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Abstract

For 2D data with Poisson noise we give explicit formulas for the optimal space-
invariant Wiener type filter with some a priori geometric restrictions on the window func-
tion. Proceeding from this result we (1) explain (in particular) an efficiency of some
well-known ”1D” (approximately optimal) space-invariant Wiener type filtering scheme
(with unknown object power spectrum) in single-photon emission computed tomography
(SPECT) and positron emission tomography (PET) imaging based on the classical FBP
algorithm (or its iterative use) and (2) propose also an efficient 2D ( approximately op-
timal) space-invariant Wiener type filtration (with unknown object power spectrum) for
SPECT imaging based on the generalized FBP algorithm (implementing the explicit for-
mula for the nonuniform attenuation correction) and/or the classical FBP algorithm (used
iteratively). An efficient space-variant version of the latter 2D filtration is also announced.
Numerical examples illustrating the aforementioned results (in the framework of simulated
SPECT imaging) are given.

1. Introduction

In the single-photon emission computed tomography (SPECT) one considers a body
containing radioactive isotopes emitting photons. The basic problem of SPECT consists
in finding the distribution of these isotopes in the body from the emission data (consisting
in the radiation measured outside the body by a family of detectors during some fixed
time) and some a priori information concerning the body. Usually this a priori information
consists in the photon attenuation coefficient in the points of body, where this coefficient is
found in advance by the methods of the transmission computed tomography (under some
conditions, this coefficient can be also approximately found directly from the emission
data in the frameworks of the "identification” problem). In 2D SPECT, that is when the
problem is restricted to a fixed two-dimensional plane = intersecting the body and identified
with R?, the emission data are modeled, in some approximation, as 2D attenuated ray
transform with Poisson noise (or, more precisely, as a function p of formula (1.4) given
below). Let us remind now related mathematical definitions.

The 2D attenuated ray transformation P, is defined by the formula

Py f(y) = / exp (—Da(s0% +10,0)) f(s0" + t6)dt,
v=(s,0) e RxS" 6+=(—6,,0,) for 6= (6,,60,) €S,
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Da(z, ) = /a(x+t9)dt, (2,0) € R® x S\, (1.10)
0

where a and f are real-valued, sufficiently regular functions on R? with sufficient decay at
infinity, a is a parameter (the attenuation coefficient), Da is the divergent beam transform
of a, f is a test function. In (1.1a) we interpret R x S' as the set of all oriented straight
lines in R%. If v = (5,0) € R x S', then v = {x € R* : z = s+ +tf, t € R} (modulo
orientation) and 6 gives the orientation of ~.

In SPECT, f > 0 is the density of radioactive isotopes, a > 0 is the linear photon
attenuation coefficient of the medium, and (in some approximation) C'P, f is the expected
emission data (the expected sinogram), where C' is a positive constant depending on de-
tection parameters.

More precisely, saying about the emission data in 2D SPECT, we assume that

a(x) >0, f(z) >0, for z€R? a(z)=0, f(z)=0 for |z|>R (1.2)
and consider in R x S! a discrete subset of the form

I'={vi;=0(05,0(¢;): si=—R+(i—1)As, p; =(j —1)Ap,

1.3
As=2R/(ns —1), Ap=271/n,, i=1,...,ns j=1,...,n,}, (13)

where 6(p) = (cos ¢, singp), R is the radius of image support of (1.2), ns, n, are sufficiently
large natural numbers, and n, is even. We say that I' is a detector set. (Note that
I c{(s,0) eR xS': |s|] <R}, where R is the number of (1.2).)
In 2D SPECT, in some approximation, the emission data consist of a function p on
I', where
p(7y) is a realization of a Poisson variate p(v)

with the mean Mp(y) = g(v) = CP,f(y) for any v €T (1.4)
and all p(y), v €T, areindependent.

In addition, it is assumed that C' = C;t, where ¢ is the detection time per projection and
(4 is independent of t. We say that p of (1.4) is the 2D attenuated ray transform (CP,f
on I') with Poisson noise.

For more information concerning the aforementioned basic points of SPECT, see, for
example, [NW], [LM], [Br] and references therein.

In the present work we consider the following two problems:

Problem 1.1. Find (as well as possible) g from p, where g and p are the function of
(1.4).

Problem 1.2. Find (as well as possible) C'f from the p and a, where f, a and p are
the function of (1.2), (1.4) and C' is the constant of (1.4).

More precisely, in the present work we develop space-invariant Wiener type filtration
approach (of [KDS]) for solving Problem 1.1 and apply this approach to solving Problem
1.2 in the framework of the scheme

Cf =~ P 'Wp, (1.5)
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where W is a filtration for solving Problem 1.1 and P, ! is an inversion method for P,
for the noiseless case. In particular, for 2D data with Poisson noise we give explicit
formulas for the optimal space-invariant Wiener type filter with some a priori geometric
restrictions on the window function; see Proposition 3.1 of Section 3. Then (in Section 4),
proceeding from this result we (1) explain, in particular, an efficiency of the well-known
”1D” (approximately optimal) space-invariant Wiener type filtering scheme of [KDS] (with
unknown object power spectrum) in SPECT and PET imaging based on the classical FBP
algorithm (or its iterative use) and (2) propose also an efficient 2D (approximately optimal)
space-invariant Wiener type filtration A*Y™ (with unknown object power spectrum) for
SPECT imaging based on the generalized FBP algorithm of [Ku], [Na] (implementing
the explicit formula of [No] for P, ! of (1.5)) and/or the classical FBP algorithm (used
iteratively). (We do not know whether the filter A%Y" in its precise form of Section 4 was
mentioned in the literature.)

Actually, in the present work, as P, ! of (1.5) we use the explicit formula of [No] and
the iterative method of [MNOY] (related results are reminded in Section 5).

Numerical examples illustrating the aforementioned results on Problems 1.1 and 1.2
are given in Section 6. In these examples we consider a version of the well-known elliptical
chest phantom used for numerical simulations of cardiac SPECT imaging. One can see, in
particular, that in these examples the 2D (approximately optimal) space-invariant Wiener
type filtration A°Y™ of Section 4 with the window function given by (4.8), (4.9), (4.12),
(4.13) is more efficient (as regards image errors and image bias) than the 2D space-invariant
data dependent filtration of [GN1].

Finally, it should be mentioned also that the noise level in the emission data p of (1.4)
is not space-invariant and in this respect all space-invariant filtrations are not optimal
for Problems 1.1 and 1.2. Space-variant versions of the space-invariant data dependent
filtration of [GN1] are constructed in [GN2]. Space-variant versions of the space-invariant
Wiener type filtrations considered in the present work are constructed and analyzed in
[GN3]. In addition, our simplest space-variant version .A;"}" of the aforementioned A"
is already mentioned and illustrated numerically in Subsectlon 6.4. In partlcular our best
(iterative) reconstruction C'f3 (of (6.25)) is obtained using namely A;”}" (for I} = Iy = 8).
To our knowledge no complete generalization to the space-variant case of the filtration
approach of [KDS| was presented in the literature before the present work.

2. Frequency domain form of space invariant filters
Consider the functions p and g of (1.4). Suppose that

g(si,0(p)) =0, if ||s;| —R| <L, (2.1)

where As << L, where s;, ¢;, R and As are the numbers of (1.3). Then p and g of (1.4)
can be considered as functions on a discrete torus identified with I'. Note that I' of (1.3)
can be identified with

I={(i1,in) €Z%: 0<iy <ng—1, 0<iy <n,—1}. (2.2)
Let us suppose that n, and ns of (1.3), (2.2) are even. Let
[={(1j)ez?: -cj<lq lecj<le 1y 2.
{(J1,J2) € 2 <N 5 5 <J2 < 5 } (2.3)
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Let
lgll oy = (AsAg > Jg(3)|*)e, (2.4)
~yel
|ul| Loy = ( Z Ju(iy, ig)| )V,
(i1,32)€I’
R o (2.5)
||U||La(f/):( Z ‘U(Jlajz)‘a)l/av
(j1,j2)ET’

where ¢, u, @ are test functions on IV C T, I’ C I, I’ C I, respectively, o € N.
Let F' denote the 2D discrete Fourier transformation

F: L*(I) — L*(I), (Fu)(j1,72) =

exp (—m('ﬂ - ‘@)) (r.d2) €1, i= V-1,

N Ny

where u is a test function on I; R
To use F: L*(I) — L?(I) and F~': L2(I) — L*(I) for filtering p of (1.4) we use
also, in particular, the identification operators

A LAHT) — L(1), (Aq)(ir,io) = q(Yir,ia)s (i1,02) € 1, (2.7)
At LA(I) — LA(D), (Au)(Viyi,) = ulin, i), (i1,42) € 1, (2.8)

where ; ; is defined in (1.3), ¢ and u are test functions on I' and I, respectively.
A general linear space invariant filtration in L?(I"), where I is considered as a discrete
torus, can be written in the form

W: L*(I') — L*T), W=A"1WA, (2.9)
where
W L*(I) — L*(I), W =F'WF, 2.1
W L2(1) — L*(I), (Wa)(j) = W(aG), j= (jr,d2) €1, 11)

where F', A, A=! are defined in (2.6)-(2.8),

A

W (j) is a real bounded function of j € I, (2.12a)

W(—j) =W(j) for W considered as a periodic (2.120)
function on Z2 with the fundamental domain I , .
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and 4 is a test function. Here the multiplication operator W of (2.11) is the frequency
domain form of the space invariant filtrations W and W of (2.9), (2.10). In addition, W (5)
is the related window function.

Note also that in the simplest space-invariant data independent schemes for filtering
p of (1.4) the window function W of (2.12) is given by

s - 2] 27 ) . -
Wi(j) = wl(wljrlb Wo w;j ), j=(j1,72) €1, w1 >0, wy >0, (2.13)
s ®

where w1 (s), w2 (s) are real-valued functions of s such that
IZ)Z<S) = ﬁ)i<—8), s € R,
lim w;(s) = w;(0) =1, w;(s) =0 for |s| >1, (2.14)

w;i(s1) > wi(s2) for [s1] < |sal,

where i € {1,2}. Here @ = (wy,ws) is the filtration parameter (and it is usually assumed
that 0 < w; < 1,14 € {1,2}).

3. Optimal Wiener filter and its restrictedly optimal analogs
Suppose that:

g is some nonnegative function on I' (and ¢ # 0), (3.1a)

p(v) is a Poisson variate with the mean Mp(y) = g(y), v €T, (3.10)
and all p(y), v €', are independent, '

p is a realization of p on T. (3.1¢)

Let W denote a filter of the form (2.9)-(2.12). Then it is well-known (see [GB], [KDS])
that the mean

pWV, g) = M|Wp — g7y (3.2)

is minimal with respect to W if and only if the window function W (j) of (2.11), (2.12) is
given by )

70\ _ 1iropt .y def ‘g(j)| R O T

W) =Wgr() = GET (nang)7530) * = (J1,72) € 1, (3.3)
where g = FAg (with F' and A defined by (2.6), (2.7)). Note that results of such a type
go back to [W] and, therefore, the filter W for p of (3.1), where the window function W
of (2.11), (2.12) is given by (3.3), is usually referred (see, for example, [KDS], [C] as an
optimal Wiener filter.

Note that an obvious obstacle for a direct use of the aforementioned optimal Wiener
filter for solving Problem 1.1 consists in the fact that the window W, of (3.3) is given in
terms of g which is an unknown of Problem 1.1.

Below in this section, we generalize the ”optimal” formula (3.3) to the case of some
a priori geometric restrictions on the window function. In some cases such restrictions
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are rather natural and satisfactory and (that is the key point) result in "regularized”
optimal filters which are much more appropriate for the case with unknown |g| (than the
initial optimal filter with W given by (3.3)). Note that applications of restrictedly optimal
Wiener type filters (of this section) to Problem 1.1 involve also approximations considered
in Section 4.

Let Si,...,S,+ be subsets of I such that

I=U"_,S,, each So #0, SaNSs=0 if a3, (3.4a)
— 8o = Sp(a) (in 7% factorized to I) for each S,. (3.4b)

Now we consider the problem of finding W of the form (2.9)-(2.12) such that u(W,g) of
(3.2) is minimal for fixed g of (3.1) under the restrictions that

W is constant on each fixed S, a=1,...,n", (3.5)

where W is the window function of W. This problem is solved in the next proposition:
Proposition 3.1. Let g and p be defined as in (3.1a), (3.1b). Let W denote a filter

of the form (2.9)-(2.12) with a priori restrictions (3.5) on its window function W, where

S1, ..., Spx satisfy (3.4). Then u(W, g) of (3.2) is minimal with respect to W if and only if

A S .\ def Eg a(j) . ~
W) =W"re = ’ , jel, 3.6
& 0" U) Yg.a() T (nsn,)~12§(0) g (3.6)
def 1 . .
Seat) = o D 9@ jel, (3.7)
1Sat) 1€5a())

where § = FAg (with F and A defined by (2.6), (2.7)), a(j) denotes « such that j € S,
and |Sy| denotes the number of elements in S,

Proof of Proposition 3.1. Due to (3.2),(2.9)-(2.12) and the property
AT il = AsAlila ), @€ LD, (35)

we have that )

where p = FAp, § = FAg. Further,

N (2.5).(3.40) « o~ o
M|Wp — 4|3 =M WD =l =
a=1

L2(I)
. . (3.10)
Fraal2 (3.5) Aa a2
D MWD =illies., = > Mldab—lliz(s,),
a=1 a=1
where W, are real constants such that
W =1, on each fixed S,, a=1,...,n" (3.11)

6
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Due to (3.9)-(3.11), W minimizes u(W, g) (for fixed g) if and only if for each a (and

fixed g) w, minimizes

fro,(We, §) = f M||wap — 9”L2(S o a=1...,n" (3.12)
We have that
o(Wa,§) = M Y (0ab(i) — 3(4)) (@ab () — 3(4)) =
JESa
Y M((wa)? D) — wa(B()3() + §()BG)) + 19()I7) = (3.13)

JE€Sa
~92 A~
Cg7a72wa + Cgvavlwa + 0970%07

where
Coaz= Y M[P(j)
JESa
Cyan=— Y (G(/)MP() + 4(5)Mp())), (3.14)
JESa
Coan= Y Mlg(j)?
JESa

In addition, Cy 4,2 > 0 due to (3.1a), (3.4a) and (3.17). Therefore, fio(Wq, ) is minimal
with respect to w, (for fixed g and «) if and only if

~ C’g a,l
L = — gl 1
w 2, es (3.15)
Formula (3.6) follows from (3.11), (3.15), (3.14) and the formulas
Mp(j) =4(5), j€l, (3.16)
MB()* = 19(G)* + (nsnp)~29(0), j €I (3.17)

Here (3.16) is rather obvious, whereas (3.17) is, actually, a formula of [GB] (see also [KDS]).
Property (2.12b) for W of (3.6) follows from (3.4b), (3.6), (3.7) and the property
9=l = 13()I-
Proposition 3.1 is proved.
Note that if )
Saiy = 1{j} forany jelI, (3.18)

then formula (3.6) of Proposition 3.1 is reduced to formula (3.3).

Note that Proposition 3.1 admits the following generalization:

Proposition 3.1*. Let all assumptions of Proposition 3.1 be wvalid except (3.1a),
(3.1b) which are relaxed now to the assumptions that

g 1s a real function on T' (and g #0), (3.19a)

7
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p(7y) is a real variate with the mean Mp(y) = g(v), v €T,

3.19b

and all p(y), v €T, are independent (and Dp = M(p — Mp)? #0). ( )
Then u(W, g) of (3.2) is minimal with respect to W if and only if

W - Wr.o. .\ def Eg,oz(j) . j 3.20

(]) - g (]) - y J € ) ( . )

Yga) T (nsmp)—l/?EB(O)

where X4 ;) 15 defined by (3.7), Dp = FA(Dp).
Proposition 3.1* is proved by repeating the proof of Proposition 3.1, where instead of
(3.17) we use now the formula

A

MIp(G)? = 13()? + (nsny) "2 Dp(0), j € I. (3.21)

Note that (3.21) follows from the definition p = FAp (with F' and A defined by (2.6),
(2.7)) and the formulas

MI¢|? = DE + | MEP?, (3.22)
D(c1&1 + e2€2) = |e1[*Dé1 + |ea|* Dés, (3.23)

where ¢ is a complex-valued variate, D& = M| — M£J?, ¢y and ¢y are complex constants,
&1 and & are independent complex-valued variates.

Note, finally, that Propositions 3.1 and 3.1* admit straightforward generalizations to
the case of any dimension (and, in particular, to the 3D case).

4. Approximations to the Wiener optimal filter and to its restrictedly
optimal analogs

To apply the Wiener optimal filter to Problem 1.1 one needs to express approximately
the window W;pt of (3.2) in terms of the data p of (1.4), (3.1c). To construct such
approximations one can proceed from formulas (3.16), (3.17). In view of (3.3), (3.16),
(3.17), the simplest approximation to Wgopt is given by (see, for example, [KDS], [C]):

A

WPt (j) = AZmP(5), j €I, (4.1)

where

~o h(7)|2 — —1/25(0

sStm . p nsn p . A . — A~
Agime(j) = PU)I fﬁ(j)rﬁ O it 512 = (meny)=2/25(0) > 0,
Asme () =0 if [p(5)]* — (nene)/2p(0) < 0,

(4.2)

where p = FAp (with F, A defined by (2.6), (2.7)).
Note that p(j) is a good approximation to g(j), [p(j)|° is a good approximation to

: *
1G(5)|? + (nsny)~/2§(0) and AY(j) is a good approximation to W2(j) if

1G(5)| > ((nsny)~12§(0))/2 for fixed j € I. (4.3)

8
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This statement follows from formulas (3.16), (3.17) and their corollary that

A

Dp(j) = (nsny)~/%4(0), j €1, (4.4)

the Chebyshev inequality written in the form

D
Prob{lé — Mg < elME} > 1 - . (4.5
where D¢ = M| — M¢|?, and the formulas
€12 — M¢[* = |¢f” — [MEJ? — D€ = (|€] — [ME|) (€] + | ME) — D, (4.6)

1617 = M| < |€ — Mg|(2IME| + € — ME|) + DE (for € = p(j)).

As a rule, condition (4.3) is satisfied if j is sufficiently close to 0 but is not satisfied
otherwise. Therefore, approximation (4.1), (4.2) to the Wiener optimal filter is not very
efficient in the framework of applications to Problem 1.1 and 1.2 (numerical examples are
given in Section 6) . Actually, more satisfactory approximations to the Wiener optimal
filter can be given proceeding from Proposition 3.1 (with appropriate subsets S, ) as follows.

In a similar way with (4.1), (4.2), in view of formulas (3.6), (3.7) (for the optimal
window Wgr'o' with a priori restrictions (3.5)) and formulas (3.16), (3.17) (for Mp and
M |p|?) we have that

~ A

Wy () = A9, Jel, (47)
where
. Sp.a() — (nsng) ~H2p(0)
A, () = —2el) v if B o0 — (nsny) " 2p(0) > 0,
p(]) Ep,oz(j) p,a(j) ( 4,0) p( ) (4.8)
A(j) =0 if B, 00 — (neng) " 2p(0) <0,
where .
Xpal) = 15 > bGP, el (4.9)
Sat] i€Sa)

where |S,| denotes the number of elements in S,, p = FAp (with F, A defined by (2.6),
(2.7)). Note that if S, are given by (3.18) then formulas (4.7), (4.8) are reduced to (4.1),
(4.2).

The principal advantage of the approximation (4.7), (4.8) in comparison with (4.1),
(4.2) consists in the fact that if

|Say| is great enough in comparison with |[j| for fixed j € I, (4.10)

where |j| is the distance from j to the origin 0 of I in an appropriate norm, then (because of
averaging in (3.7), (4.9)) £, »(j) is a much better approximation to 3, ;) +(nsne) ~1/2§(0)

9
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than [p(7)]? to [§(j)|? + (nsn,)~/2§(0) and, as a corollary, A,(j) is a much better approx-
imation to W7 (j) than Affmp(j) to Wgopt (7). Moreover, for appropriate subsets S, it

turns out that A, (of (4.8)) is, actually a considerably better approximation to ng’pt (of
(3.3)) in the framework of applications to Problems 1.1 and 1.2 than A5 (of (4.2)).
In particular, window functions as Ap of (4.8) for

A

Say ={z=(21,22) €1: 21 =51} Vj=(jr,jo) €1 (4.11)

are actually considered in the literature going back to [KDS] as rather satisfactory ap-
proximations to optimal window functions as W;pt in the framework of SPECT and PET
imaging based on the classical FBP algorithm or its iterative use (see, for example, [SKC],
BOB]. [C]).

Note that A, of (4.8) with S, given by (4.11) is not very interesting as an approxi-
mation to ng’pt of (3.3) in the framework of pure applications to Problem 1.1. The reason
is that the subsets S, of (4.11) are not symmetric with respect to the indices z; and 29
on I and, therefore, the related space-invariant filter is not symmetric with respect to s

and ¢ variables on I'. More precisely, due to (4.11) the window function W () e A, (5),
j = (J1,J2), is independent of j, and, therefore, the filter W of (2.9)-(2.11) with such a
window does not filtrate at all with respect to the angle variable ¢ on I'. However, the
classical FBP algorithm is not very sensitive to stochastic noise in the angle-direction of
projections. This together with Proposition 3.1 and property (4.10) for S, of (4.11) is our
explanation of the fact that the filter W of (2.9)-(2.11) with W = A, defined by (4.8),
(4.9), (4.11) is rather efficient (in the class of space-invariant filters) in the framework of
applications to Problem 1.2 via (1.5) with P, ! based on iterations of the classical FBP
algorithm (see Section 6 for numerical illustration).

To propose adequate Wg”" and A, (of (3.6), (3.7), (4.8), (4.9)) in the framework of
applications to Problem 1.1 and, further, to Problem 1.2 via (1.5) with P, ! consisting
in the generalized FBP algorithm (implementing the explicit formula of [No]) and/or the
classical FBP algorithm (used iteratively), see Section 5, we consider the subsets S, defined
as follows:

. n
Sa ={z=1(21,22) € [ : To_1 < max(|z1], }n—SZQ}) <Ta}, =1 ....n", (4.12)

()
where 79, ..., T,+ are some appropriate fixed real numbers such that 7o = 0, 7,1 < 74 (and

Sa #0),a=1,...,n% 7,» = (ns+1)/2 and where we assume that n, < n,. Actually, in
the numerical examples of present work we assume that n, = n, and

70=0, 7o =1/24+ ¢, for a=1,...,n", 0" =ns/2=n,/2. (4.13)

One can see that the subsets S, of (4.12), (4.13) are rather symmetric with respect
to the indices z; and 2z on [ in contrast with the subsets S, of (4.11). As a result A,

of (4.8), (4.9) with S, of (4.12), (4.13) is also of interest as an approximation to ng’pt of
(3.3) even in the framework of pure applications to Problem 1.1.

10
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In addition, in the framework of further applications to Problem 1.2 via (1.5) (even
with P, ! consisting in the classical FBP algorithm used iteratively) the symmetric flp of
(4.8), (4.9), (4.12), (4.13) gives also considerably better results than ”1D” A, of (4.8), (4.9),
(4.11). Numerical examples illustrating the filter YW of (2.9)-(2.11) with data dependent
W = A, defined by (4.8), (4.9), (4.12), (4.13) in the framework of applications to Problems
1.1 and 1.2 are given in Section 6. An efficiency of this filter (in the class of space-invariant
filters) in the framework of these applications is explained by Proposition 3.1, property
(4.10) and adequate geometry of the subsets S, of (4.12), (4.13).

Finally, note that subsets S, (arising in (3.6), (3.7), (4.8), (4.9)) with geometry even
more appropriate for applications to Problems 1.1 and 1.2 than in (4.12), (4.13) can be
constructed proceeding from the result (see [RL], [MN], [GouNol], [GN2] and figure 2(b)
of the present paper) that the Fourier transform § = FAg, where g is the function of (1.4),
is supported mainly in some rather specific domain (of bowtie shape) dependent on f and
a. However, we will not develop this issue in the present work.

5. Reconstruction of C'f from CP,f and a
First, we consider the following explicit inversion formula

Cf =Ny, (5.1)
where g = CP, f,
Nag(z) = ﬁ (‘a% / K (2, 0)05d0 + a% / Kz, 0)01d9), (5.20)
S S*
K(z,0) = exp [~Da(x, —0)] Go(x6™), (5.2b)
Go(s) = exp (Ag(s)) cos (By(s)) H(exp (Ag) cos (Bg) qo) (s)+ (5.20)
exp (Ag(s)) sin (By(s)) H(exp (Ag) sin (By) qg) (s), '
Ag(s) = %Pa(s,&), By(s) = H Ag(s), qo(s) =q(s,0), (5.2d)

where ¢ is a test function, P = Py is the classical two-dimensional ray transformation (i.e.
Py is defined by (1.1a) with a = 0), H is the Hilbert transformation defined by the formula

Hu(s) = %p.v./ u(t>tdt, (5.3)

S —

R

where u is a test function, = = (z1,x2) € R?, 0 = (01,6,) € S', 0+ = (—65,0,), s € R, db
is arc-length measure on the circle S*.

In a slightly different form (using complex notations) formula (5.1) was obtained in
[No]. Some new proofs of this formula were given in [Na] and [BS]. Formula (5.1) was
successfully implemented numerically in [Ku] and [Na] via a direct generalization of the
(classical) filtered back-projection (FBP) algorithm. However, this generalized FBP algo-
rithm turned out to be less stable, in general, than its classical analogue. Some possibilities
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for improving the stability of SPECT imaging based on (5.1), (5.2) with respect to the
Poisson noise in the emission data g were proposed, in particular, in [Ku| (preprint version),
[GJKNT] and [GN]. Some fast numerical implementation of formula (5.1) was proposed in
[BM].

Second, assuming (1.2), we consider the iterative reconstruction method with the
following step. If C'f,, is an approximation with the number n to C'f (as an approximation
C'f,, may have some negative values) and g = CP, f, then we

(1) compute

PCfn(s,0) + pin
P.Cfn(s,0) + pn

where p, is some sufficiently small positive constant depending on P,C'f, such that
P,Cfn(5,0) + pin > 0 for (s,0) € R x S, P = P, is defined by (1.1a) with a = 0,
(2) enforce the conditions

0 < g(s,0) < hy(s,0) < exp (Pa(s,0))g(s,0), (s,0) € R x S, (5.5)

hn(sa‘g) = (g(s, 9)+Nn) — Hn, (54)

and (3) compute
Cfug1 =P thy (5.6)

using (5.1) with a = 0 (i.e. using a variant of the classical FBP algorithm). This step
(i.e. the passage from Cf,, to Cf,41 via (5.4)-(5.6)) is a variation of the step of the
iterative SPECT reconstruction algorithm of [MNOY] (see also [MIMIKIH] and [GJKNT]).
This algorithm (with the step (5.4)-(5.6)) is rather stable or, more precisely, its stability
properties with respect to the Poisson noise in the emission data g are comparable with
the stability properties of (5.1) for a = 0 (i.e. with the stability properties of the classical
FBP algorithm).

In the present work we improve the stability of SPECT reconstruction based on (5.1),
(5.2) or/and on (5.4)-(5.6) with respect to the Poisson noise in the emission data g by
means of approximately optimal space-invariant Wiener type filtrations (with unknown
object power spectrum) of Section 4 and one of their space-variant versions (of [GN3])
mentioned in Section 6 (in Subsection 6.4).

Actually, in the present work we consider, mainly, the reconstructions Cf; and C'f3,
where Cf; is reconstructed via (5.1), (5.2) and Cfo, C'f3 are obtained proceeding from
C'f via (5.4)-(5.6). Actually, the iterations C'fy and C'f3 are rather close to each other,
but nevertheless C' f3 is still somewhat more stable and more properly illustrates stability
properties of the classical FBP algorithm used iteratively. This can be considered as a
stabilization of (5.1) or as an acceleration of the iterative reconstruction based on (5.4)-
(5.6).

6. Numerical examples

6.1. Preliminary remarks. In our numerical examples the attenuation map a and the
emitter activity f (and all reconstructions of f) are actually considered on

X=A{z;;: zi;=(—R+(i—-1)As,—R+ (j —1)As),

6.1
As=2R/(ns—1), i=1,...,ns, j=1,...,n4} (6.1)

12
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(where 4, j are used as coordinates on X)), the attenuated ray transform g = C'P, f and the
noisy emission data p (and all filtrations of p) are considered on I' defined by (1.3), where
R of (6.1) and (1.3) is the radius of image support of (1.2) and n, = 128, n, = 128 in
(6.1), (1.3); in addition the 2D discrete Fourier transform FAq is considered on I defined
by (2.3) for any g on T'.

Given f and a on X, we assume that P,f is defined on I' and is the numerical
realization of (1.1) as in [Ku]. Given a on X and ¢ on I, we assume that N,q is defined on
X and denote the numerical realization of (5.2) as in [Ku], [Na] without any regularization.
Given C'f; and a on X and g on I', we assume that C'f,,(C f1,a,g) is defined on X and
is obtained numerically proceeding from C'f; via (5.4)-(5.6) by m — 1 steps without any
regularization in (5.6) (here we do not assume that g = CP,f).

In our studies we consider also the following two-dimensional images

k
1
MkWp = E Z;Wpi,
1 " (6.2)
o L 2
DyWp = ;(sz MpWp)?,
-1 1 -1
MkPa Wp: E MkPa Wpu
(6.3)

Dy P 'Wp = P 'Wp; — M. P Wp)?2,

k

1 F
F 2
i=1
where W is a fixed filtration method for solving Problem 1.1, p is the Poisson field of (1.4),
P1,- - -, Pk are some k independent realizations of p, P, ! is a fixed inversion method for P,
of (1.1), (1.4) for the noiseless caser. In addition, k is rather great so that My ~ M = M,

Notice that all two-dimensional images of the present work, except the spectrum of
projections, are drawn using a linear grayscale, in such a way that the dark gray color
represents zero (or negative values, if any) and white corresponds to the maximum value
of the imaged function. For the spectrum of projections, a non-linear grayscale was used,
because of too great values of the spectrum for small frequencies.

We use also the following notations

le2 — aillz2(r
C(Q27 q1, F) - ) 5 (64)
lg1llz>(r)
where q1, g2 are test functions on I and || - ||z2(r) is defined by (2.4), and
Juz — w2 (x
77(“17U27 X) = (X) (65)

||U1HL2(X)
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ln
lullzn iy = As( S Ju(@)™)", neN, (6.6)
zeX

where u, u1, ug are test functions on X. Note that for p and g of (1.4) the quantity {(p, g,T")
is the noise level (in the L?- sense) of p on T
In our studies we consider, in particular, the following numbers

k
1

= 1/2 - 1/2
el,kz(W7g) - (Mk(C(mega Lk ZX_; meg: ) ’
b1k(W,9) = ((MWp, g,T), (6.7)

1/2
DWp|| 11
||9HL2(1“)

e2 k(P YW, g) = (My(n(P; ' Wp, Py lg, X))?)Y? =

1 k

(2 2o (P Wpi, P g, X)),

=1 (6.8)
b2,kz(Pa_17 W7 g) = U(Mk:P_IWP, P_lg7 X)7

1/2

(1P oIz o)
1P gll > x)

where W, P-Y, p, p1,...,0r, MpWp, DpWp, M, P Wp, D, P, 'Wp are the same that

n (6.2), (6.3), g is the function of (1.4) and ¢, n, || - || z»(r), || - [|lz~(x) are defined in (6.4),
(6.5), (2.4), (6.6). One can see that the numbers e, b1k, di1k, €2k, b2k, d2 i of (6.7),
(6.8) have the following sense:

(1) e1, is a relative mean error, by i is a relative mean bias and d; j, is a relative mean
deviation from the mean result (of k tests) for Wp with fixed g and

(2) ea ), is a relative mean error, bs , is a relative mean bias and ds j, is a relative mean

deviation from the mean result (of k tests) for P, 'Wp with fixed g. In addition,

(e1,r)? ~ (6.9)

for ey  of (6.7) and p of (3.2) (where W and g are the same that in (6.7)) and for sufficiently
great k. Note also that

dow(P7Y W, g) =

Y

(eik)? m (bik)® + (di)?, i=1,2, (6.10)

for €; k, bik, dig, © = 1,2, of (6.7), (6.8) with sufficiently great k.
To compare different filters we consider also the numbers

(erx (W, g)b1(W, 9))'/?

= 6.11

CLk(W?g) ‘61,/.@(165 g)_el k(W g)|7 ( )
1 1/2

o a(P W, g) = ot l W0 (P, V. 9) (612
7 |62 k( Id?Q)_eQ,k(Pa 7W7g)|
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where we use the same notations that in (6.2), (6.3), (6.7), (6.8) and, in addition, Id
denotes the identity filter that is Id(p) = p. We consider ¢; j as an error-bias trade-off

coefficient between e;  and b; j, where we take also into account the initial error ei%ité!

where i = 1,2, el = e; (Id, g), ei"it! = ey (P71, Id,g). This trade-off is better if
ci.k 1s smaller.

6.2. Elliptical chest phantom. We consider a version of the elliptical chest phantom
(used for numerical simulations of cardiac SPECT imaging; see [HL], [Br], [GN1]). This
version is, actually, the same that in [GN1], [GN2] and its description consists in the
following;:

(1) The major axis of the ellipse representing the body is 30 cm. This phantom is
referred further as phantom 1.

(2) The attenuation map is shown in figure 1(a); the attenuation coefficient a is 0.04
em ™1 in the lung regions (modeled as two interior ellipses), 0.15 cm ™! elsewhere within
the body ellipse, and zero outside the body.

(3) The emitter activity f is shown in figure 1(b); f is in the ratio 8:0:1:0 in my-
ocardium (represented as a ring), lungs, elsewhere within the body, and outside the body.

(4) The attenuated ray transform g = C'P,f and noisy emission data p of (1.4) are
shown in figures 2(a), 2(c). In addition, the constant C' was specified by the equation

lgllzx vy /llgll2ry = 0.30 (6.13)

in order to have that the noise level {(p, g,T') & 0.30 (where ( is defined by (2.4)). Actually,
we have that
¢C(p,g,T) = 0.298 (6.14)

for p shown in figure 2(c).
Figures 2(b), 2(d) show the spectrum |F'Ag| and |FAp|.
Figures 3(a)-(d) show the reconstructions

Cf =Nag, Cff=Cf(Cf.a,9) (6.15)

(from the noiseless emission data g) and their profiles for j = 64.
Figures 4(a)-(d), 5(a)-(d) show the reconstructions

Cfl - Napa Cf3 = Cf3(Nap7 Cl,p) (616)
for p shown in figure 2(c), their profiles for j = 64 and the images

MoooC f1 = MaooNap, D20oC f1 = DagoNap,

Ma00C f3 = MaooC f3(Nap; @, P), D200C f3 = DaooC f3(Nap, a, P) (6.17)
In addition:
n(Cf1,Cf, X) =158, n(Cfs,Cfs, X)=0.74 (6.18)
for CfY, CfY, Cf1, Cfs of (6.15), (6.16);
e3.200 = 1.55, boago = 0.11, da 200 = 1.55 (6.190)
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for W = Id (that is W(p) = p) and P, ! = N,;
€2,200 = 0.75, b27200 = 0.06, d27200 =0.75 (619b)

for W = Id and
Pa_lq - Cf3(Naq7 a, Q)a (620)

where ¢ is a test function on I'.
We remind that we use the notations of Subsection 6.1 (and, in particular, i, j are the
coordinates on X).

6.3. Illustrations of space-invariant Wiener type filtrations of Sections 3 and 4.

Figures 6-9 show the filtration result Wp and its spectrum |FAWSp|, (for p shown in
Figure 2(c)) and also MaooWp and DogoWWp for W = ngt, wgum, AP - ASY™  where
WgPt is the optimal space-invariant Wiener filter (of Section 3) with the window function
given by (3.3), W;¥™ is the restrictedly optimal space-invariant Wiener filter W (of
Proposition 3.1) with the symmetric window function given by (3.6), (3.7), (4.12), (4.13),
AS™P ig the space-invariant data dependent filter (of Section 4) with the window function
defined by (4.2), A®Y™ is the space-invariant data dependent filter (of Section 4) with the
window function defined by (4.8), (4.9), (4.12), (4.13).

We remind that: (1) in W2P* and W$¥™ it is assumed that |g|* is known; (2) A™P
is the simplest approximation to ngt for the case when |g| is not known; (3) A%Y™ is a
direct approximation to W;¥™ and is a regularized approximation to Wgom for the case
when |g| is not known.

Table 1 shows the number ¢ = ((Wp, ¢,I") and e; 200, b1,200, d1,200, 1,k of (6.7), (6.11)
for W = Wopt yysum  Asime - Ald - Asym (and for some filters of [GN1], [GN2], [GN3]).

Figures 6-9 and table 1 show that A%™P is not an efficient approximation to ngt,
whereas A%Y™ is a very efficient approximation to Wy¥™. Moreover, Figures 6, 9 and
(related part of) table 1 show that, actually, A%Y™ is also a rather efficient approximation
to ngt in the framework of solving Problem 1.1. We remind that a theoretical explanation
of these numerical results was given in Sections 3 and 4.

We do not show the images Wp, |[FAWD|, MagoWp, DagoWp for W = W14 and
W = A'? | where W;d is the restrictedly optimal space-invariant Wiener filter YW of
Proposition 3.1 with ”1d”- window function given by (3.6), (3.7), (4.11) and A'? is the
data dependent approximation to ngd with the window function defined by (4.8), (4.9),
(4.11). The reasons are that: (1) it was explained already in Section 4 that .4'¢ is not
interesting in the framework of pure applications to Problem 1.1 and (2) we try to avoid
too many images in our paper. Nevertheless, the numbers (, e1,200, b1,200, d1,200, €1,200 for
W = A' are shown in table 1. One can see that the numbers of table 1 for W = A%Y™
and W = A confirm the aforementioned critical remarks concerning A,

Figures 10-13 and 16, 17 show the reconstructions

Cfl = Nava Cf?) = Cf3<NaWp7 a, Wp) (621)
(from p shown in Figure 2(c)), their profiles for j = 64 and

M00C f1 = MagoNoWp, DagoC f1 = Dago N Wp,

6.22
M00C f5 = MaogoC f3(NoWp, a, Wp), Da2ooC f3 = DagoC f3(No VP, a, Wp) (6.22)
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for W = ngt, Wy, AsY™. Besides, figures 14, 15 show the reconstruction C'f3 of (6.21),
its profile for j = 64 and MsgoC f3, D2goC f3 of (6.22) for W = ASimp, A,

Table 2 shows the numbers 7(1) = n(Cfy, Cf0, X) for CfY, Cf; of (6.15), (6.21) and
eé}%oo, bg}%oo, dégoo’ cggoo of (6.8), (6.12) for W = ngt, wgem, Asimp - Ald - Asym (and
for ®; of [GN1]) and P! = N,. Table 3 shows the numbers n® = n(Cfs, Cf9, X) for
Cfa, CfY of (6.15), (6.21) and €520, b5 2005 d5 300> Coa00 Of (6.8) (6.12) for W = WoPt,
wsym - Asime - Ald - Asym (and for some filtering schemes of [GN1], [GN2], [GN3]) and
P! defined by (6.20).

Figures 10-14, 16, 17 and tables 2, 3 show that A*"™? is not an efficient approximation
to ngt, whereas A®Y™ is a very efficient approximation to W;¥™ and (moreover) is also
a rather efficient approximation to ngt in the framework of applications to Problem 1.2
via reconstructions (6.21) (as well as in the framework of pure applications to Problem 1.1,
see figures 6-9, table 1 and related comments). Besides, figures 11, 15 and (related part of)
table 3 confirm the well-known numerical result (see [KDS], [SKC], [BCB], [C]) that A is
a relatively efficient approximation to ngt in the framework of reconstructions like C'f3
of (6.21). A theoretical explanation of this numerical result was given in Sections 3 and
4. Nevertheless, figures 15, 17 and (related part of) table 3 show that A'? is less optimal
than A*Y™ in the framework of the reconstruction C'f3 of (6.21).

Note also that the reconstruction C'f; of (6.21) is not interesting for W = Asim» Al
as one can see, in particular, from (related part of) table 2. The reason is that C'f; of
(6.21) is much more sensitive to residual noise in Wp than C f3 and that the residual noise
in A*™Pp and A'p is rather strong. Therefore, to avoid too many images in our paper
we do not show C'f; of (6.21) and related images for W = As™mP_ Al

Finally, it makes sense to compare A°Y™ with the space-invariant data dependent
filtration ®; of [GN1]. The window function of ®. is given by (2.13), where

sin(s)

1 (s) = o (s) = ( )2, Wi =ws = w (6.23)

S

and w = w(p, ¢) is data dependent and is determined from the equation

1Pl 21 () 1/2
C(p, @ep, T) ~ 6( (6.24)
) ||p||%2(r) - ||pHL1(F)

for any fixed realization p of p. Actually, there is some similarity in geometric structure of
the windows of ®; and 4%Y™. The numbers ¢, e1 200, b1 200, d1,200, 1,200 and n(i), eé%oo,
bggoo, dgf)zoo, Cg;)mo (1 =1, 3) for ®; are given in tables 1-3. One can see that these numbers
for A®Y™ are better than for ®;. In particular, all bias numbers bgi)zom b%oo (1t =1,3)
for A%Y™ are noticeably smaller than for ®;. To avoid too many images in our paper we
do not show images obtained using ®;. Actually, these images confirm that A%Y™ works

better than ®;.

6.4. Space-variant filtrations of [GN2] and [GN3]. A space-variant analog ®;, ;, . of
the aforementioned ®. of [GN1] was constructed in [GN2]. In a completely similar way a
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space-variant analog A;"}" of A®Y™ is constructed in [GN3]. The numbers I1, [ mean that
this construction involves space-invariant considerations in /; X Iy neighborhood of each
vyel.

Figures 18(a)-(d) show Wp, |FAWp| (for p shown in figure 2(c)) and MaooVp,
Dgoowp for W = Asym.

Table 1 shows the numbers C, €1,200, b1,200; d1,200; C1,200 of (67), (611) for W = Asym
and W = ¢8,8,1-

Figures 19(a)-(d) show
Cfz = Cf3(NaWip, a, Wp), (6.25)

its profile for j = 64 and related MsgoC'f3, D2goC'f3 (defined as in (6.22) but with
C f3(NaWip, a, Wp) in place of Cf3(N,Wp,a, Wp) for Wy = AV W = A"

Table 3 shows the numbers 7 = n(Cf3, C'f, X) for C'f, Cf3 of (6.15), (6.25) and
eggoo, bgggoo, d@oo, cgggoo defined as in (6.8) (6.12) with Cf3(N,Wip,a, Wp) in place
of P,/'Wp and P;'g = Cf of (6.15) for Wi, W) = (A", AZY") and Wi, W) =
(1, Ps,8,1)-

sym

Note that the high-frequency component of the residual noise in Wp for W = A",
®g 51 is less negligible than for W = A®¥™ &; and that (in general and in our case in
particular) N, is rather sensitive to this noise component or, more precisely, much more
sensitive than the classical FBP algorithm. In addition, W;p is used in (6.25) for the first
approximation C'f; = N,Wip only and Wp is used in (6.25) in the framework of iterations
of the classical FBP algorithm only. Therefore, to obtain the best C'fs on the level of
eé‘?’%oo, we deal with Wy # W in (6.25). We do not show Wp for W = ®g 51 and Cf3 of
(6.25) and related images for W = ®gg1, W) = ®;. The reasons are that: (1) for our
phantom (described in subsection 6.2) the aforementioned images are more or less similar
to the corresponding images for W = Ag%" and Wy = A*¥™ (actually, Wp and C f3 of
(6 25) are somewhat more smooth for W = Pg g1, Wi = @1 than for W = AgK" and

= A%Y"™) and (2) we try to avoid too many images in our paper.

One can see that in our numerical examples among all filtering schemes mentioned
in the present work (1) namely Ag%" and ®gg 1 have the best trade-off (the least c1200)
between the error and bias numbers e; 599 and by 200 for the case when |g| is not known
(see table 1) and (2) namely W = Asym (with W; = A%Y™) has the best trade-off (the

least cggoo) between the error and bias numbers eé?%oo and bg?%oo for the case when |g] is

not known (see table 3).

For more information on &, ;, - see [GN2]. For more information on A;”}" (and on

some other space- variant Wiener type filters for solving Problem 1.1 and Problem 1.2 via
(1.5)) see [GN3].
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(a) (b)

Figure 1. Attenuation map a (a) and emitter activity f (b).

(a) (b) (c) (d)

Figure 2. Noiseless emission data g = CP,f (a), spectrum |Fg| (b), noisy emission
data p (c), spectrum |Fp| (d).

(a) (b) (c) (d)

Figure 3. Reconstructions CfY = N,g (a) and Cf) = Cf3(CfP,a,g) (c) from the
noiseless emission data g, and their profiles for j = 64 (b), (d).
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(a) (b) (c) (d)

Figure 4. Reconstruction Cf; = N,p (a) with its profile for j = 64 (b) from the noisy
emission data p without any filtration, and related MaooC f1 (¢) and DagoC'f1 (d).

(a) (b) (c) (d)

Figure 5. Reconstruction C'f3 = C f3(N,p, a, p) (a) with its profile for j = 64 (b) from
the noisy emission data p without any filtration, and related MagoC'f3 (c) and DagoC f3

(d).

(a) (b) (c) (d)

Figure 6. Filtration result Wp (a), its spectrum |[FAWDp| (b), MaoWp (c) and
Dgoowp (d) for W = ngt.
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(a) (b) () (d)

Figure 7. Filtration result Wp (a), its spectrum |FAWp| (b), MapWp (c) and
Dgoowp (d) for W = Wgym_

(a) (b) () (d)

Figure 8. Filtration result Wp (a), its spectrum |FAWp| (b), MogoWp (c) and
D200Wp (d) for W = ASZmp.

(a) (b) (c) (d)

Figure 9. Filtration result Wp (a), its spectrum |[FAWDp| (b), MaoWp (c) and
Dgoowp (d) for W = A%v™,
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EC

(a) (b) () (d)

Figure 10. Reconstruction C'f; = N,Wp (a), its profile for j = 64 (b) and related

Ms00C f1 (¢) and DogoC' f1 (d) for W = ngt.

(a) (b) (c) (d)

Figure 11. Reconstruction C'f3 = C f3(N, Wp, a, Wp) (a), its profile for j = 64 (b)
and related M2000f3 (C) and D2000f3 (d) for W = ngt.

(a) (b) (c) (d)

Figure 12. Reconstruction C'f; = N, Wp (a), its profile for j = 64 (b) and related
Mgoonl (C) and Dgoocfl (d) for W = W;ym
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(a) (b) () (d)

Figure 13. Reconstruction C'f3 = C f3(N, Wp,a, Wp) (a), its profile for j = 64 (b)
and related M2000f3 (C) and D2000f3 (d) for W = W;ym

(a) (b) (c) (d)

Figure 14. Reconstruction C'f3 = C f3(N, Wp, a, Wp) (a), its profile for j = 64 (b)
and related MygoC f3 (c) and DygoC f3 (d) for W = Asmp,

(a) (b) (c) (d)

Figure 15. Reconstruction C'f3 = C f3(N, Wp, a, Wp) (a), its profile for j = 64 (b)
and related M2000f3 (C) and D2000f3 (d) for W = .Ald.
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(a) (b) (c) (d)

Figure 16. Reconstruction C'f; = N, Wp (a), its profile for j = 64 (b) and related
Mgoonl (C) and D2000f1 (d) for W = AsvY™,

(a) (b) () (d)

Figure 17. Reconstruction C'f3 = C f3(N, Wp, a, Wp) (a), its profile for j = 64 (b)
and related M2000f3 (C) and D2000f3 (d) for W = A%Y™,

Figure 18. Filtration result Wp (a), its spectrum |FAWp| (b), MapWp (c) and
Dgoowp (d) for W = A;%m
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(a)
Figure 19. Reconstruction Cf3 = C f3(N,Wip,a, Wp) (a), its profile for j = 64 (b)
and related MypoC'f3 (¢) and DogoC f3 (d) for Wy = ASY™ W = Agf’g’”.

()
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| IC le1,200 b1,200 |d1 200 1,200 \
Worr[0.075  [0.076 [0.050 0.057 0.276 |
WS [0.094  [0.095 [0.064 0,071 0384 |
A5 [0.160  ]0.158 0.044 0.152 10.504 |
AT 0142 [0.143 0.085 0.116 0.711 |
AT [0.006  ]0.007 0.064 0.073 0.303 |
AT 0110 [0.112 0.032 [0.107 0.323 |
3, 0,105 ]0.106 0.087 0,061 0.407 |
Pss. 0080 [0.001 0.047 0.078 0315 |

Table 1. Numbers C = 6171 and 617200, b17200, d17200, 017200 Of (67), (6.11)
for W = ngt, Wiy, Asimp - Ald - gsym. Agffsm, Py, Pgg1.

| ‘77(1) ‘62 ,200 |bg2oo |d§1%00 |C2 ,200 |
|ngt |0.273 |0.274 10.215 |0.170 10.190 |
|1/V;ym 10.369 10.370 10.240 |0.282 |0.254 |
|AST™P - (.782 10.735 10.180 |0.716 |0.443 |
| Al 10.509 10.506 10.277 |0.424 |0.358 |
|ASY™ |0.378 10.380 10.240 10.295 10.259 |
|Dq |0.376 |0.381 10.308 |0.224 |0.292 |

Table 2. Numbers n(*) = eg% and eégoo, bégoo, dégoo, ¢y 200 of (6.8), (6.12)
for W = ngt, Wgym, ‘Asimp7 Ald) Asym, cpl and Pa_l — Na-

3) B

| ‘77(3) ‘62 ,200 |b2 ,200 |d2,200 €2 200 ‘
|ngt 10.220 10.221 10.174 |0.137 |0.374 |
|1/V;ym 10.266 |0.266 10.216 10.156 |0.495 |
|AsT™P0.401 |0.411 10.153 |0.382 |0.741 |
AL 10.309 10.306 10.260 |0.161 |0.637 |
| AV 10.273 10.270 10.217 10.162 |0.506 |
|,Asym 10.271 |0.274 10.146 10.231 |0.418 |
|Dq 10.335 10.335 10.311 |0.128 10.773 |
|[Pss1  [0.252 |0.255 10.185 |0.175 |0.438 |

Table 3. Numbers 53 = (3) and 6&3%00, bé?)zoo, dé?%oo, Cé?%oo of (6.8), (6.12)
for W = WOPt, Wsvm = Asime, Ald ATV AR (with Wy = AY™), &y, dgg (with
W) = ®;) and P! deﬁned by (6.20).

5. Conclusion
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For 2D data with Poisson noise we found explicit formulas for the optimal space-
invariant Wiener type filter with some a priori geometric restrictions on the window func-
tion; see Proposition 3.1 (of Section 3). In Section 3 some generalizations of this result are
also mentioned.

Then (in Section 4) proceeding from Proposition 3.1 we (1) explain, in particular, an
efficiency of the well-known (see [KDS], [SKC], [BCB], [C]) "1D” (approximately optimal)
space-invariant Wiener type filtering scheme of [KDS| (with unknown object power spec-
trum) in SPECT and PET imaging based on the classical FBP algorithm (or its iterative
use) and (2) propose also an efficient 2D (approximately optimal) space-invariant Wiener
type filtration A4%¥"™ (with unknown object power spectrum) for SPECT imaging based on
the generalized FBP algorithm of [Ku], [Na] (implementing the explicit formula of [No| for
the nonuniform attenuation correction) and/or the classical FBP algorithm (used itera-
tively). In Section 6 (in Subsection 6.4) an efficient space-variant version A;”}" of A¥™ is
also presented. We do not know whether the space-invariant filter A°Y™ in its precise form
of Section 4 was mentioned in the literature. In any case our principal results concern-
ing A®Y™ consist in its justiﬁcation proceeding from Proposition 3.1 and in its completely
space-variant version A To our knowledge no complete generalization to the space-
variant case of the ﬁltratlon approach of [KDS] was mentioned in the literature before the
present work.

In Section 6, the optimal, restrictedly optimal and approximately optimal space-
invariant Wiener (or Wiener type) filters WoPt, Wsvm, Asime - Ald - Asv™ (mentioned
in Sections 3 and 4) and the space-variant version Asym of A%Y™ are illustrated by nu-
merical examples in the framework of simulated SPECT imaging based on generalized
and/or classical FBP algorithms. In addition, a numerical comparison (of the aforemen-
tioned filters) with the space-invariant ®; and space-variant ®,;, ;, 1 data dependent filters
of [GN1] and [GN2] is also given. In the numerical examples of Section 6 namely A%Y™
gives the best results on the level of the error-bias trade-off among all space-invariant filters
with unknown object power spectrum (mentioned in the paper) and namely Ag%" gives,
in particular, the best reconstruction result C'f3 of (6.25) on the level of the error-bias
trade-off among all filters with unknown object power spectrum (mentioned in the paper);
see Subsections 6.3 and 6.4.

In the present paper we do not compare yet SPECT and PET reconstructions involv-
ing Wiener type prereconstruction filtrations with maximum likelihood SPECT and PET
algorithms (see [SV], [HL]). We plan to return to this comparison in subsequent work.
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