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Abstract

Green’s functions are important mathematical tools in mechanics and in other

parts of physics. For instance, the boundary element method needs to know the

Green’s function of the problem to compute its numerical solution. However,

Green’s functions are only known in a limited number of cases, often under

the form of complex analytical expressions. In this article, a new method is

proposed to calculate Green’s functions for any linear homogeneous medium

from a simple finite element model. The method relies on the theory of wave

propagation in periodic media and requires the knowledge of the finite ele-

ment dynamic stiffness matrix of only one period. Several examples are given

to check the accuracy and the efficiency of the proposed numerical Green’s

function.

Key words: Green’s function, periodic structure, wave, waveguide, finite ele-

ment, dynamic.

2



1 Introduction

This article presents an algorithm for the general numerical computation of

Green’s functions for linear homogeneous media of arbitrary types from sim-

ple finite element models. Green’s functions give the solution of a problem

described by a partial differential equation when it is submitted to a unit

excitation. These are fundamental tools since if the Green’s function for a

linear differential equation is known, then it is possible to calculate, by simple

convolution type integrals, the solutions of the same problem for an arbi-

trary loading. They are also the basic tools to formulate a boundary integral

equation to solve the partial differential equation describing the physical prob-

lem. So the search for Green’s functions for the various physical problems in

acoustics, solid mechanics, heat conduction and other parts of mechanics and

physics played an important role in the past for solving these problems.

For the simplest cases the Green’s functions are known for a long time and

are described in classical books like Morse and Feshbach [1], Courant and

Hilbert [2], Carslaw and Jaeger [3], Roach [4] and Bonnet [5]. One has, for in-

stance, solutions for two- and three-dimensional acoustics, for two- and three-

dimensional elastostatics and elastodynamics or for diffusion equations. So-

lutions can be in the time or frequency domains according to the equation

describing the physical phenomenon. These solutions are given as analytical

formulas, often involving special functions.
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However, for more complex problems, solutions are not so easy to find and

the computation of the Green’s function can still be an open question. If

we consider only mechanical problems and recent works, we can cite Diaz-

Contreras and Nomura [6] who found the Green’s function for Mindlin plates

using eigenfunction expansions obtained numerically by the Galerkin method.

Several authors like Dravinski and Zheng [7] and Phan et al. [8] have also

considered the computation of Green’s functions for non isotropic elasticity.

As the expression for this function is complex, Sales and Gray [9] and Tonon

et al. [10] developed efficient methods for calculating the general 3D Green’s

function for anisotropic media.

Other authors searched for Green’s functions related to multilayer structures.

For example, Yang and Pan [11] found the static Green’s function for anisotropic

trimaterials while Bai et al. [12] considered a layered isotropic plate and found

the elastodynamic Green’s function by using a modal summation. The Green’s

functions for half spaces were also studied by many authors like Pan [13] who

found the Green’s functions for static multilayered transversely isotropic half

spaces and Spies [14] who considered the general static anisotropic Green’s

function for a half-space. He and Lim [15] studied the Green’s function for a

soft half-space with surface stress. More complicated cases with several be-

haviors were also considered by Ding et al. [16] where the authors found the

Green’s function for transversally isotropic piezoelectric materials. In all these

cases except the simplest ones, the Green’s functions are found by complex

4



analytical expressions, often involving series expansions. For media with com-

plex properties involving several materials or coupled mechanical models, the

Green’s functions are generally unknown.

Here, we present a numerical method to find such Green’s functions. It is

supposed that the medium is two-dimensional, linear, infinite, homogeneous

or periodic but can otherwise be arbitrary. The approach is based on the theory

of periodic media and one supposes that a finite element model of a period is

given from standard finite element software. Similar ideas were used in Mace

et al. [17] and Duhamel et al. [18] in the one-dimensional case. The two-

dimensional case was considered by Langley [19,20,21] who found expressions

based on Bloch’s waves for the response to point loading for harmonic and

impulsive loads. But the analysis was mainly theoretical with simple examples

and no connection with the finite element method was made. We consider here

only two-dimensional problems to simplify. From the dynamic stiffness matrix,

waves in different directions are calculated and the Green’s function is found

as an integral of wave functions.

The paper is divided in two parts. In the first part, the numerical method

is presented and the formula giving the Green’s function is obtained. In the

second part, different examples are given to check the method against known

analytical Green’s functions and a more complex example is also presented to

calculate the Green’s function of a two materials periodic medium for which

no simple solutions are known.
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2 Green’s functions calculation

We consider an infinite periodic or homogeneous medium. The Green’s func-

tion G(x1,x2) is the response at a point x1 in the medium for a unitary

excitation at an other point x2 as in figure 1. As an homogeneous medium

is only a special case of a periodic medium, in the following, only periodic

media will be considered. The analysis is also limited to the two-dimensional

case and the elementary period is defined by the domain 0 ≤ x1 ≤ L1 and

0 ≤ x2 ≤ L2. The excitation is in a cell and the point where the response is

calculated can be in another cell, see figure 2.

2.1 Pseudo periodic functions

It is proved in appendix A that a function U(x1, x2) defined on the two-

dimensional periodic medium can be decomposed as an integral of pseudo

periodic functions

U(x1, x2) =

π

L2
∫

−
π

L2

eikx2Û(x1, k, x2)dk (1)

where Û(x1, k, x2) is a periodic function in x2 with period L2. Along direction

1, we use a decomposition in Bloch waves as it is usual in periodic media.

Finally, the general solution can be obtained from functions u(x1, k, x2) =

eikx2Û(x1, k, x2) with the following pseudo periodic properties
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u(x1, k, x2 + m2L2)= eikm2L2u(x1, k, x2)

u(x1 + m1L1, k, x2)= eim1µ1u(x1, k, x2) (2)

where m1 and m2 are integers and the number k is real and belongs to

[− π
L2

, π
L2

]. Along dimension 1 we will suppose, according to the Floquet’s

theorem, that µ1 is a complex number. In the following, we are looking for

numerical approximations of functions which satisfy relations (2).

2.2 Behavior of a cell

A cell is defined as a two-dimensional domain from which the whole plane can

be obtained by tessellation. It is the smallest period of the medium and was

defined previously as the domain 0 ≤ x1 ≤ L1 and 0 ≤ x2 ≤ L2. A cell can

be meshed with an arbitrary number of elements using the full possibilities of

usual finite element software. The discrete dynamic behavior of a cell obtained

from a finite element model at a frequency ω is given by

(K − iωC− ω2M)q = f (3)

where K, M and C are the stiffness, mass and damping matrices respectively, f

is the loading vector and q the vector of the degrees of freedom. The stiffness,

mass and damping matrices could be obtained from any commercial finite

element software and so this allows the consideration of cells with complex

structures. The size of these matrices depends on the number of elements

used to mesh the cell and can be arbitrarily increased for a better precision
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of the results. Introducing the dynamic stiffness matrix D̃ = K − iωC −

ω2M, decomposing into boundary (B) and interior (I) degrees of freedom,

and assuming that there are no external forces on the interior nodes, results

in the following relation
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(4)

The assumption that there are no forces on the interior degrees of freedom

is satisfied for free waves inside the structure for which the forces on a cell

are only produced by boundary forces from the adjacent cells. The interior

degrees of freedom can thus be eliminated to get

fB = (D̃BB − D̃BID̃
−1
II D̃IB)qB (5)

Dropping the B index, this relation is written in the sequel as

f = Dq (6)

and only boundary degrees of freedom will be considered now.

2.3 Elimination of transverse dofs

Consider the situation described in figure 3. The boundary degrees of freedom

are divided into the longitudinal dofs, denoted ql which are the dofs such that
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the first coordinate equals an integer number of the first period L1 and the

transverse dofs which are the other boundary dofs. These transverse dofs can

be divided into two subgroups denoted qB for the bottom dofs and qT for

the top dofs. The top dofs are obtained from the bottom dofs by the pseudo

periodic boundary conditions (2).

The cells are supposed to be meshed with an equal number of nodes on their

opposite edges. The boundary can be decomposed into left (L), right (R),

bottom (B) and top (T) parts and the associated corners (LB), (RB), (LT)

and (RT) as shown in figure 4 and in Abdel-Rahman [22]. The behavior in

direction 2 is supposed to be defined by the propagation constant eikL2 where

k is a wavenumber in [− π
L2

, π
L2

]. In this case, one has
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(7)

The relations between the transverse dofs are therefore
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qT = eikL2qB

fB + e−ikL2fT = 0 (8)

The behavior of a cell, given by relation (6), can also be written as
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One gets from (8) and rows 2 and 3 of relations (9)

(DBl + e−ikL2DT l)ql + (DBB + DTT + e−ikL2DTB + eikL2DBT )qB = 0(10)

so

qB = −(DBB + DTT + e−ikL2DTB + eikL2DBT )−1(DBl + e−ikL2DT l)ql(11)

and finally the condensed behavior of the cell with only the longitudinal dofs

is given by

fl = [Dll − (DlB + eikL2DlT )(DBB + DTT + e−ikL2DTB + eikL2DBT )−1

×(DBl + e−ikL2DT l)]ql (12)

whose notation will be simplified to

fl = Dlql (13)
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One can notice that we have

TDl(k) = Dl(−k) (14)

2.4 Elementary degrees of freedom

We go on by a further partitioning of the left and right boundaries. The

longitudinal displacement and load vectors can be partitioned as in relation

(7)
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So, the pseudo periodic conditions (2) lead to the following relations between

the displacement degrees of freedom

qR = eiµ1qL

qRB = eiµ1qLB

qRT = ei(µ1+kL2)qLB

qLT = eikL2qLB (16)
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We see that the displacement components depend on an elementary set of

degrees of freedom which is denoted qT
r = [qL qLB]T and is presented in figure

4. The vector ql can then be expressed as

ql = (W0 + eiµ1W1)qr (17)

where the matrices W0 and W1 depend on the wave number k and are given

by the following relations
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2.5 Spectral problem

The equilibrium conditions between adjacent cells written on the reduced set

of degrees of freedom lead to the following relations between the components

of the force vector

eiµ1fL + fR =0
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eiµ1fLB + fRB + ei(µ1−kL2)fLT + e−ikL2fRT =0 (19)

that can also be written as
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Relations (13), (17) and (21) finally give
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that can also be written as

[
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1DlW1) + e2iµ1W∗
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]

qr = 0 (23)

or

(

A0 + eiµ1A1 + e2iµ1A2

)
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A0 =W∗

1DlW0

A1 =W∗

0DlW0 + W∗

1DlW1

A2 =W∗

0DlW1 (25)
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Relation (24) give the spectral problem to be solved to find the propagation

constants eiµ1 and the vectors qr. The propagation constant eiµ1 , the matrices

A0,A1,A2 and the eigenvector qr depend on the transverse wavenumber k

but to simplify the notation this dependence is not explicitly written. The

eigenvector of (24) associated with the eigenvalue eiµi is denoted by qi. By

taking the determinant of (23) and of its transpose for −k and noting that

W∗

i = tWi = tWi(−k), using relation (14), it can be shown that if eiµi is

an eigenvalue for the wavenumber k then e−iµi is also an eigenvalue for the

wavenumber −k. These represent a pair of positive and negative-going waves.

This is true for any shape or property of the cell.

The 2n eigenvalues of equation (24) can be split into two sets of n+ and

n− eigenvalues and eigenvectors with 2n = n+ + n−. They are denoted by

(eiµ+

i ,q+
i ) and (eiµ−

i ,q−

i ), with the first set such that
∣

∣

∣eiµ+

i

∣

∣

∣ ≤ 1. From an

eigenvector qi, one gets the longitudinal vector by relation (17) and the lon-

gitudinal component of the force vector applied on a cell is given by

fi = Dl(W0 + eiµiW1)qi (26)

The forces of left cells on right cells are then given by

f r
i = W∗

0fi = W∗

0Dl(W0 + eiµiW1)qi (27)

In the case |eiµi | = 1, the set of positive-going waves must contain the waves

which are such that Re
{

iωqH
i f r

i

}

> 0 where f r
i is the reduced set of force
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degrees of freedom on the boundary obtained by relation (27). The eigenvalue

eiµ−
i , in the second set, is associated with waves such that Re

{

iωqH
i f r

i

}

< 0.

2.6 Green’s function on a periodic array

We can now build the complete Green’s function. The Green’s function gives

the solution of the problem defined on the periodic medium for a point force

excitation. Suppose that the force is located at point (0, 0), we look for a

Green’s function which is such that in the domain m1 ≥ 0 the solution is

given by

qr(m1L1, m2L2) =

π

L2
∫

−
π

L2

i=n+
∑

i=1

a+
i q+

i eim1µ+

i eikm2L2dk (28)

because the waves must propagate from the source to infinity, so the negative

waves do not appear in the sum. In the domain m1 ≤ 0, the solution must be

qr(m1L1, m2L2) =

π

L2
∫

−
π

L2

i=n−
∑

i=1

a−

i q−

i eim1µ−
i eikm2L2dk (29)

At m1 = 0 there are continuity of the displacements and the equilibrium

condition on the forces can be written by analogy with formula (21) by

i=n+
∑

i=1

W∗

0f
+
i +

i=n−
∑

i=1

e−iµ−
i W∗

1f
−

i = −f r
ext (30)

where f−i and f+
i are, the respective contributions of the negative and positive

waves on the forces. The expression of fext for a point force excitation of
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amplitude F is given in appendix A. The relations on the displacements and

forces lead for each k to

i=n+
∑

i=1

a+
i q+

i −
i=n−
∑

i=1

a−

i q−

i = 0

i=n+
∑

i=1

a+
i W∗

0Dl(W0 + eiµ+

i W1)q
+
i

+
i=n−
∑

i=1

a−

i W∗

1Dl(e
−iµ−

i W0 + W1)q
−

i =−L2

2π
F (31)

We get 2n relations for 2n unknowns. So these relations allow to get the ampli-

tudes a+
i and a−

i and then the values of the Green’s function from relations (28)

and (29). So the Green’s function has been found as an integral of solutions

to one-dimensional periodic problems.

2.7 Numerical calculation of integrals

The Green’s function is obtained from relations (28) and (29). These relations

are of the following form

qr(m1L1, m2L2) =

π

L2
∫

−
π

L2

Q(k)eikm2L2dk (32)

with a function Q(k) which can be singular. Considerations involving the

continuous case suggest that the singularities are of type 1/
√

K2 − k2 for some

K. To allow a correct evaluation of the integral it is necessary to improve the

numerical quadrature. In a first step we look for the singular points in the

interval [− π
L2

, π
L2

] by finding the maxima of the function |Q(k)|. Denoting
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ki, i = 1...ns these singular points, the integrals are calculated by changing

the variable as in

ki
∫

a

Q(k)eikm2L2dk =

√
k2

i
−a2

∫

0

u
√

k2
i − u2

Q(
√

k2
i − u2)ei

√
k2

i
−u2m2L2dk (33)

which allows to remove singularities in 1/
√

k2
i − k2 in Q. Similar expressions

are used for the singularities at lower interval bounds and for negative values

of k.

At the present state no further optimization was made to improve the numer-

ical evaluation of these integrals. For the following examples the computing

time can be evaluated to a few seconds per couple of source and receiver points

for each frequency. The program is written with MATLAB r© and some im-

provement could be expected by considering the same computation in C or

Fortran. One should also see from formulas (28) and (29) that the computa-

tion for one or several points in space are quite similar. Most of the computing

time is devoted to finding the wavefunctions and the eigenvalues which need

to be done only once. After it is easy to compute the Green’s functions for

different points sources and different receivers with little additional cost. One

should also notice that formula (28) requires the computation of oscillatory

integrals and for points far enough from the sources asymptotic formulas as

the stationary phase method could be used to dramatically reduce the com-

puting time. All these issues should be discussed in more details if the present

method is used in a BEM problem.
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2.8 Generalization to non rectangular cells

In the precedent discussion the elementary cell was supposed to be rectan-

gular. Consider now a quadrilateral cell as in figure 5 which has a diamond

shape. Along direction 2 the pseudo periodic condition does not change. Along

direction 1 one has to substitute ei(µ1+kd) to eiµ1 in the precedent relations.

For example relation (24) should be substituted by

(

A0 + eiµ1(eikdA1) + e2iµ1(e2ikdA2)
)

qr = 0 (34)

One has also to pay attention that m1 steps along direction 1 and m2 steps

along direction 2 from the origin lead to the point (m1L1, m1d + m2L2).

3 Examples

3.1 Acoustics

The Green’s function of the two-dimensional acoustics is the radiating solution

of

∆p + K2p = −δ(r) (35)
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where K = ω/c is the wavenumber and c the sound velocity. It is well known

that the solution of this equation for the time dependence e−iωt is given by

G(r) =
i

4
H0(Kr) (36)

where H0 is the Hankel function of order zero and first type. We first propose

to check the numerical procedure developed in this article with this Green’s

function. Consider the rectangular four nodes acoustic element of size a × b

presented in figure 6, the stiffness and mass matrices are given by

K=






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


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1

3
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(37)
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and then the dynamic stiffness matrix is D = K−ω2M. As in this case there

is only the qLB degree of freedom, the matrices W0 and W1 are given by

W0 =



















































1

0

0
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








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
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
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
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




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








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












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



















0

1

eikb

0
















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































(38)

Using relations (24) the matrices of the spectral problem, which in this case

reduce to simple scalars, are given by

A0(k)=W∗

1(k)Dl(k)W0(k)

=− 1

18

[

12
b

a
− 6

a

b
+ 2k2ab + (6

b

a
+ 6

a

b
+ k2ab) cos(kb)

]

A1(k)=W∗

0(k)Dl(k)W0(k) + W∗

1(k)Dl(k)W1(k)

=−2

9

[

−6
b

a
− 6

a

b
+ 2k2ab + (−3

b

a
+ 6

a

b
+ k2ab) cos(kb)

]

A2(k)=W∗

0(k)Dl(k)W1(k)

=− 1

18

[

12
b

a
− 6

a

b
+ 2k2ab + (6

b

a
+ 6

a

b
+ k2ab) cos(kb)

]

(39)

and the solutions to the spectral problem (24) are

eiµ1 = (−A1 ±
√

A2
1 − 4A0A2)/(2A2)

e−iµ1 = (−A1 ∓
√

A2
1 − 4A0A2)/(2A2) (40)

The signs are selected according to the rules defined in section 2.4. Choosing

the components of the displacement to one, the force components are given
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by relations (30) and (31)

F+(k)=W∗

0(k)f+(k) = W∗

0(k)Dl(k)(W0(k) + eiµ1W1(k))

F−(k)= eiµ1W∗

1(k)f−(k) = W∗

1(k)Dl(k)(eiµ1W0(k) + W1(k)) (41)

and the system (31) to solve is


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






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

1 −1
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
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


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




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a−





















=





















0

b/(2π)





















(42)

which yields

a+ = a− =
b

2π(F+(k) + F−(k))
(43)

and so in this case the Green’s function is given by using formulas (28) and

(29) which leads to

G(m1a, m2b) =















































b

2π

π/b
∫

−π/b

ei(m1µ1+m2kb)

F+(k) + F−(k)
dk if m1 ≥ 0

b

2π

π/b
∫

−π/b

ei(−m1µ1+m2kb)

F+(k) + F−(k)
dk if m1 ≤ 0

(44)

A more detailed computation shows that

F+(k)+ F−(k) = − 1

9b

√

3((6 + (Kb)2) cos(kb) − 6 + 2(Kb)2) (45)

×
√

(−12b2 + 6a2 + (Kab)2) cos(kb) − 6a2 − 24b2 + 2(Kab)2 (46)

For the cases Kb << 1, Ka << 1, kb << 1, one has the approximation

F+(k) + F−(k) ≈ −2
√

(kb)2 − (Kb)2 (47)
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which shows that the singularity in the integral is of square root type as

expected.

An example of result is presented in figure 7. The acoustic element has the

dimensions a = 0.01m and b = 0.01m. The point force excitation is supposed

to be at the origin, which is also a corner of a cell, and the analysis is done for

a point at x = 0.5m and y = 1m. The sound velocity is c = 340m/s and the

calculation is done over the frequency band [0, 1000Hz]. One can see that the

numerical Green’s function is in full agreement with the analytical solution.

To have a better estimate of the relative error in the computation, this error

is plotted versus the number of elements used to mesh the periodic cell in

figure 8. These elements are generated by ANSYS r© [23] and then are read

and post-processed by MATLAB r© [24] to get the results. The relative error

is defined by e = |Gnum − Gana|/|Gana| where Gnum is the numerical Green’s

function obtained by the present method and Gana is get by formula (36). In

every case the cell has the dimensions a = 0.01m and b = 0.01m but it is

meshed with 1 × 1, 2 × 2 or 4 × 4 linear elements. It is clear in figure 8 that

increasing the number of elements leads to a decrease in the computational

error. Another possibility is to reduce the size of the periodic cell, which can

be done here since the medium is homogeneous. This is presented in figure 9

where the error is plotted versus the size of the cell. In every case only one

element with a = b is used for the mesh. The results show clearly that reducing

the size of the cell leads to much better results. However reducing too much
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can create instabilities for low frequencies as can be seen in the curve for the

size 0.0005m. It seems reasonable to have cells with size such that Ka > 0.001.

For large frequencies the mesh must satisfy the usual requirement of having a

sufficient number of nodes (5 to 10) per wavelength otherwise the displacement

could not be accurately represented on a cell.

Other computations were also done for diamond shape cells as in figure 5.

Taking into account the modifications described in section 2.8 and computing

the same example as for figure 7 lead to the same curves which are not repro-

duced here. So the proposed method is not strictly limited to rectangular cells

and can be generalized to more complex shapes with appropriate changes in

the equations.

3.2 Two-dimensional elastodynamics

An example similar to the precedent is calculated for the two-dimensional

elastodynamic case for plane strain problems. The periodic cell is first taken

as the square of size 0.01m× 0.01m. The material is steel with E = 2.1011Pa,

ν = 0.3 and ρ = 7800kg/m3.

In figure 10 the analytical solution is compared with the present numerical

solution for the point (0.5m, 0.2m) and a unit force at origin in the x direction.

The curves show the real and imaginary parts of the x component of the

displacement. A very good agreement between the two curves is observed. In
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figure 11 the error between the analytical and numerical solutions are plotted

versus the frequency for a periodic cell made of different number of elements.

The global size of the periodic cell is still 0.01m×0.01m but it can be divided

in 1 × 1, 2 × 2 or 4 × 4 elements of degree one or in 1 × 1 element of degree

two. It can be clearly seen that a denser mesh leads to lower errors and that

using an element of degree two considerably improves the result.

In figure 12 the error is plotted versus the size of the periodic cell. Only one

element of degree one per cell is used for these examples. It can be seen that

the error decreases as the size of the cell is smaller. So it seems interesting

to take cells with rather small sizes. These results are quite similar to the

acoustic case.

Finally, figure 13 presents the numerical and analytical solutions for the fre-

quency 1000Hz along the direction x for a distance varying between 0.01m

(the size of a cell) and 1m. It can be observed that the agreement is very good

for all distances. So the numerical computation is still correct near the force

and the singularity of the solution is obtained by the proposed method which

is not limited to the computation of points far from the source.

3.3 Periodic case

The last example is a truly periodic material made of a network of two mate-

rials as seen in figure 14 and plane strain problems are still considered. The
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two materials have the properties E1 = 2.1010Pa, ν1 = 0.3, ρ1 = 7800kg/m3

and E2 = 2.109Pa, ν2 = 0.3 and ρ2 = 2000kg/m3. Each material occupies a

square of size l1 = 0.025m × l2 = 0.025m, so the periodic cell has the size

L1 = 0.05m × L2 = 0.05m. The figure 15 presents the comparison between

the numerical Green’s function and a finite element calculation with a struc-

ture made of 40 × 40 periods plus 20 layers with increasing dissipation as in

the perfectly matched layer method to avoid wave reflections at boundaries.

A good agreement between the two solutions is found. Some differences can

be seen at low frequencies for which the finite element solution is no more

accurate since the size of the absorbing layer becomes insufficient for these

frequencies.

The full finite element problem contains 640000 elements and 641601 nodes

and a typical cell is meshed with 100 elements and 121 nodes. In the periodic

computation a cell is also meshed with 100 elements and 121 nodes, so with the

same density as for the full problem. For the numerical Green’s function pre-

sented in this article, it is necessary to do different computations for different

values of the transverse wavenumber k. However it is much more efficient to

do a large number of computations on a structure with 121 nodes than a single

computation on a structure with 641601 nodes. With the parameter used for

the two materials the shear velocities are c1 = 1601m/s and c2 = 620m/s.

For the maximum frequency the wavelengths are 0.53m and 0.21m which are

much larger than the size of a cell. The mesh density is sufficient at these
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frequencies.

4 Conclusion

We have presented a method to calculate numerically the Green’s function for

homogeneous or periodic media in the two-dimensional case. Good agreements

were found in the cases where an analytical solution is known. Very general

media could be considered as this method needs only to post process small

size finite element models to get the mass and stiffness matrices of a period in

the medium.

This process could be extended firstly to increase the numerical efficiency of

the Green’s function computation mainly if this has to be used in a bound-

ary element formulation. This can be done easily if different points are to

be calculated at the same time as the propagation constants and the wave

shapes have to be calculated only once for different points. Asymptotic meth-

ods like the stationary phase method could also be considered. Finally, the

three-dimensional case has to be considered in a future work.
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A Decomposition into pseudo periodic solutions

Consider the structure shown schematically in figure 2 which has periodic

mechanical properties and is defined on R2. The first step is to decompose

functions defined on this structure into a sum of pseudo periodic functions.

A point in R2 is denoted (x1, x2). A square integrable function in R2 can be

decomposed by a partial Fourier transform as

U(x1, x2) =
1

2π

+∞
∫

−∞

U(x1, k)eikx2dk (A-1)

The integration on k can be further decomposed into a sum of integrals by

U(x1, x2) =
1

2π

+∞
∑

m2=−∞

(2m2+1) π

L2
∫

(2m2−1) π

L2

U(x1, k)eikx2dk (A-2)
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where L2 is the spatial period along dimension 2. This can also be written

under the form

U(x1, x2) =

π

L2
∫

−
π

L2

u(x1, k, x2)e
ikx2dk (A-3)

where u(x1, k, x2) is a periodic function in x2 given by

u(x1, k, x2) =
1

2π

+∞
∑

m2=−∞

U(x1, k + 2π
m2

L2
)e

2πi
m2
L2

x2 (A-4)

It can be proved, by decomposing the periodic function u into Fourier series

in formula (A-3), that the function u is uniquely determined by U .

As an example of decomposition consider a point force at (xs
1, x

s
2) whose ex-

pression is

F(x1, x2) = Fδ(x1 − xs
1)δ(x2 − xs

2) (A-5)

where F is a vector giving the amplitude and the direction of the force. The

partial Fourier transform of this solution is

F(x1, k) = Fδ(x1 − xs
1)e

−ikxs

2 (A-6)

So in formula (A-4), the periodic function of x is given by

f(x1, k, x2) =
1

2π
Fe−ikxs

2δ(x1 − xs
1)

+∞
∑

m2=−∞

e
2πi

m2
L2

(x2−x2
s)

(A-7)
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It is known that the sum can be written as a periodic sum of delta functions

(consider the Fourier series of the delta function). This leads to the periodic

sum

f(x1, k, x2) =
L2

2π
Fe−ikxs

2δ(x1 − xs
1)

+∞
∑

m2=−∞

δ(x2 − xs
2 − m2L2) (A-8)

Taking the restriction of this function to a period gives

f(x1, k, x2)period =
L2

2π
Fe−ikxs

2δ(x1 − xs
1)δ(x2 − xp

2) (A-9)

where xp
2 is the number in the sequel xs

2 + m2L2 which is in the considered

cell.
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Fig. 7. Comparison of analytical and numerical Green’s functions for the acoustic

case: real part analytical, −.−. imaginary part analytical, * real part numerical,

o imaginary part numerical.
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Fig. 8. Error in the Green’s function versus the number of elements in the periodic

cell for the acoustic case: 1x1 mesh, . 2x2 mesh, −. − . 4x4 mesh.
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Fig. 9. Error in the Green’s function versus the size of the periodic cell for the

acoustic case: a=b=0.05m, . a=b=0.01m, −.−. a=b=0.005m, ∗ a=b=0.001m,

o a=b=0.0005m.
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Fig. 10. Comparison of analytical and numerical Green’s functions for the

two-dimensional elasticity: real part analytical, −. − . imaginary part ana-

lytical, * real part numerical, o imaginary part numerical.
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Fig. 11. Error in the Green’s function versus the number of elements in the periodic

cell for the two-dimensional elasticity: 1x1 mesh, . 2x2 mesh, −.− . 4x4 mesh,

o 1x1 mesh of degree 2.
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Fig. 12. Error in the Green’s function versus the size of the periodic cell for the

two-dimensional elasticity: L1 = L2 = 0.05m, . L1 = L2 = 0.02m, −. − .

L1 = L2 = 0.01m, × L1 = L2 = 0.005m.
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Fig. 13. Comparison of analytical and numerical Green’s functions for the

two-dimensional elasticity: real part analytical, −. − . imaginary part ana-

lytical, x real part numerical, o imaginary part numerical.
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Fig. 15. Comparison of the present method and a full FEM computation for a

periodic two materials medium: a) x component of displacement at point (0.25, 0),

b) y component of displacement at point (0.25, 0), c) x component of displacement

at point (0.5, 0.5), d) y component of displacement at point (0.5, 0.5), real part

present method, −. − . imaginary part present method, o real part full FEM, +

imaginary part full FEM.
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