φ 1 , Φ 8,8,1 , A sym 8,8 with unknown object power spectrum |ĝ| 2 ; see Subsections 8.3 and 8.4.

We emphasize that the present work is not a topical review. In particular, we do not discuss the methods of 

  .15) Formulas (3.7) follow from (3.11), (3.15), (3.14) and the formulas

  1) in order to have that the noise level ζ(p, g, Γ) ≈ 0.30 (where ζ is defined by (7.3)). Actually, we have that ζ(p, g, Γ) = 0.298, noiseless emission data g) and their profiles for j = 64. Figures 4(a)-(d), 5(a)-(d) show the reconstructions Cf 1 = N a p, Cf 3 = Cf 3 (N a p, a, p) (8.4) for p shown in figure 2(c), their profiles for j = 64 and the images M 200 Cf 1 = M 200 N a p, D 200 Cf 1 = D 200 N a p, M 200 Cf 3 = M 200 Cf 3 (N a p, a, p), D 200 Cf 3 = D 200 Cf 3 (N a p, a, p), (8.5)

  3), (8.4); e 2,200 = 1.55, b 2,200 = 0.11, d 2,200 = 1.55 (8.7a) for W = Id (that is W(p) = p) and P -1 a = N a ; e 2,200 = 0.75, b 2,200 = 0.06, d 2,200 = 0.75 (8.7b)

8. 3 .

 3 Illustrations of space-invariant Wiener type filters of Sections 3 and 4. Figures 6-9 show the filtration result Wp and its spectrum |F ΛWp| (for p shown in Figure 2(c)) and also M 200 Wp and D 200 Wp (where p is the Poisson field for our phantom)

  )-(d) show Wp, |F ΛWp| (for p shown in figure 2(c)) and M 200 Wp, D 200 Wp (where p is the Poisson field of (1.4) for our phantom) for W = A sym 8,8 . Table 1 shows the numbers ζ, e 1,200 , b 1,200 , d 1,200 , c 1,200 of (7.6), (7.10) for W = A sym 8,8 and W = Φ 8,8,1 . Figures 15(a)-(d) show Cf 3 = Cf 3 (N a W 1 p, a, Wp), (8.11) its profile for j = 64 and related M 200 Cf 3 , D 200 Cf 3 (defined as in (8.10) but with Cf 3 (N a W 1 p, a, Wp) in place of Cf 3 (N a Wp, a, Wp)) for W 1 = A sym , W = A sym 8,8 . Table

  defined as in (7.7) (7.11) with Cf 3 (N a W 1 p, a, Wp) in place of P -1

  Attenuation map a (a) and emitter activity f (b). Noiseless emission data g = CP a f (a), spectrum |F g| (b), noisy emission data p (c), spectrum |F p| (d).

  Reconstructions Cf 0 1 = N a g (a) and Cf 0 3 = Cf 3 (Cf 0 1 , a, g) (c) from the noiseless emission data g, and their profiles for j = 64 (b), (d).
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 45 Figure 4. Reconstruction Cf 1 = N a p (a) with its profile for j = 64 (b) from the noisy emission data p without any filtration, and related M 200 Cf 1 (c) and D 200 Cf 1 (d).
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 6789101112 Figure 6. Filtration result Wp (a), its spectrum |F ΛWp| (b), M 200 Wp (c) and D 200 Wp (d) for W = W opt .
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We do not show the images Wp, |F ΛWp|, M 200 Wp, D 200 Wp for W = W 1d and W = A 1d , where W 1d is the restrictly optimal space-invariant Wiener filter W r.o. of Section 3 with "1d"-window function given by (3.7), (3.21), (4.14) and A 1d is the data dependent approximation to W 1d with the window function defined by (4.8), (4.9), (4.12), (4.14). The reasons are that: (1) it was explained already in Section 4 that A 1d is not interesting in the framework of pure applications to Problem 1.1 and (2) we try to avoid too many images in our paper. Nevertheless, the numbers ζ, e 1,200 , b 1,200 , d 1,200 , c 1,200 for W = A 1d are shown in table 1. One can see that the numbers of table 1 for W = A sym and W = A 1d confirm the aforementioned critical remarks concerning A 1d .

One can see that in our numerical examples namely A sym has the least c 1,200 (that is the best trade-off between the error and bias numbers e 1,200 and b 1,200 ) among all spaceinvariant filters A simp , A 1d , A sym , Φ 1 mentioned in table 1 for the case when |ĝ| 2 is not known.

Figures 12,13 show the reconstructions

(from p shown in Figure 2(c)), their profiles for j = 64 and

(where p is the Poisson field for our phantom) for W = A sym . Besides, figures 10, 11 show the reconstruction Cf 3 of (8.9), its profile for j = 64 and M 200 Cf 3 , D 200 Cf 3 of (8.10) for W = A simp , A 1d . We do not show Cf 1 , Cf 3 of (8.9) and related images for W = W opt , W sym (these images are shown in the first version of our paper). The reasons are that: (1) the filters W opt , W sym are given for the case of known |ĝ| 2 and, therefore, can not be used directly in real SPECT imaging (modeled by Problem 1.2) and (2) we try to avoid too many images. Nevertheless, for the completeness of presentation the error and bias numbers for Cf 1 and Cf 3 of (8.9) with W = W opt , W sym are mentioned in tables 2 and 3 considered below.

Table 2 shows the numbers η (1) = η(Cf 1 , Cf 0 1 , X) for Cf 0 1 , Cf 1 of (8.3), (8.9) and e (1) 2,200 of (7.7), (7.11) for W = W opt , W sym , A simp , A 1d , A sym (and for Φ 1 of [GN1]) and P -1 a = N a . Table 3 shows, in particular, the numbers η (3) = η(Cf 3 , Cf 0 3 , X) for Cf 3 , Cf 0 3 of (8.3), (8.9) and e

2,200 of (7.7) (7.11) for W = W opt , W sym , A simp , A 1d , A sym (and for Φ 1 of [GN1]) and P -1 a defined by (8.8). Figures 10, 11 and the numbers of table 3 for W = A 1d , A simp , Φ 1 confirm the wellknown numerical result (see [KDS], [SKC], [BCB], [C]) that filters like A 1d are relatively efficient in the framework of reconstructions like Cf 3 of (8.9) (in particular, in table 3, A 1d has smaller c

(3) 2,200 than A simp and Φ 1 ). A theoretical explanation of this numerical result was given in Subsection 4.3. Nevertheless, figures 11, 13 and (related part of) table 3 show that A 1d is less optimal than A sym in the framework of the reconstruction Cf 3 of (8.9).

Note also that the reconstruction Cf 1 of (8.9) is not interesting for W = A simp , A 1d as one can see, in particular, from (related part of) table 2. The reason is that Cf 1 of