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An analysis of innocent interaction

We present two abstract machines for innocent interaction. The first, a rather complicated machine, operates directly on innocent strategies. The second, a far simpler machine, requires a "compilation" of the innocent strategies into "cellular" strategies before use. Given two innocent strategies, we get the same final result if we make them interact using the first machine or if we first cellularize them then use the other machine.

Introduction

Game semantics models programs as strategies for certain games played between two protagonists, Player and Opponent, respectively modelling a process and its environment/context . Roughly speaking, the game determines the "ground rules" (who can play what move and when) and usually corresponds to a type; for a given game, we then have many potential strategies (for Player) which correspond to different programs of the type in question.

In general, a strategy may depend arbitrarily on the "history of play" to datewhat we typically call a strategy of total information (STI). On the other hand, many interesting classes of strategy restrict access to the history of play so that the strategy's behaviour depends only on some "partial history of play" to date. The innocent strategies [START_REF] Harmer | Innocent game semantics[END_REF][START_REF] Hyland | On full abstraction for PCF: I, II and III[END_REF] used to model languages based on λ-and λµ-calculus fall into this category of strategies of partial information (SPIs).

Unlike interaction between STIs, interaction of SPIs poses some delicate questions. During interaction, does such an SPI "see" the entire history but somehow decide to only depend on part of it (a kind of self-censorship)? Or does the strategy only ever "see" the partial history it depends on (each strategy somehow censors the other)? And, in this latter case, once a strategy has made its move, how can it then provide the next partial history for the other strategy? In general, the partial history (received as input) doesn't suffice to reconstruct the next partial history (to be sent as input to the other strategy) induced by the move made by our strategy.

We present an analysis, in two stages, of this situation. In the first instance, we consider an "interaction architecture" which implements the second option (mutual censorship) by obliging our innocent strategies to interact via an intermediary: the referee.

The referee must keep track of the whole interaction. Each strategy receives its input (a partial history) from the referee, makes its move and sends this back to the referee. The referee, on receiving the strategy's response, updates the-interaction-to-date and then "reads off" from this the next partial history. It then sends this, as input, to the other strategy. And so on. (Of course, we could implement the referee trivially by just building up, move by move, the entire interaction-from which we can easily extract any desired partial history. Such a referee would censor both strategies, rather than each strategy censoring itself, but this still essentially corresponds to the first (self-censorship) option above.)

Our referee takes a different approach: it builds up, move by move, a desequentialized representation of the interaction. Technically, this consists of a tree-like data structure, constructed and shared by the two interacting strategies, plus an access protocol that prevents either strategy from accessing anything other than partial histories. So, each strategy censors the other; but only indirectly, via the agency of the referee. This interaction architecture/abstract machine resembles the PAM and its many variants [START_REF] Coquand | A semantics of evidence for classical arithmetic[END_REF][START_REF] Curien | Computing with abstract Böhm trees[END_REF][START_REF] Curien | Abstract machines for dialogue games[END_REF][START_REF] Danos | Game semantics & abstract machines[END_REF] although with more of a desequentialized feel.

In the second stage of our analysis, we remark that, for a restricted class of strategies, the cellular strategies, we have no need for the referee. This leads to a far simpler interaction architecture/abstract machine (the CPAM) but, of course, one that can only be used some of the time. In order to better exploit this simple machine, we define a transformation that takes an innocent strategy and returns a cellular strategy that "does the same thing": we get the same result whether we interact innocent strategies directly with the PAM-like machine or we interact cellularized innocent strategies with the CPAM.

Innocent strategies and interaction

In this section, we briefly present the basic definitions of game semantics in order to formally define a class of SPIs, the innocent strategies. We then present our "desequentialized PAM".

Fundamental definitions

Pointing strings

Let Σ be a countable set. A pointing string over Σ is a string s ∈ Σ ⋆ with pointers between the occurrences of s such that, if s i (the ith symbol of s) points to s j then j < i, i.e. pointers always point back to earlier occurrences, and we have at most one pointer from any given occurrence of s. We write |s| for the length of s.

If Σ ′ ⊆ Σ then we write s ↾ Σ ′ for the restriction of s to Σ ′ , i.e. the pointing string obtained by removing those occurrences of s from Σ-Σ ′ and manipulating the pointers as follows: if a pointer points into the "forbidden zone" we keep following pointers until we either reemerge by pointing to some s z ∈ Σ ′ , in which case s i points to s z in s ↾ Σ ′ , or we run out of pointers, in which case s i has no pointer in s ↾ Σ ′ .

Arenas

The notion of arena provides us with an abstract setting to talk about pointing strings. Formally, we define an arena A to be a tuple M A , λ A , I A , ⊢ A where • M A is a countable set of tokens.

• λ A : M A →{O, P} labels each m ∈ M A as an Opponent or a Player token.

We write λ A for the "inverted" OP-labelling (exchange of O and P).

• I A is a subset of λ -1 A (O) known as the initial moves of A. • ⊢ A is a binary enabling relation on M A satisfying alternation: if m ⊢ A n then λ A (m) = λ A (n).
The empty arena 1 is defined to be ∅, ∅, ∅, ∅ . A flat arena has a single OQ-move and a set (possibly empty) of PA-moves, all of which are enabled by the O-move. For example, the boolean arena bool has an OQ, q, and two PAs, tt and ff, with enabling relation q ⊢ bool tt and q ⊢ bool ff. We similarly define ⊥ ⊥ ⊥, com and nat as the flat arenas over ∅, {t} and {0, 1, 2, . . .} respectively.

Legal plays

A play in an arena A is a pointing string s, over alphabet M A , which respects the structure of A in the following sense:

• if s j points to s i then s i ⊢ A s j ;

• if s i has no pointer then s i ∈ I A .

A legal play is a play which additionally satisfies alternation:

for 0 ≤ i < |s|, λ A (s i ) = λ A (s i+1 ).
Each occurrence in a legal play s is an element m of M A together with its pointer (unless m ∈ I A ); we call m plus its pointer a move of s. If s j points to s i we say that s i justifies s j or that s j is justified by s i . The first move of a legal play must be initial (since it cannot point to any previous move!) and hence is an O-move. A move that points to an initial move is called a secondary move. We write L A for the set of all legal plays for the arena A.

The prefix ordering on strings extends obviously to legal plays so that L A can be viewed as a partial order with least element ε, the empty string. For s, t ∈ L A , we write s ⊑ t (resp. s ⊑ O t, resp. s ⊑ P t) when s is a (resp. O-ending, resp. P-ending) prefix of t. We fix the convention that ε ⊑ P s for any s ∈ L A .

We write s ∧ t for the longest common prefix of s and t, ip(s) for the immediate prefix of non-empty s and, provided the last move of s, written s ω , has a pointer, we write jp(s) for the justifying prefix of s, i.e. that prefix of s ending with the move that justifies s ω . We write ie(s) for the set of immediate extensions of s and, if s ∈ L A and m ∈ M A such that s ω enables m in A, we write s • m for the legal play obtained by adding m to the end of s, pointing to the last move.

Constructors on arenas

The product A × B of arenas A and B places the two arenas side-by-side with no possibility of interaction:

• M A×B = M A + M B • λ A×B = [λ A , λ B ] • I A×B = I A + I B • ⊢ A×B = ⊢ A + ⊢ B
On the other hand, the par A B, coalesces each pair of I A × I B as a single new initial move but otherwise preserves the existing structure of A and B:

• M A B = (I A × I B ) + (M A + M B ) • λ A B (inl((i A , i B )) = O λ A B (inr(inl(a))) = λ A (a) λ A B (inr(inr(b))) = λ B (b) • I A B = I A × I B • inl((i A , i B )) ⊢ A B inr(inl(a)) iff (i A , i B ) ∈ I A B and i A ⊢ A a inl((i A , i B )) ⊢ A B inr(inr(b)) iff (i A , i B ) ∈ I A B and i B ⊢ B b inr(inl(a)) ⊢ A B inr(inl(a ′ )) iff a ⊢ A a ′ inr(inr(b)) ⊢ A B inr(inr(b ′ )) iff b ⊢ B b ′
Finally, we have two complementary constructors, one that adds a new initial move and the other which removes the initial moves. We note by A -the decapitation of arena A:

• M A -= M A -I A • λ A -(m) = λ A (m) • I A -= {m ∈ M A -| i ⊢ A m ∧ i ∈ I A } • m ⊢ A -n iff m ⊢ A n
and by A * the operation of adding a new O root to A, making it the unique initial move of A * :

• M A * = { * A } + M A • λ A * (inl( * A ) = O λ A * (inr(a)) = λ A (a) • I A * = { * A } • inl( * A ) ⊢ A * inr(i A ) iff i A ∈ I A inr(a) ⊢ A * inr(a ′ ) iff a ⊢ A a ′
The usual arrow A ⇒ B of arenas A and B can be recovered by A * B.

Strategies

A strategy σ for an arena A, written σ : A, is a non-empty set of P-ending legal plays of A which satisfies

• prefix-closure: if s ∈ σ and s ′ ⊑ P s then s ′ ∈ σ;

• determinism: if s ∈ σ and t ∈ σ then s ∧ t ∈ σ.
The second condition amounts to asking for s ∧ t to end with a P-move; so only Opponent can branch nondeterministically.

We write dom(σ) for the domain of σ defined as s∈σ ie(s), the O-ending plays of A accessible to σ.

Legal interactions and program interactions

We define the composition of σ : A 1 ⇒ A 2 and τ : A 2 ⇒ A 3 by generalizing the notion of legal play: a legal interaction over A 1 , A 2 and A 3 is a pointing string

u over M A + M B + M C such that u ↾ A 1 , A 2 ∈ L A1⇒A2 , u ↾ A 2 , A 3 ∈ L A2⇒A3 and u ↾ A 1 , A 3 alternates. We write I(A 1 , A 2 , A 3 ) for the set of all legal interactions over A 1 , A 2 and A 3 .
This allows us to build a category with arenas as objects and strategies as arrows. However, in this paper, we rarely have need for the generality of legal interactions; we primarily consider closed interactions of base type. Formally, a program interaction for arena A and flat arena B is a legal play s ∈ L A⇒B such that s ↾ A ∈ L A (and s ↾ B has a single initial move). We write P(A, B) for the set of all program interactions for A and B. For σ : A and τ : A ⇒ B, we define their set of interactions as

σ | τ = {u ∈ P(A, B) | u ↾ A ∈ σ ∪ dom(σ) ∧ u ∈ τ ∪ dom(τ )}.

Innocence

The P-view

The P-view of non-empty play s ∈ L A , noted s , is defined in two stages. First we extract a subsequence of s with pointing structure defined only on (non-initial) O-moves:

• s = s ω , if s ω is an initial move; • s = jp(s) • s ω , if s ω is a non-initial O-move; • s = ip(s) s ω , if s ω is a P-move.
In words, we trace back from the end of s, following pointers from O-moves, excising all moves under such pointers, and "stepping over" P-moves, until we reach an initial move. In general, a P-move m ∈ s can "lose its pointer": if its justifier n lies strictly underneath an O-to-P pointer of s <m then n does not occur in s <m . The second stage of the definition thus specifies that, if the justifier of a P-move in s gets excised in this way, it has no justifier in the P-view (and so s ∈ L A ); otherwise it keeps the same justifier as in s.

The P-visibility condition

A legal play s ∈ L A satisfies P-visibility iff s ∈ L A . In words, no P-move of s loses its pointer. Note that, for t some proper prefix of s, this doesn't prevent a P-move of t losing its pointer. We lift the definition of P-visibility to strategies in the obvious way: σ satisfies P-visibility iff all s ∈ σ do. So, for s in P-vis σ all t ⊑ P s do in fact satisfy P-visibility-since σ is closed under P-ending prefixes-so t ∈ L A for all the P-prefixes t of s.

Innocence as P-view-dependence

If s, t ∈ L A where s ends with a P-move, satisfies P-vis and ip(s) = t then we denote by match(s, t) the unique extension of t satisfying s = match(s, t) , i.e. add the last move of s to t using the "same" pointer as in s. We can do this since, by assumption, the last move of s points in ip(s) = t , i.e. since match(s, t) = match( s , t).

A P-vis strategy σ is innocent iff s ∈ σ ∧ t ∈ dom(σ) ∧ ip(s) = t ⇒ match(s, t) ∈ σ.
An innocent strategy σ is thus completely determined by its view function σ defined to be { s | s ∈ σ}: the plays of σ all arise as interleavings of entries of its view function. We can thus see innocent strategies as strategies of partial information, the "partial history" of a play to date being simply its P-view.

Innocent interaction

The role of the referee

We begin with an example that illustrates the role of the referee. Consider Kierstead's term K x = λF (F )λx(F )λy(x):

q q q q q q q q v q q v q v q v v v
and its close cousin K y = λF (F )λx(F )λy(y):

q q q q q q q q v q q v q v q v v v 6 with argument NAND tt;ff = λf (if (f )tt (not (f )ff) else (if (f )ff tt else tt)): q q q q q q q v v tt q q q v ′ ff ¬(v ∧ v ′ )
The interactions start like this: q q q q q q q q q q q q tt tt tt tt q q q q tt ff tt ff

When NAND tt;ff plays the fifth move, its output P-view is just q q so the referee must insert the previous two moves in order to correctly send q q q q q as next input P-view for K x /K y . Similarly, with its last move, K x has output P-view q q q q q q tt tt , so the referee must insert the q tt arch so as to send q q tt q tt as next input P-view.

The desequentialized PAM

Given two view functions, the desequentialized PAM (DPAM) computes their interaction by making them communicate via a shared data structure, their referee. This data structure-a collection of nodes and two distinct tree structures on it-is built dynamically and is itself used to "guide" its own process of construction.

In outline, the DPAM interrogates the two view functions alternately whilst maintaining the referee data structure (on the basis of the responses of the view functions). Each time a view function makes a move, the DPAM adds a new (to the referee) with two edges: the c-ptr and the j-ptr. It then offers this new node to the other view function.

When a view function is offered a node, it can read off its current P-view by traversing the referee: from its own nodes, it follows the c-ptrs and from the other's nodes, it follows the j-ptrs. We call this the access protocol to the referee: a view function has read/write access to c-ptrs from its nodes, only write access to its j-ptrs but read access to those of the other, and no access to the other's c-ptrs. So, given view functions σ : A and τ : A ⇒ B, we build their referee recursively by:

• when a view function is offered a node, it reads off its current P-view;

• assuming it responds to this P-view, the DPAM creates a new node n that encodes the token just played; it then adds n's c-ptr, which points to the input/offered node, and its j-ptr, which points to that node of the referee (in the "read off" P-view) encoding the justifier of n;

• the DPAM offers n to the other view function

If we apply the DPAM procedure to K x and NAND tt;ff , it constructs the following referee (we only show the subtree associated to the interaction of §2.3.1) where the dotted arrows are the c-ptrs:

q q 7 7 o o o o o o o q v v e f h i k l q O O 1 1 1 q
8 8 q q q q q q q q q q m k i h f e d q 4 4 j j j j j j j j j j j q 0 0 j j i h h g g f e e d d tt

q q p n l j h f d tt r r f f f f f f f f f f f f f f f f tt O O 1 1 1 tt O O 1 1 1
If we apply it to K y and NAND tt;ff , we get:

q q 7 7 o o o o o o o q
s s g g g g g g g g g g g g g g q

O O 1 1 1 q 7 7 o o o o o o o q
u u j j j j j j j j j j j q @ @ Ð Ð Ð Ð tt w w p p p p p p p q @ @ Ð Ð Ð Ð ff w w p p p p p p p tt

O O 1 1 1 ff O O 1 1 1
At first sight, these "2-trees" don't seem very desequentialized. After all, given any node in either, we can trace back the entire interaction by always following the c-ptrs. However, in the DPAM, the access protocol prevents this: each view function has access only to its own c-ptrs-and so can only traverse its P-views.

Cellular strategies

The DPAM correctly implements interaction of innocent strategies, using only the view functions (not the full set of legal plays). However, the overhead of maintaining the referee inevitably slows the machine down. Could we implement (something sufficient to simulate) innocent interaction without using a referee?

In this section, we present the class of cellular strategies. We can interact such strategies using a radically simplified DPAM, the CPAM (cellular pointer abstract machine), which needs no referee. We then describe a "cellularization" process that converts an innocent strategy into a cellular one that "does the same thing". We can thus interact two innocent strategies by first cellularizing both, then running the results in the CPAM.

Cellular strategies

The OP-view

The OP-view of s ∈ L A , written s , is defined by:

• s = s ω , if s ω is an initial move; • s = jp(s) • s ω , otherwise.
In words, we simply follow back the "chain" of pointers to the initial move.

If s satisfies P-visibility, the OP-view s forms a subsequence of the P-view s . Indeed, we can consider the P-view as an annotation of the OP-view which inserts, underneath each O P arch of s , a sequence of P O arches:

• • • • • • • • • • • • • • • • • • • • • • 3.1.

The O-views and the view

The O-view of s ∈ L A , written ⌊s⌋, is defined by:

• ⌊ε⌋ = ε; • ⌊s⌋ = ⌊jp(s)⌋ • s ω , if s ω is a P-move; • ⌊s⌋ = ⌊ip(s)⌋ s ω , if s ω is an O-move.
In contrast to a P-view which always has a unique initial move, an O-view may contain many initial moves. A play s ∈ L A satisfies O-visibility iff ⌊s⌋ ∈ L A , i.e. we lose no O-pointers in ⌊s⌋.

The short O-view of s ∈ L A , written s , is defined by:

• s = s ω , if s ω is a secondary move; • s = jp(s) • s ω , if s ω is a non-secondary P-move; • s = ip(s) s ω , if s ω is an O-move
Note that, for s ∈ L A , its short O-view s is not a legal play of A but is a legal play of A -, the decapitation of A.

Let u be a program interaction between innocent σ : A and τ : A ⇒ B. If τ played the last move of u then u = u ↾ A , i.e. the next input P-view for σ is just the short O-view of u. If σ played the last move of u then q • ⌊u ↾ A⌋ = u (where q, the initial move of u, justifies all the initial-in-A moves of u), i.e. the next input P-view for τ is essentially just the O-view of u ↾ A.

If s satisfies P-and O-visibility, the OP-view is contained in the O-view (as well as in the P-view). So an O-view can be seen as an "annotated OP-view" in much the same way as a P-view:

• • • • • • • • • • • • • • • • • • • • • • •
Earlier on, we defined the function match(s, t) to formalize what we intuitively mean by "extend t with the last move of s". We now define a new function match ⋆ (s, t) P-ending, P-vis s ∈ L A and t ∈ L A such that jp(s) = t : match ⋆ (s, t) denotes the extension of t the suffix of the P-view of s that lies underneath the pointer from s ω to jp(s) ω . In other words, instead of adding just the last move of s to t, this adds the last "chunk" of the P-view of s to t, so that match(s, t) = s . Similarly, for O-ending, O-vis s ∈ L A and t ∈ L A such that ⌊jp(s)⌋ = ⌊t⌋, we define match ⋆ (s, t) to be that extension of t with the last "chunk" of the O-view of s.

Finally, we define the view s of P-and O-vis s ∈ L A to be the obvious "superposition" of the P-view and the O-view:

• s = ⌊s⌋, if s ω is an initial move;

• s = match ⋆ (s, jp(s)), otherwise.

The view of s can thus be seen as a doubly annotated OP-view:

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
where is the initial move of the OP-view.

View-dependence

Let σ be a strategy for A satisfying O-and P-visibility. We say that σ is viewdependent iff

s ∈ σ ∧ t ∈ dom(σ) ∧ ip(s) = t ⇒ match(s, t) ∈ σ.
A view-dependent strategy thus depends on the view in exactly the same way an innocent strategy depends on the P-view. In particular, innocence implies view-dependence: a P-view is a view where all O-moves are justified by the immediately preceding move.

In passing, let us note that the class of view-dependent strategies is closed under composition, giving rise to an SMCC (not a CCC) that contains the innocent CCC and is contained in the usual "ambient SMCC" of arenas and all strategies.

A view-dependent strategy σ is cellular iff it satisfies OP-visibility. Note that (the behaviour of) a cellular strategy still depends on the entire view; only its choice of justification pointer is restricted by the condition. However, this already rules out copycat strategies (the usual identity arrows in categories of games) for all but the most trivial of arenas. In consequence, cellular strategies do not form a category-even though the condition is preserved by composition.

A cellular strategy is uniquely determined by its cellular view function which maps O-ending views (inputs) to P-ending views (outputs).

Cellular interaction

The CPAM

During DPAM interaction, each view function reads off, from the referee, its current input P-view. Once the view function responds, the DPAM updates the referee to reflect the new "state of interaction". We need to do this because the view function cannot in general determine, from its input P-view and response, the next P-view for the other view function. Typically, an input P-view plus the view function's response looks something like:

• • • • • • • • • • • • • • •
In general, the next input P-view contains moves underneath the • arch. But these moves don't appear in the current P-view. This kind of thing happens all the time in DPAM interaction; the c-ptrs of the referee allow us to recover these "missing" moves.

However, imagine now an alternative interaction architecure (to the DPAM) where the strategies views, not P-views, but where both strategies must be cellular. If a strategy receives an input view (from the other strategy), it knows its response (by view-dependence) and the fact that its response points in the OP-view means that the next view (for the other strategy) can be simply "read off" without any need for a referee:

If we take the input view and extend it with the strategy's response

• • • • • • • • • • • • • • / o / o • • • • o / o / • / o / o o / o / • • • • o / o / • o / o / •
we almost have another view. If we erase the annotations under all the • • arches of the OP-view that lie under the pointer from the last move, we get a view, the next input for the other strategy:

• • • • • • • • • • • / o / o • • • • o / o / • / o / o / o / o / o / o / o / o / o / o o / o / •
So, given cellular view functions σ : A and τ : A ⇒ B (for B a base type), we define their CPAM interaction by:

• when a view function receives a view, it adds its next move (if any) to this view and erases no-longer-necessary annotations;

• unless the last move was in B, it sends the resulting view to the other view function (which does the same thing).

Cellularization

Given innocent σ : A and τ : A ⇒ B (where B is a flat arena), we transform their set of interactions σ | τ into a new set σ c τ of interactions satisfying OP-visibility. We define this inductively on the length of u:

• ε c = ε;

• ua c = -u c a, if a points in the OP-view;

u c u ↾ σ , if a (is not OP-vis and) is played by τ ;

u c u ′ a, if a (is not OP-vis and) is played by σ; and where u ′ is the last segment of jp(u) c with its first two moves removed.

The set = {u ↾ A | u ∈ σ c τ } determines a deterministic cellular view function (by taking the set of views of plays in the set) and so can be "closed", yielding a cellular strategy σ c . We can similarly define a cellular τ c for A ⇒ B. So, if we interact σ c and τ c in the CPAM, they play exactly the transformed interactions above and so we get the same final result (if any) as if we'd interacted σ and τ in the DPAM.

We've defined here a kind of "relative cellularization": we fix σ and τ and obtain σ c and τ c that interact "just like" σ and τ . But, if we now cellularize the same τ with some other σ ′ , we (usually) obtain a different cellularization of τ , i.e. some τ c ′ which interacts correctly with σ ′ c .

Intuitively, we could define an "absolute" cellularization of τ by cellularizing it with all possible σs and taking the big union of all the resulting τ c s. However, unlike in the relative case, the proof that the resulting strategy determines a deterministic view function is highly nontrivial. We hope to present this in a future version of this paper.

Examples of cellularization

K y vs. nand

We give the transformation of NAND | K y below. The cellular interaction starts out exactly like the corresponding innocent interaction. However, once NAND completes the subcomputation q q q tt tt q q ff ff tt K y would violate cellularity (in the innocent interaction), so we insert the whole of the next P-view for NAND. The interaction remains cellular until that same subcomputation completes a second time, whence K y inserts the (now longer) next P-view for NAND.

K y vs. NAND: q q q q q q tt tt q q ff ff tt q q tt q q q q tt tt q q ff ff tt q q tt q tt ff ff

This examples nicely illustrates the way that cellular interaction works incrementally: K y gradually "unpicks" NAND, view by view, and the interaction goes a bit further every time K y has "learnt a new view" of NAND-witness the sequence of P-views in the first copy of NAND: q q ; q q tt q ; q q tt q ff tt .

K x vs. nand

The noncellular behaviour of K x becomes apparent much sooner than that of K y .

After just the fifth move, K x must insert q q q to provide the correct input P-view for NAND. On receiving NAND's response, K x must once again insert the next P-view, etc. Indeed, the cellularized K x spends much of its time "switching" between the two copies of NAND.

K x vs. NAND [beginning segment]: q q q q q q q q tt q q tt q q q q tt q q tt q tt 4 Conclusions and future work

In summary, we've presented two abstract machines for interacting respectively innocent and cellular strategies. We've outlined the procedure of cellularization that permits us to interact innocent strategies in the CPAM. The resulting interactions in some sense untangle the "pointer spaghetti" of typical innocent interactions, exposing perhaps some potential deeper symmetry between Opponent and Player in the guise of view-dependent strategies. In any case, the category of view-dependent strategies seems worthy of further attention, the most pressing need being for a syntax, perhaps using first-class contexts, at for describing head normal forms.

Another natural next step would be to implement the two machines presented here and compare their performance, in particular to see whether the efficiency of the CPAM (no referee) comes at too high a cost (the cellularized strategies contain very long plays in general).

This work owes a considerable intellectual debt to the work of Padovani [8] and Loader [7]. Both papers use "transfering terms" (now known as "cellular terms") and a transformation of λ-terms into cellular terms in order to establish decidability of the contextual equivalence on the minimal model (Padovani) and on unary PCF (Loader). However, our work also differs from theirs in that our notion of "cellular" restricts and extends innocence: we have a stronger visibility condition but a weaker view-dependence condition.

Acknowledgements I would like to thank Pierre Clairambault, Pierre-Louis Curien, Thierry Joly and Vincent Padovani for numerous discussions related to the subject of this paper.