N

HAL

open science

An analysis of innocent interaction

Russ Harmer

» To cite this version:

Russ Harmer. An analysis of innocent interaction. 2nd International Workshop on Games for Logic

and Programming Languages (GALOP), 2006, Seattle, United States. hal-00150355

HAL Id: hal-00150355
https://hal.science/hal-00150355
Submitted on 30 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00150355
https://hal.archives-ouvertes.fr

An analysis of innocent interaction

Russ Harmer
CNRS & PPS, Université Paris 7

October 12, 2006

Abstract

We present two abstract machines for innocent interaction. The first,
a rather complicated machine, operates directly on innocent strategies.
The second, a far simpler machine, requires a “compilation” of the inno-
cent strategies into “cellular” strategies before use. Given two innocent
strategies, we get the same final result if we make them interact using the
first machine or if we first cellularize them then use the other machine.

1 Introduction

Game semantics models programs as strategies for certain games played between
two protagonists, Player and Opponent, respectively modelling a process and
its environment/context . Roughly speaking, the game determines the “ground
rules” (who can play what move and when) and usually corresponds to a type;
for a given game, we then have many potential strategies (for Player) which
correspond to different programs of the type in question.

In general, a strategy may depend arbitrarily on the “history of play” to date—
what we typically call a strategy of total information (STI). On the other hand,
many interesting classes of strategy restrict access to the history of play so
that the strategy’s behaviour depends only on some “partial history of play” to
date. The innocent strategies [5,6] used to model languages based on A- and
Ap-calculus fall into this category of strategies of partial information (SPIs).

Unlike interaction between STIs, interaction of SPIs poses some delicate ques-
tions. During interaction, does such an SPI “see” the entire history but some-
how decide to only depend on part of it (a kind of self-censorship)? Or does
the strategy only ever “see” the partial history it depends on (each strategy
somehow censors the other)? And, in this latter case, once a strategy has made
its move, how can it then provide the next partial history for the other strategy?
In general, the partial history (received as input) doesn’t suffice to reconstruct
the next partial history (to be sent as input to the other strategy) induced by
the move made by our strategy.

We present an analysis, in two stages, of this situation. In the first instance,
we consider an “interaction architecture” which implements the second option
(mutual censorship) by obliging our innocent strategies to interact via an inter-
mediary: the referee.

The referee must keep track of the whole interaction. Each strategy receives
its input (a partial history) from the referee, makes its move and sends this
back to the referee. The referee, on receiving the strategy’s response, updates
the-interaction-to-date and then “reads off” from this the next partial history.
It then sends this, as input, to the other strategy. And so on. (Of course, we
could implement the referee trivially by just building up, move by move, the
entire interaction—from which we can easily extract any desired partial history.
Such a referee would censor both strategies, rather than each strategy censoring
itself, but this still essentially corresponds to the first (self-censorship) option
above.)

Our referee takes a different approach: it builds up, move by move, a desequen-
tialized representation of the interaction. Technically, this consists of a tree-like
data structure, constructed and shared by the two interacting strategies, plus an
access protocol that prevents either strategy from accessing anything other than
partial histories. So, each strategy censors the other; but only indirectly, via the
agency of the referee. This interaction architecture/abstract machine resembles
the PAM and its many variants [1-4] although with more of a desequentialized
feel.

In the second stage of our analysis, we remark that, for a restricted class of
strategies, the cellular strategies, we have no need for the referee. This leads
to a far simpler interaction architecture/abstract machine (the CPAM) but, of
course, one that can only be used some of the time. In order to better exploit this
simple machine, we define a transformation that takes an innocent strategy and
returns a cellular strategy that “does the same thing”: we get the same result
whether we interact innocent strategies directly with the PAM-like machine or
we interact cellularized innocent strategies with the CPAM.

2 Innocent strategies and interaction

In this section, we briefly present the basic definitions of game semantics in order
to formally define a class of SPIs, the innocent strategies. We then present our
“desequentialized PAM”.

2.1 Fundamental definitions
2.1.1 Pointing strings

Let ¥ be a countable set. A pointing string over ¥ is a string s € ¥* with
pointers between the occurrences of s such that, if s; (the ith symbol of s) points
to s; then j < i, i.e. pointers always point back to earlier occurrences, and we
have at most one pointer from any given occurrence of s. We write |s| for the
length of s.

If ¥ C ¥ then we write s | X/ for the restriction of s to ¥/, i.e. the pointing
string obtained by removing those occurrences of s from X —Y’ and manipulating
the pointers as follows: if a pointer points into the “forbidden zone” we keep
following pointers until we either reemerge by pointing to some s, € ¥/, in which
case s; points to s, in s X/, or we run out of pointers, in which case s; has no
pointer in s[Y.

2.1.2 Arenas

The notion of arena provides us with an abstract setting to talk about pointing
strings. Formally, we define an arena A to be a tuple (Ma, A, Ia,F4) where

e M, is a countable set of tokens.

® A\a: M4—{0O,P} labels each m € M4 as an Opponent or a Player token.
We write A4 for the “inverted” OP-labelling (exchange of O and P).

e I, is a subset of A\;*(O) known as the initial moves of A.

e -4 is a binary enabling relation on M4 satisfying alternation: if m k4 n
then Aa(m) # Aa(n).

The empty arena 1 is defined to be (&, @, @,). A flat arena has a single
OQ-move and a set (possibly empty) of PA-moves, all of which are enabled by
the O-move. For example, the boolean arena bool has an OQ, q, and two PAs,
tt and ff, with enabling relation q Fpeol tt and q Fpeo1 ff. We similarly define L,
com and nat as the flat arenas over @, {t} and {0, 1,2, ...} respectively.

2.1.3 Legal plays

A play in an arena A is a pointing string s, over alphabet M 4, which respects
the structure of A in the following sense:

e if s; points to s; then s; -4 s;;

e if 5; has no pointer then s; € I4.

A legal play is a play which additionally satisfies alternation: for 0 < i < |s|,
Aa(si) # Aa(siv1)-

Each occurrence in a legal play s is an element m of M4 together with its pointer
(unless m € I4); we call m plus its pointer a move of s. If s; points to s; we
say that s; justifies s; or that s; is justified by s;. The first move of a legal
play must be initial (since it cannot point to any previous move!) and hence is
an O-move. A move that points to an initial move is called a secondary move.
We write L4 for the set of all legal plays for the arena A.

The prefix ordering on strings extends obviously to legal plays so that L4
can be viewed as a partial order with least element e, the empty string. For
s,t € L4, we write s C ¢ (resp. s CO t, resp. s CP t) when s is a (resp.
O-ending, resp. P-ending) prefix of . We fix the convention that ¢ CP s for any
s€Ly.

We write s At for the longest common prefix of s and ¢, ip(s) for the im-
mediate prefix of non-empty s and, provided the last move of s, written s,
has a pointer, we write jp(s) for the justifying prefix of s, i.e. that prefix of s
ending with the move that justifies s,,. We write ie(s) for the set of immediate
extensions of s and, if s € L4 and m € M4 such that s, enables m in A, we
write s - m for the legal play obtained by adding m to the end of s, pointing to
the last move.

2.1.4 Constructors on arenas

The product A x B of arenas A and B places the two arenas side-by-side with
no possibility of interaction:

® Maxp=Ma+ Mp
® Maxp = [Aa, AB]

o Inyp=1Ia+1p

® Faxp=Fa+Fp

On the other hand, the par A B, coalesces each pair of [4 X Ig as a single
new initial move but otherwise preserves the existing structure of A and B:

o Mygp = (Iax1Ip)+ (Ma+ Mp)

°)\A@B(im((i,q,ig)) = O
Aagp(inr(inl(a))) = Aa(a)
Aagp(inr(inr(b))) = Ap(b)

o Iyop=14x1Ip

e inl((ia,ip)) Fasp inr(inl(a)) iff (ia,ip) € Tagp and ig b4 a
inI((iA,iB)) l_A’?B inr(inr b)) iff (iA,iB) S IA’?B and ig Fg b
inr(inl(a)) Fagp inr(inl(a)) iff a b4 a’
inr(inr(b)) Faep inr(inr(t')) it bFp o

Finally, we have two complementary constructors, one that adds a new initial
move and the other which removes the initial moves. We note by A~ the
decapitation of arena A:

o« My —=My—1I4

o Aa-(m) = Fa(m)

e [y ={meMy |itamAniels}
e mby-niff mbyn

and by A, the operation of adding a new O root to A, making it the unique
initial move of A,:

o My, ={*a}+ My

° /\A*(inl(*A) :9
Aa, (inr(a)) = Aa(a)

° IA* :{*A}

° inI(*A) I—A* inr(iA) iff iq €14
inr(a) k4, inr(a") iff a4 o

The usual arrow A = B of arenas A and B can be recovered by A, ® B.

2.1.5 Strategies

A strategy o for an arena A, written o : A, is a non-empty set of P-ending
legal plays of A which satisfies

o prefiz-closure: if s € o and s’ CF s then s’ € o

o determinism: if s€ o and t € o then sAt € 0.

The second condition amounts to asking for s At to end with a P-move; so only
Opponent can branch nondeterministically.

We write dom(c) for the domain of o defined as | J,,, ie(s), the O-ending plays
of A accessible to o.

2.1.6 Legal interactions and program interactions

We define the composition of 0 : A; = As and 7 : As = A3 by generalizing the
notion of legal play: a legal interaction over Ay, A3 and Aj is a pointing string
u over M+ Mp+ Mc such that u[Ay, As € £A1=>A27 ulAs, Ag € EAQ:Ag and
ul Ay, Az alternates. We write Z(A1, Aa, As) for the set of all legal interactions
over Ay, A; and Ags.

This allows us to build a category with arenas as objects and strategies as
arrows. However, in this paper, we rarely have need for the generality of legal
interactions; we primarily consider closed interactions of base type. Formally, a
program interaction for arena A and flat arena B is a legal play s € La—p
such that s[A € L4 (and s| B has a single initial move). We write P(A, B) for
the set of all program interactions for A and B. For 0 : A and 7: A = B, we
define their set of interactions as

olT={ueP(AB)|ulA€oUdom(c) Au e TUdom(7)}.

2.2 Innocence
2.2.1 The P-view

The P-view of non-empty play s € L4, noted s, is defined in two stages.
First we extract a subsequence of s with pointing structure defined only on
(non-initial) O-moves:

o "s'=g,, if s, is an initial move;
e s'="jp(s)' - sy, if s, is a non-initial O-move;
r

Mgl

e "s'="ip(s)" s,, if s, is a P-move.

In words, we trace back from the end of s, following pointers from O-moves,
excising all moves under such pointers, and “stepping over” P-moves, until we
reach an initial move. In general, a P-move m € s can “lose its pointer”: if its
justifier n lies strictly underneath an O-to-P pointer of "s.,,," then n does not
occur in "s.,, . The second stage of the definition thus specifies that, if the
justifier of a P-move in "s' gets excised in this way, it has no justifier in the
P-view (and so "s' & L4); otherwise it keeps the same justifier as in s.

2.2.2 The P-visibility condition

A legal play s € L4 satisfies P-visibility iff s’ € L4. In words, no P-move
of Ts" loses its pointer. Note that, for ¢ some proper prefix of s, this doesn’t
prevent a P-move of "¢' losing its pointer. We lift the definition of P-visibility
to strategies in the obvious way: o satisfies P-visibility iff all s € ¢ do. So,
for s in P-vis o all t CF s do in fact satisfy P-visibility—since o is closed under
P-ending prefixes—so "' € L4 for all the P-prefixes t of s.

2.2.3 Innocence as P-view-dependence

If s,t € L4 where s ends with a P-move, satisfies P-vis and "ip(s)' = "' then
we denote by match(s,t) the unique extension of ¢ satisfying s’ = "match(s, t)",
i.e. add the last move of s to ¢ using the “same” pointer as in s. We can do
this since, by assumption, the last move of s points in "ip(s)' = "¢, i.e. since
match(s,t) = match("s",).
A P-vis strategy o is innocent iff

seoAtedom(o)Alip(s)' ="' = match(s,t) € 0.

An innocent strategy o is thus completely determined by its view function "o
defined to be {"s'| s € o}: the plays of o all arise as interleavings of entries of
its view function. We can thus see innocent strategies as strategies of partial
information, the “partial history” of a play to date being simply its P-view.

2.3 Innocent interaction
2.3.1 The role of the referee

We begin with an example that illustrates the role of the referee. Consider
Kierstead’s term ICp = AF(F)Az(F) y(z):

_—q E \
q v /

q \ v

and its close cousin Ky = AF(F) x(F)\y(y):

1
q q

14 .!/q
4 \

,q v
v

v

N
B

with argument NANDy.¢e = Af(if (f)tt (not (f)ff) else (if (f)£ff tt else tt)):

_—q 9 =
_—q a K \
q v v \I
A a /.
' q v’ /
ff (v A
The interactions start like this:
q q

When NANDy;.¢ plays the fifth move, its output P-view is just d " g so the referee

must insert the previous two moves in order to correctly send 4~ 9 d-q g

as next input P-view for /C;/KC,. Similarly, with its last move, K, has output

P-view 40 4~q q~d & t,so the referee must insert the 4t arch so

astosend 979 t g t as next input P-view.

2.3.2 The desequentialized PAM

Given two view functions, the desequentialized PAM (DPAM) computes their
interaction by making them communicate via a shared data structure, their
referee. This data structure—a collection of nodes and two distinct tree struc-
tures on it—is built dynamically and is itself used to “guide” its own process of
construction.

In outline, the DPAM interrogates the two view functions alternately whilst
maintaining the referee data structure (on the basis of the responses of the view
functions). Each time a view function makes a move, the DPAM adds a new
node (to the referee) with two edges: the c-ptr and the j-ptr. It then offers this
new node to the other view function.

When a view function is offered a node, it can read off its current P-view by
traversing the referee: from its own nodes, it follows the c-ptrs and from the
other’s nodes, it follows the j-ptrs. We call this the access protocol to the referee:
a view function has read/write access to c-ptrs from its nodes, only write access
to its j-ptrs but read access to those of the other, and no access to the other’s
c-ptrs.

So, given view functions "o' : A and 7' : A = B, we build their referee
recursively by:

e when a view function is offered a node, it reads off its current P-view;

e assuming it responds to this P-view, the DPAM creates a new node n that
encodes the token just played; it then adds n’s c-ptr, which points to the
input/offered node, and its j-ptr, which points to that node of the referee
(in the “read off” P-view) encoding the justifier of n;

e the DPAM offers n to the other view function

If we apply the DPAM procedure to /C; and NANDy:.#, it constructs the following
referee (we only show the subtree associated to the interaction of §2.3.1) where
the dotted arrows are the c-ptrs:

-4 ///,—/»q
AN I
q// \q//’ttt<’ - ot
A e -
SO
t < t =<

If we apply it to K, and NANDy.¢, we get:

= =q
7 -~
/ \ /// / \
s \ _ - s
/ P /
' \/t‘é q \/fF
(/}\ // /A //
[-~ {1 -~
\i -7 \1 7
tt/n ﬂ_.)é

At first sight, these “2-trees” don’t seem very desequentialized. After all, given
any node in either, we can trace back the entire interaction by always following
the c-ptrs. However, in the DPAM, the access protocol prevents this: each view
function has access only to its own c-ptrs—and so can only traverse its P-views.

3 Cellular strategies

The DPAM correctly implements interaction of innocent strategies, using only
the view functions (not the full set of legal plays). However, the overhead of
maintaining the referee inevitably slows the machine down. Could we implement
(something sufficient to simulate) innocent interaction without using a referee?

In this section, we present the class of cellular strategies. We can interact
such strategies using a radically simplified DPAM, the CPAM (cellular pointer
abstract machine), which needs no referee. We then describe a “cellularization”
process that converts an innocent strategy into a cellular one that “does the
same thing”. We can thus interact two innocent strategies by first cellularizing
both, then running the results in the CPAM.

3.1 Cellular strategies
3.1.1 The OP-view
The OP-view of s € L4, written [s], is defined by:

— . . o .
o [51=s,,if 5, is an initial move;

o [s1=1jp(s)]" sw, otherwise.

In words, we simply follow back the “chain” of pointers to the initial move.

If s satisfies P-visibility, the OP-view [s] forms a subsequence of the P-view
Fs1. Indeed, we can consider the P-view as an annotation of the OP-view which
inserts, underneath each O v\ P arch of [s], a sequence of P .~ O arches:

T T T T N
c’@o .. 0@ .- 0700 .- @ 0@ o

3.1.2 The O-views and the view

The O-view of s € L 4, written |s], is defined by:

ls] = lip(s)] - sw, if s, is a P-move;
lip(s)] Sw, if sy, is an O-move.

In contrast to a P-view which always has a unique initial move, an O-view may
contain many initial moves. A play s € L4 satisfies O-visibility iff |s| € L4,
i.e. we lose no O-pointers in |s].

The short O-view of s € L4, written s, is defined by:
® 5, =35, if s, is a secondary move;
S, = Ljp(s)J - 8w, if 8, is a non-secondary P-move;

e s, =ip(s), Su, if s, is an O-move

Note that, for s € L4, its short O-view s, is not a legal play of A but is a legal
play of A~, the decapitation of A.

Let u be a program interaction between innocent o : A and 7: A = B. If 7
played the last move of u then u, = "u| A", i.e. the next input P-view for o is
just the short O-view of u. If o played the last move of w then q - [u[A] = "u’
(where q, the initial move of u, justifies all the initial-in-A moves of u), i.e. the
next input P-view for 7 is essentially just the O-view of u [A.

If s satisfies P- and O-visibility, the OP-view is contained in the O-view (as well
as in the P-view). So an O-view can be seen as an “annotated OP-view” in
much the same way as a P-view:
N =T T = ~_ 7 \
[¢] e O € -+ O @€ O -+ @ O @@ --- O @ O []

Earlier on, we defined the function match(s,t) to formalize what we intuitively
mean by “extend ¢ with the last move of s”. We now define a new function
match*(s,t) for P-ending, P-vis s € £4 and ¢t € L4 such that Tjp(s)' = "
match™(s,t) denotes the extension of ¢ with the suffix of the P-view of s that
lies underneath the pointer from s, to jp(s),. In other words, instead of adding
just the last move of s to ¢, this adds the last “chunk” of the P-view of s to t, so
that "match(s,¢)' = "s'. Similarly, for O-ending, O-vis s € L4 and ¢t € L4 such
that |jp(s)] = |t], we define match*(s,t) to be that extension of ¢ with the last
“chunk” of the O-view of s.

Finally, we define the view § of P- and O-vis s € L4 to be the obvious “super-
position” of the P-view and the O-view:

e 5= |s],if s, is an initial move;

e 5= match*(s,]jp(s)), otherwise.

The view of s can thus be seen as a doubly annotated OP-view:

AT T S TR S e

ocoe ..-oe ()eo --- e 0 e .- 00 --- @00 e .- 0 @O0

where () is the initial move of the OP-view.

3.1.3 View-dependence

Let o be a strategy for A satisfying O- and P-visibility. We say that o is view-
dependent iff

—_—

s€aoAtedom(a)Aip(s) =1 = match(s,t) € 0.

A view-dependent strategy thus depends on the view in exactly the same way
that an innocent strategy depends on the P-view. In particular, innocence
implies view-dependence: a P-view is a view where all O-moves are justified by
the immediately preceding move.

In passing, let us note that the class of view-dependent strategies is closed under
composition, giving rise to an SMCC (not a CCC) that contains the innocent
CCC and is contained in the usual “ambient SMCC” of arenas and all strategies.

10

A view-dependent strategy o is cellular iff it satisfies OP-visibility. Note that
(the behaviour of) a cellular strategy still depends on the entire view; only
its choice of justification pointer is restricted by the condition. However, this
already rules out copycat strategies (the usual identity arrows in categories of
games) for all but the most trivial of arenas. In consequence, cellular strategies
do not form a category—even though the condition is preserved by composition.

A cellular strategy is uniquely determined by its cellular view function which
maps O-ending views (inputs) to P-ending views (outputs).

3.2 Cellular interaction
3.2.1 The CPAM

During DPAM interaction, each view function reads off, from the referee, its
current input P-view. Once the view function responds, the DPAM updates the
referee to reflect the new “state of interaction”. We need to do this because the
view function cannot in general determine, from its input P-view and response,
the next P-view for the other view function. Typically, an input P-view plus
the view function’s response looks something like:

In general, the next input P-view contains moves underneath the ¢~ (O
arch. But these moves don’t appear in the current P-view. This kind of thing
happens all the time in DPAM interaction; the c-ptrs of the referee allow us to
recover these “missing” moves.

However, imagine now an alternative interaction architecure (to the DPAM)
where the strategies exchange wviews, not P-views, but where both strategies
must be cellular. If a strategy receives an input view (from the other strategy),
it knows its response (by view-dependence) and the fact that its response points
in the OP-view means that the next view (for the other strategy) can be simply
“read off” without any need for a referee:

If we take the input view and extend it with the strategy’s response

- - /\/\m

O @ “++ O @ O~V @~ ~0 "~~~ @ ~~0 @

we almost have another view. If we erase the annotations under all the o o
arches of the OP-view that lie under the pointer from the last move, we get a
view, the next input for the other strategy:

—~ - /\/\ /'\

O @ “++ O @ O~rcC s~~~ @O ~~—0

So, given cellular view functions o : A and 7 : A = B (for B a base type), we
define their CPAM interaction by:

e when a view function receives a view, it adds its next move (if any) to this
view and erases no-longer-necessary annotations;

e unless the last move was in B, it sends the resulting view to the other
view function (which does the same thing).

11

3.2.2 Cellularization

Given innocent ¢ : A and 7 : A = B (where B is a flat arena), we transform
their set of interactions o | 7 into a new set o(©7 of interactions satisfying
OP-visibility. We define this inductively on the length of w:

o c© =g
o ua® =

— u®a, if a points in the OP-view;
— u®y o, if a (is not OP-vis and) is played by 7;

— u®u/a, if a (is not OP-vis and) is played by o; and where ' is the
last segment of jp(u)© with its first two moves removed.

The set = {u] A | u € 0©7} determines a deterministic cellular view function
(by taking the set of views of plays in the set) and so can be “closed”, yielding
a cellular strategy 0©. We can similarly define a cellular 7© for A = B. So, if
we interact ¢© and 7© in the CPAM, they play exactly the transformed inter-
actions above and so we get the same final result (if any) as if we’d interacted
o and 7 in the DPAM.

We’ve defined here a kind of “relative cellularization”: we fix o and 7 and obtain
0© and 7© that interact “just like” o and 7. But, if we now cellularize the
same 7 with some other ¢’, we (usually) obtain a different cellularization of T,
i.e. some 7@ which interacts correctly with o/©.

Intuitively, we could define an “absolute” cellularization of 7 by cellularizing it
with all possible os and taking the big union of all the resulting 7©s. However,
unlike in the relative case, the proof that the resulting strategy determines a
deterministic view function is highly nontrivial. We hope to present this in a
future version of this paper.

3.3 Examples of cellularization

3.3.1 K, vs. nand

We give the transformation of NAND | IC,, below. The cellular interaction starts
out exactly like the corresponding innocent interaction. However, once NAND
completes the subcomputation

/‘”q
/“q
q [
(t (X\
/’“q
a
£
ff

it

12

Ky would violate cellularity (in the innocent interaction), so we insert the whole
of the next P-view for NAND. The interaction remains cellular until that same
subcomputation completes a second time, whence K, inserts the (now longer)
next P-view for NAND.

KCy vs. NAND:

q | /
L \ /
t / /
q /
T /
ff \ U/
ff
q7 q
‘tt
«q
it
ff

ff

This examples nicely illustrates the way that cellular interaction works incre-
mentally: K, gradually “unpicks” NAND, view by view, and the interaction goes a
bit further every time IC, has “learnt a new view” of NAND—witness the sequence
of P-views in the first copy of NAND: 9 d; 9~ q & d; 99 & d fF t.

13

3.3.2 K, vs. nand

The noncellular behaviour of K, becomes apparent much sooner than that of Cy.
After just the fifth move, K, must insert 9 g g to provide the correct input
P-view for NAND. On receiving NAND’s response, K, must once again insert the
next P-view, etc. Indeed, the cellularized K, spends much of its time “switching”
between the two copies of NAND.

KC.; vs. NAND [beginning segment]:

F o & o

4 Conclusions and future work

In summary, we’ve presented two abstract machines for interacting respectively
innocent and cellular strategies. We’ve outlined the procedure of cellularization
that permits us to interact innocent strategies in the CPAM. The resulting in-
teractions in some sense untangle the “pointer spaghetti” of typical innocent
interactions, exposing perhaps some potential deeper symmetry between Op-
ponent and Player in the guise of view-dependent strategies. In any case, the
category of view-dependent strategies seems worthy of further attention, the
most pressing need being for a syntax, perhaps using first-class contexts, at
least for describing head normal forms.

Another natural next step would be to implement the two machines presented
here and compare their performance, in particular to see whether the efficiency
of the CPAM (no referee) comes at too high a cost (the cellularized strategies
contain very long plays in general).

14

This work owes a considerable intellectual debt to the work of Padovani [§]
and Loader [7]. Both papers use “transfering terms” (now known as “cellular
terms”) and a transformation of A-terms into cellular terms in order to establish
decidability of the contextual equivalence on the minimal model (Padovani) and
on unary PCF (Loader). However, our work also differs from theirs in that our
notion of “cellular” restricts and extends innocence: we have a stronger visibility
condition but a weaker view-dependence condition.

Acknowledgements I would like to thank Pierre Clairambault, Pierre-Louis
Curien, Thierry Joly and Vincent Padovani for numerous discussions related to
the subject of this paper.

References

[1] T. Coquand. A semantics of evidence for classical arithmetic. J. Symb.
Logic, 60(1):325-337, 1995.

[2] P.-L. Curien and H. Herbelin. Computing with abstract Bohm trees. In
M. Sato and Y. Toyama, editors, Fuji International Symposium on Func-
tional and Logic Programming (FLOPS ’98). World Scientific, Singapore,
1998.

[3] P.-L. Curien and H. Herbelin. Abstract machines for dialogue games.
Panoramas et synthéses, 2006. To appear.

[4] V. Danos, H. Herbelin, and L. Regnier. Game semantics & abstract ma-
chines. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer
Science (LICS ’96), pages 394-405. IEEE Computer Society Press, 1996.

[5] R. Harmer. Innocent game semantics. Lecture notes, 2004—2006.

[6] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, IT and
III. Information and Computation, 163:285-408, 2000.

[7] R.Loader. Unary PCF is decidable. Theoretical Computer Science, 206:317—
329, 1998.

[8] V. Padovani. Decidability of all minimal models. In TYPES ’95: Selected
papers from the International Workshop on Types for Proofs and Programs,
London, UK, 1996. Springer-Verlag.

15

