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ABSTRACT

Today several lidar networks around the world provide large datasets that are extremely valuable for
aerosol and cloud research. Retrieval of atmospheric constituent properties from lidar profiles requires
detailed analysis of spatial and temporal variations of the signal. This paper presents an algorithm called
Structure of the Atmosphere (STRAT), which is designed to retrieve the vertical distribution of cloud and
aerosol layers in the boundary layer and through the free troposphere and to identify near-particle-free
regions of the vertical profile and the range at which the lidar signal becomes too attenuated for exploi-
tation, from a single lidar channel. The paper describes each detection method used in the STRAT algo-
rithm and its application to a tropospheric backscatter lidar operated at the SIRTA observatory, in Pal-
aiseau, 20 km south of Paris, France. STRAT retrievals are compared to other means of layer detection and
classification; retrieval performances and uncertainties are discussed.

1. Introduction

Remote sensing of the atmosphere by lidar dates
from the 1960s. Lidars have since become very popular
remote sensing tools. They are used extensively both in
ground-based and airborne configurations to get de-
tailed vertical profiles of cloud or aerosol properties,
such as the extinction coefficient, to learn more about
the nature of particles present aloft. Lidars are com-
monly deployed during intensive observation field ex-
periments as well as for routine long-term monitoring.

Today several global and regional networks of atmo-
spheric observatories exist that use lidars as their main
monitoring instrument. The European Aerosol Re-
search Lidar Network (EARLINET) monitors aerosol
transport over Europe based on 21 Rayleigh/Mie and
Raman lidar stations (Bdsenberg et al. 2003). Similarly,
the National Institute for Environmental Studies of Ja-
pan coordinates a network of 12 automatic dual-
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wavelength polarization lidars continuously to study
Asian dust transport (Shimizu et al. 2004). The conti-
nent between Europe and Asia is covered by the Com-
monwealth of Independent States-Lidar Network (CIS-
LiNet) project that aims to monitor aerosol and ozone
through a network of six lidar stations from Belarus,
Russia, and the Kyrgyz Republic since the beginning of
2004. Building from the research capabilities already
established at a number of eastern North America lidar
facilities, a Regional East Atmospheric Lidar Mesonet
(REALM) has been proposed to monitor air quality in
the vertical from multiple locations in that region (Hoff
and McCann 2002). The National Aeronautics and
Space Administration funds a MicroPulse Lidar Net-
work (MPLNet; Welton et al. 2001) to monitor tro-
posheric aerosols based on 20 micropulse lidars located
at climatologically diverse locations on the planet and
coordinated with the Aerosol Robotic Sunphotometer
Network (AERONET). The Network for the Detec-
tion of Stratospheric Change (NDSC) monitors strato-
spheric ozone using lidars that range through the strato-
sphere.

Continuous or routine operations of such systems
produce upward of 1000 vertical profiles per day for
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each channel of each system. All systems produce fun-
damental information about the structure of the atmo-
sphere, which is the vertical distribution of the particle
layers from near the ground to the top of the lidar
range. Those are basic parameters, yet our current un-
derstanding of the vertical distributions of cloud and
aerosol layers in the atmosphere remains limited by
lack of large-scale analysis of available datasets. Fur-
thermore, in the context of new satellite missions car-
rying active remote sensing payloads, such as the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO; Winker et al. 2003), ground-
based lidar observatories have an increasingly impor-
tant role to play in establishing regional climatologies
that will tie in the temporally sparse global-scale satel-
lite measurements.

The need for robust algorithms designed to process
large lidar datasets has been established for over a de-
cade (e.g., Platt et al. 1994). Several authors have ex-
ploited long-term lidar datasets to derive statistics and
climatologies of cloud and aerosol macrophysical prop-
erties (e.g., Cadet et al. 2003; Comstock et al. 2002;
Sassen and Campbell 2001). In such analyses, particle
layers, being clouds or aerosols, are typically detected
using slope change in the lidar profile (e.g., Flamant et
al. 1997; Shimizu et al. 2004), or comparing the lidar
power return to an expected clear-sky value (e.g.,
Clothiaux et al. 1998). Several authors developed meth-
ods using wavelet transforms to identify particle layers
in the lidar profile (e.g., Cohn and Angevine 2000;
Brooks 2003), but those studies were limited to bound-
ary layer height (BLH) analyses.

In this paper we present an end-to-end algorithm de-
signed to retrieve an ensemble of basic parameters of
the particulate atmosphere from single-channel lidar
profiles. The algorithm is designed with modules that
retrieve the height of the boundary layer, the vertical
distribution of particle layers (clouds and aerosols), and
that identify layers that are near particle free. Each
retrieval taken independently is not new; however, the
added value comes from the use of multiple analyses on
each lidar backscatter profile to derive a self-consistent
classification. The specifications of this algorithm are as
follows:

e to detect all particle layers from near the ground to
the top of the lidar range, that is, cloud and aerosol
layers in the free troposphere and the vertical extent
of the boundary layer (BL) from the raw uncali-
brated lidar backscatter profile;

e to identify pristine layers predominantly populated
by molecules, and hence considered as near particle
free, so that the lidar signal can be calibrated (with
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respect to a calculated molecular backscatter) in an
automated manner for further inversion of the signal;

¢ to be widely applicable to any single- or multiwave-
length ground-based lidar system (micro- to milli-
joule pulse energy, high or low pulse frequencies,
UV, visible, and near-infrared wavelength) by using
the signal-to-noise ratio (SNR) as the only threshold
reference;

e to be automatic and robust so that long lidar time
series can be processed in an operational environ-
ment.

The objective of this algorithm development is to
provide a tool that can be used to process large ground-
based lidar datasets and hence give access to a very
detailed macrophysical classification of the particulate
atmosphere. This is the first and necessary step toward
extending regional statistics of cloud and aerosol mac-
rophysical properties.

In section 2, we present the lidar measurement
dataset used to develop the STRAT algorithm. Section
3 is dedicated to the description of the algorithm and
section 4 to the evaluation of the algorithm. Conclu-
sions are provided in section 5.

2. Data description

To develop the Structure of the Atmosphere
(STRAT) algorithm we use a database produced by the
Site Instrumental de Recherche par Télédetection At-
mosphérique (SIRTA) observatory, a facility dedicated
to observing the atmosphere in support of cloud and
aerosol research. SIRTA is located in Palaiseau, 20 km
south of Paris, France; the data can be retrieved
through its Web site (www.sirta.fr). SIRTA gathers ac-
tive and passive remote sensing instruments to retrieve
optical, radiative, and dynamic properties of the atmo-
sphere and its constituents. This includes a dual-
wavelength polarization lidar, Lidar Nuages Aérosols
(LNA; i.e, the Cloud Aerosol Lidar), a millimeter-wave
Doppler radar, a near-IR ceilometer, a surface broad-
band flux station, and standard weather measurements
(Haeffelin et al. 2005). The SIRTA database includes
also radiosonde profile data produced by Météo-France
15 km from the site as part of their national operational
network (0000 and 1200 UTC).

The main dataset used to develop STRAT is that of
the LNA. Table 1 lists its technical characteristics. LNA
profiles corrected for electronic noise, atmospheric
background signal, and range divergence are available
in the SIRTA database in netcdf format for the period
starting in March 2002 through today (3000 h). These
level-1 files contain lidar backscatter profiles for six
different channels (see Table 1) along with a quality
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TABLE 1. LNA description.
Laser type Nd:Yag
Emitted wavelengths 532 and 1064 nm parallel polarized
Pulse energy 160-200 mJ
Repetition rate 20 Hz
Range resolution 15 m

Detected wavelengths 532 nm parallel polarized

532 nm cross polarized

1064 nm

Narrow field of view (NFOV)
& = 60 cm

0.5 mrad

Wide field of view

& =20 cm

5 mrad

Telescopes

flag that indicates when the SNR drops below 3 (see
section 3a). Several studies (Hodzic et al. 2004; Naud et
al. 2004; Chiriaco et al. 2004; Cadet et al. 2005; Mathieu
et al. 2000) are based on this lidar dataset and the out-
put of the STRAT algorithm described in this paper.
The lidar signal analysis by STRAT makes use of den-
sity profiles derived from radiosounding data (tempera-
ture and pressure) to simulate the theoretical lidar
backscatter solely due to molecules. Two radiosonde
profiles per day are enough to capture most density
profile variations.

In section 4 we use ceilometers measurements collo-
cated with the LNA to perform comparisons of cloud
detection and cloud-base height (CBH) retrievals. The
ceilometer uses a laser diode with an emitted wave-
length of 855 nm; its pulse repetition frequency is 6494
Hz with maximum emitted light power of 50 uW m™?
and its optical divergence is 1.2 mrad. Cloud informa-
tion is retrieved through a Vaisala proprietary algo-
rithm that looks for high backscatter values in the pro-
file.

In section 4 we also compare STRAT retrievals of
the boundary layer height with estimations based on
potential temperature profiles. For that we derive high-
resolution (10 m) temperature and pressure profiles
from the standard significant points provided in the
Meétéo-France file.

3. Algorithm description

The STRAT algorithm includes four successive de-
tections carried out on individual lidar profiles:

 noise detection, to identify where the lidar signal be-
comes too weak (signal-to-noise ratio) for further ex-
ploitation, so that data are not misinterpreted;

» molecular layer detection, to identify regions that are
near particle free, that is, populated by molecules
only or with a negligible concentration of particles,
because lidar calibration is carried out in those re-
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gions by comparison with computed molecular back-
scatter profiles. (This will enable lidar data users to
automate processes that require calibration such as
inversion of extinction profiles or calculation of layer
optical depth or investigation of cloud thermody-
namic phase using depolarization ratio.);

e particle layer detection with separate cloud and aero-
sol layer identification, so cloud and aerosol pro-
cesses can be studied;

¢ boundary layer detection, so boundary layer process
studies can be addressed.

Finally, a flag variable is derived with value 0O for
noise, 1 for molecular layers, 2 for boundary layer, 3 for
aerosol layers, 4 for cloud layers, and 10 for unidenti-
fied layers. Figure 1 shows a diagram of the STRAT
algorithm data processing.

a. Noise detection

1) METHOD

A simple signal-to-noise ratio threshold allows us to
determine where the signal is too noisy to extract in-
formation from the lidar measurement. For each pro-
file, it has been shown (Durieux and Fiorani 1998) that
the noise level o(r, ) of the measured signal, assuming
all its components are independent, can be written as

a(r, 1) = \ 0gy(r, 1 + ay(r, 1 + ay(r, 17, (1)

where o,(r, £)? is the shot noise induced by and pro-
portional to the backscattered lidar signal, o,(r, £)? is
the shot noise resulting from background light, and
o,(r, t)* is the shot noise resulting from the dark cur-
rent.

Assuming that oy, (r, 1)°, 0,(r, 1)°, and o,(r, 1)* are
proportional to the backscattered lidar power P(r, 1), to
the background noise power B,(r, ), and to the dark
current noise power B(r, t), respectively, Eq. (1) be-
comes

o(r, t) = C\/P(r, 1) + B,(r, t) + B(r, 1), )

where C is a proportionality coefficient to be deter-
mined. Assuming that B(r, ), defined as the sum of
B,(r, t) and B(r, t), is constant along the profile, the
noise level can be estimated at the altitude range where
there is no lidar return [P(r, t) = 0] by computing the
signal standard deviation op_,(r, t) of P(r, t) at this
range.

The proportionality coefficient C can thus be esti-
mated by averaging the ratio derived from Eq. (2) over
a given number of points as

_opg(nt) 1 AN ()

/By N Z \V/B(r, 1) ©)
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FiG. 1. STRAT algorithm diagram.

The noise level can then be expressed as P(r, 1)
SNR(r, t) = ———— . (5)
D) o=l 0\ D ¥ BoD)
o(r,t) = ——="\/P(r,1) + B(r,1). 4) B(r, 1) ' ’
B(r, 1)

Note that C can also be derived from pretrigger data if
Hence the signal-to-noise ratio SNR(r, f) can be writ- available. This retrieval can be checked against the re-
ten as sult of Eq. (3) for consistency.
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2) THRESHOLD DETERMINATION

In the STRAT algorithm, the signal is considered to
be too noisy for further analysis when the SNR falls
below a threshold of 7, = 3. Indeed, for a Gaussian
noise 99% of values are contained in the interval
+30p_o(r, t). Boundary layers, molecular layers, and
cloud and aerosol layers will be detected on the part of
the signal that is above that threshold. For systems with
a very low signal-to-noise ratio, the algorithm must be
applied to time-averaged profiles.

Note that if B(r, t) is large (e.g., daytime), op_(r, 1)
can be used as the signal noise for convenience. This
simplification does not introduce significant error in de-
termining if SNR(r, ) is less or greater than 3, as for
small SNR values o (r, ) is quite close to op_y(r, 1)
because P(r, t)/B(r, t) tends toward 0.

b. Molecular layer detection

1) METHOD

Identification of particle-free or near-particle-free
layers is of particular importance, as they are often used
in lidar calibration algorithms (e.g., Sassen et al. 1989;
Platt 1979). For simplicity, these layers will be labeled
as molecular layers although they may contain aerosols
in small quantities (see section 4a for discussion). The
identification algorithm for molecular layers is based on
analysis of the variability of the lidar signal around a
theoretical molecular backscatter profile computed
from pressure and temperature profiles. Thermody-
namic profiles can be obtained from collocated atmo-
spheric sounding measurements or extracted from
model analysis data.

A normalization coefficient K(r, ) is estimated at
each range of the lidar signal as

'@ Bl 1)
57 N Bridar(r', 1)
Kro===§1 ©

where

Blidar(rv t) = P(r’ t)},Z (7)

is the nonnormalized attenuated backscatter coeffi-
cient, Bo(7, ) is the computed theoretical molecular
backscatter coefficient, and 2N + 1 is the size of the
averaging window.

The variability, V(r, f), of the normalized lidar signal
around the molecular backscatter profile at a range r is
determined as
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r+N

1 . ]
> {72 [Bhdar(r,’ D~ K. gy Pl I)}}

r'=r—N
2N +1 ’
®)

where K is the coefficient used to normalize the lidar
profile to the molecular profile in the averaging win-
dow. A sensitivity study showed 20 gates (e.g., 300 m
for the LNA) to be a wide enough averaging window to
detect only atmospheric variations.

In molecular layers, the lidar backscatter signal
Biidar(r, 1) can be expressed as the sum of molecular
backscatter Py, ;4a.(7, £) and an additional zero mean
noise M(r, 1):

Blidar(r» t) = [P[’nol_lidar(r7 t) + M(ra t)]rz (9)

Hence, in molecular layers Eq. (8) becomes

Vir t) =

r+N
> M P
r'=r—N

Vind=—""8711

(10)
The variability V(r, f) is only due to the noise variability
and hence can be compared to the noise variance o(r,
£)%. So, a threshold value V. (r, f) can be defined with
respect to the noise variance o(r, £)* as

Vthr(ra t) = Tz(T(”o t)za (11)

where T, is the molecular layer threshold coefficient.
Thus, if V(r, ) is below the threshold value Vy,.(r, ), we
consider the lidar backscatter power to be characteristic
of a molecular layer.

2) THRESHOLD DETERMINATION

Here again we use op_(7, t) as a substitute for o(r, 1)
because in molecular layers the two values are quite
close. Indeed, in our case P(r, t) is typically lower than
the background backscatter B(r, f) and hence o(r, t)
tends toward op_(7, 1).

To determine this threshold, values of V(r, t)/op_(r,
£)* [Egs. (8) and (11)] have been computed from one
profile per day over the available database (October
2002-October 2005) only on signal values when the
SNR is greater than 3.

Figure 2 illustrates the probability density function
(PDF) of V(r, t)lop_y(r, t)* at two wavelengths (532 and
1064 nm) with 2N + 1 = 21 gates = 315 m. The PDF of
the function V(r, f) expressed in Eq. (10) is also repre-
sented in Fig. 2 with a solid line. The simulated noise
used to estimate this PDF is a Gaussian noise similar to
the real one.

Distributions are divided in two separate regions.
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FIG. 2. PDF of V(r,t)lo,(t)* values estimated on one profile per
day for the entire database at two wavelengths—532 (gray solid
line) and 1064 nm (gray dotted line)—and PDF of simulated V(r,
t)/o,(t) values in molecular layers (black solid line) with 2N + 1 =
21 gates = 315 m.

The first one is a narrow Gaussian distribution ranging
between 0 and 3. It can be associated with molecular
layers where the variability is smaller than in particle
layers. The second one is a very broad distribution of
V(r, t)lop_o(r, t)* with values greater than 3. Because
the objective is to use molecular layers for calibration,
it is important not to falsely detect stable particle layers
as molecular layers. For our application, a threshold
value Vi, (r, t) of 30p_o(r, t)* is a good compromise to
separate molecular layers from other layers. The differ-
ence in distribution width between the 532- and 1064-
nm curves of Fig. 2 can be attributed to the signal qual-
ity of the two different channels.

¢. Cloud and aerosol layer detection

1) METHOD

The majority of particle layer detection techniques
described in the literature use thresholding tests on the
first derivative of the backscatter intensity (e.g., Pal et
al. 1992). Such methods give satisfying results as long as
the signal-to-noise ratio remains high. Other techniques
use algorithms that depend on cloud type (e.g., Cha-
zette et al. 2001). While they are suited for case studies,
they cannot be used for automated detection. In the
STRAT algorithm, a combination of wavelet transform
and Pr’ ratio thresholding is used to identify particle
regions in lidar profiles.

The continuous wavelet transform (CWT) is used to
detect discontinuities in the lidar signal as the base, the
top, and the peak backscatter of individual particle lay-
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FIG. 3. Second derivative of a Gaussian wavelet called the
Mexican hat wavelet.

ers. This method, based on seeking high correlation
between the lidar signal and the wavelet characterized
by the “Mexican hat” shape for each range and for each
scale, is inspired by studies by Mallat and Hwang (1992)
and an algorithm developed by Brooks (2003). The
Mexican hat wavelet W(r), shown in Fig. 3, is the second
derivative of a Gaussian. It is used because its shape is
very similar to the shape of the lidar signal backscat-
tered by cloud or aerosol layers. Additionally, “deri-
vates of Gaussians are most often used to guarantee
that all maxima lines propagate up to the finest scales”
(Mallat and Hwang 1992), which is not the case of the
Haar wavelet.

First, the CWT is computed for each P(r, t) profile as

CWT,,(r, 1) = > P(r, 001, (1), (12)

where

1 r—>nb
v, =—F¢ ‘P( ), (13)

\/; a

where a is the wavelet dilation (or scale) and b is the
location of its center. CWT coefficients can be inter-
preted as a correlation coefficient between the wavelet
(centered on b and scaled by a) and the signal P(r, 1).
Second, the modulus of CWT coefficients is deter-
mined to extract the lines of modulus maxima of the
CWT, ,(r, t) that are lines (or ridges) formed by all
maxima found at all dilations. This skeleton of the
CWT, formed by all ridges, represents the highest cor-
relation and anticorrelation between the signal P(7, t)
and the wavelet from the largest to the finest scale.
Figure 4 illustrates the performance of this method
for an ideal cloud or aerosol backscatter profile (Fig.
4a) and a real one (Fig. 4d). Figure 4b and Fig. 4e show
CWT coefficients for the ideal profile and the real one,
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FIG. 4. (a) Simulated and not normalized backscattering power received for an ideal cloud or aerosol case in function of altitude; (b)
corresponding CWT coefficients calculated for different dilation a (finest high up) and different location of wavelet’s center b with
highest coefficients in white and lowest in black; and (c) skeleton (maxima lines) of the CWT modulus. (d), (e), (f) Same as in (a)—(c),

but for a real backscattering.

respectively. Figure 4c and Fig. 4f show the correspond-
ing maxima lines. Ridges of highest correlation and an-
ticorrelation coefficients propagate to the finest scale at
the base and top of each particle layer, as well as at the
location of the maximum backscatter.

Hence each ridge shown in Fig. 4c is associated
with a discontinuity of the P(r, f) signal. The value
M cwr(iigges) Of the average CWT coefficients along
this ridge allows us to discriminate a backscatter peak
from a layer base or top as

M ewrliviages) = CWT, (7, Dl pe s

>0: layer peak
ridges | <(: layer base or top.
(14)

For each identified backscatter peak, the base (top) of
the same layer can be found by looking for the first base
(top) detected below (above). If the top of one layer is
the base of the next one, the STRAT algorithm is de-
signed to link these two layers into a single one with a
peak defined as the maximum P value of the two origi-
nal peaks.

Finally, we apply a threshold value R, on the dif-
ference of backscatter power between peak height and

base height defined as
R = P(rpeak) - P(rbase) > Rthr' (15)

This threshold removes overdetections that are due to
noise variations such as the discontinuities detected be-

tween points 200 and 350 shown in Fig. 4f. The Ry,
threshold implemented in the STRAT algorithm is de-
rived with respect to the noise level () as

Ry = T50(1),

where Tj is the particle layer threshold coefficient.

(16)

2) THRESHOLD DETERMINATION

As this threshold is used to identify false peak/base
detections in layers with low backscatter signal (i.e.,
molecular layers), we use op_o(r, f) as a substitute for
o(r, 1).

A PDF of R(r, t)/o(t) values is derived from the LNA
database (10 profiles per day) to determine Ry, The
PDF is shown in Fig. 5. Because of noise-related signal
variations, discontinuities can also be detected in mo-
lecular layers, but corresponding R(r, t) values are
smaller than for particle layers. The PDFs of R(r, t)/a(t)
values for discontinuities identified in molecular layers
are also represented in Fig. 5 (solid line). This curve is
obtained by processing simulated noisy molecular pro-
files derived from radiosonde data. The distribution is
divided in two separate regions. The Gaussian distribu-
tion between 0 and 10 that contains 86% of the detec-
tions is due to noise variations. This effect corresponds
to the many short CWT ridge lines shown in Fig. 4f.
Values R(r, t)/o(z) for true particle layers are logically
greater. Picking a threshold value Ry, of 100(¢) allows
us to remove overdetections.
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d. Cloud and aerosol distinction

1) METHOD

Aerosol and cloud layers can have similar signatures
in lidar backscatter profiles. However, for near-IR, IR,
visible, and UV wavelengths, the lidar backscatter
power is generally greater for liquid water and optically
thick ice for clouds than for aerosols. The cloud and
aerosol distinction algorithm is based on the study by
Wang and Sassen (2001), who applied a threshold on
the peak Pr? to the base Pr? ratio. The ratio is ex-
pressed as

dPr2 _ P(rpcalo t)rgz)eak )
P(rbase7 [)rﬁase
Ratios greater (less) than a threshold 7, classify a layer
as cloud (aerosols). Figure 6a shows a 7-h time series of
532-nm backscatter power profiles. The measurements
show significant backscatter between the ground and
2500 m. After 1130 UTC one can see several occurrences
of very strong extinction that are characteristic of dense
water clouds. Figure 6b shows profile-by-profile dPr?
ratios for the areas identified as particle layers. It re-
veals a large profile-by-profile variability of dPr’ values.
To improve this method, we derive average dPr? val-
ues for a given object (cloud or aerosol layer). To obtain
this averaged value on a vertically and temporally consis-
tent particle layer, range-time processing is required.
An average dPrlzayer value is computed for each
identified particle layer, and the 7 threshold is applied
to this average value to separate cloud from aerosol
layers as

(17
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{dPrlzayer > T,, then layer is cloud layer s

dpPr?

jayer < T4, then layer is aerosol layer.

Figure 6¢ shows the dPrlzayer values for cloud and aero-
sol layers observed on 26 May 2003. Some particle lay-
ers appear with significantly stronger dPrlzayer than others.

2) THRESHOLD DETERMINATION

The PDFs of dPrfayér values are shown in Fig. 7 for
three different vertical range intervals. The distribution
based on the complete vertical range (0-15 km) is rep-
resented by a solid line, the distribution of dPr12ayer for
layers below 7.5 km is shown in the dashed line with
square markers, and the distribution of dPri,q., for lay-
ers above 7.5 km is drawn with a dashed line and dia-
mond markers. Those intervals of altitude are used be-
cause except for exceptional events like volcanic erup-
tions; we assume that aerosol concentrations are not
sufficient to be detected above 7.5 km, whereas cloud
layers extend from O to 15 km. So distributions of values
dPrfayer are due to different contributions: under 7.5 km
a combination of cloud and aerosol contributions, and
above 7.5 km only cloud contributions. Thus, the dis-
tribution of dPrlzayer for aerosol layers is located be-
tween 1 and 4 where the two dashed lines are distinct
whereas the distribution of dPrlzaycr for cloud layers is
wider. To separate cloud from aerosol layers based on
these distributions, we select a threshold value 7, = 4.
So Eq. (18) becomes

{dPrlzayer > 4, then layer is cloud layer (19)
9

dPrlzayer < 4, then layer is aerosol layer,

for particle layers below 7.5 km. Above 7.5 km we as-
sume that 100% of particle layers corresponds to clouds.

e. Boundary layer height detection

METHOD

The atmospheric boundary layer (ABL) is the lowest
part of the troposphere that is directly influenced by the
earth’s surface and responds on short time scales to
surface forcing. This is the region that is well mixed due
to convectively driven mixing. Several BLH detection
methods are described in the literature. Methods using
a simple signal threshold (e.g., Melfi et al. 1985; Boers
et al. 1988) are not appropriate for cases with varying
aerosol extinction. Methods based on gradient proper-
ties at the top of the boundary layer (e.g., Flamant et al.
1997) need averaged or smoothed signals and hence
lose resolution. In the presence of boundary layer
clouds, all methods, including wavelet analysis methods
(e.g., Cohn and Angevine 2000; Brooks 2003), are likely
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FIG. 6. (a) LNA data 532-nm WFOV telescope on 26 May 2003, (b) profile-by-profile dPrj ratio (17), (c) layer-by-layer dPr, ., ratio,
and (d) flag obtained with particle layer distinction; cloud layers are in red, and aerosol layers are in orange (18). Ceilometer CTH

detections are represented with black points.

to identify the top of the cloud as BLH because the
strongest gradient (or correlation) will occur in that
part of the profile. In the STRAT algorithm we use the
output of the molecular layer module and particle layer
module to help distinguish the low-altitude clouds from
the boundary layer below them. The boundary layer
height detection method used in the STRAT algorithm,
is similar to the particle layers detection method de-
scribed in section 3c. It is inspired by the work of Mallat
and Hwang (1992) and Brooks (2003).

The wavelet used here is the first derivative of a
Gaussian W’(r), shown in Fig. 8 because its shape is
very similar to the negative gradient of the backscatter
signal at the top of the boundary layer during daytime.
A standard boundary layer backscatter signal is shown
in Fig. 9a. As for particle layer detections, the CWT is
computed for each P(r, t) profile as

M’CWT(iridges) = Wla,be iridges{

CWT,,(r, 1) = >, P(r, DU, (1), (20)
where
1 r—>b
W) = W qw( P ) (21)

Here, a is the wavelet dilation (or scale) and b is the
location of its center.

Then modulus maxima lines of the CWT, ,(r, t) are
also determined to detect all gradients in the backscat-
ter signal. Because of the wavelet shape, negative gra-
dients can be discriminated from positive ones using
average values of the CWT"’ coefficients along this ridge
as follows:

<0: positive gradient -
>0: negative gradient’ 22)
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The detection of negative gradients combined with the
altitude of the lowest molecular range, H i, mo (Shown
in Fig. 9), and the base height of the lowest particle
layer (Hyin pare) allows us to estimate the boundary
layer height. Four different cases, illustrated in Figs.
9a,c,e, must be considered:

o if Hiyin mot < Himin_pare (Molecular layer below the 0 100 200 300 400 500

lowest identified particle layer), ' ' ' '

o there exists a ridge with My < 0 that propagates

up to a range r < H,;, mo: BLH is the range r (if

there is more than one ridge, only the ridge with

the minimum My value is kept). This case is

illustrated in Fig. 9a with an example of a standard

lidar backscatter signal and in Fig. 9b with the cor-
responding wavelet coefficients.

e there does not exist a ridge with Myt < 0 that

in part

0 100 200 300 400 500

—
«©

=

£

FI1G. 9. (a), (c), (¢) Not-normalized, range-corrected backscat-
tered signal; (b), (d), (f) corresponding CWT coefficients calcu-
lated for different dilation a (finest high up) and different location
of wavelet’s center b with highest coefficients in white and lowest
in black. (a), (b) A clear case, (c), (d) a cloudy case with a cloud
near the BL, and (e), (f) a cloudy case with a cloud at the BL.

0 100 200 300 400 500
number of points

_4 _2 0 2 4 propagates up to a range r < H ;. .. BLH is
undefined.
X o if Hyin part < Hiin_mor (Molecular layer above the
FIG. 8. First derivative of a Gaussian wavelet. lowest identified particle layer),
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TABLE 2. Parameters of the STRAT algorithm to process LNA data.
Molecular layer Cloud and aerosol Cloud and aerosol Boundary layer height
Noise detection detection detection distinction detection
Threshold T, =3 T,=3 75 =10 T,=4 —

Window length 5 gates or 75 m 21 gates or 315 m

« there exists a ridge with M < 0 that propagates
up to a range r < H,,, pare BLH is the range 7 (if
there is more than one ridge, only the ridge with
the minimum M¢wr value is kept). A cloud or
aerosol layer is located near the top of the BL. This
case is illustrated in Fig. 9c with an example of a
backscatter signal where the molecular layer is
above the lowest identified particle layer. Figure 9d
shows the corresponding wavelet coefficients.

 there does not exist a ridge with My < 0 that
propagates up to a range r < Hyyn par: BLH is
H in_pari- A cloud or aerosol layer is located at the
top of the BL. This case is illustrated in Fig. 9¢ with
an example of a backscatter signal where a cloud
layer is present at the top of the BL. Figure 9f
shows the corresponding wavelet coefficients.

After daytime convection ceases, aerosol layers be-
come stratified and multiple layers can form near the
surface (boundary and residual layers). In such situa-
tions, the STRAT algorithm is not able to distinguish
the top of the boundary layer and the top of the re-
sidual layer.

4. Evaluation of the STRAT algorithm

a. Evaluation of the molecular layer detection

Here we evaluate if layers identified by STRAT as
molecular layers contain any additional extinction due
to the presence of some quantity of aerosols. To do so
we apply a classic approach of optical thickness estima-
tion (Platt 1979) that is based on the ratio of the lidar
power attenuation from the base to the top of the mo-
lecular layer to a theoretical molecular attenuation.
Analysis of 4 yr of SIRTA lidar profiles containing mo-
lecular layers extending more than 1 km reveals that
these layers exhibit attenuation uncertainties of
+2.107° m~ ' in terms of equivalent extinction. Hence
the parameters used in the molecular layer detection
module (see Table 2) imply that STRAT will allow lay-
ers whose attenuation is somewhat different from that
of theoretical molecular layers to be identified as par-
ticle free. As a result such layers could contain up to 2
X 107> m™! particle extinction, equivalent to a 0.02
optical depth for a 1-km-deep layer. This uncertainty
can be reduced either by increasing the test range (e.g.,

from 300 to 500 m) or by reducing the variability
threshold (7).

b. Cloud and aerosol layer detection

1) PERFORMANCE EVALUATION BASED ON
SIMULATED DATA

Figure 10 shows results obtained by the STRAT al-
gorithm cloud and aerosol layer detection with a simu-
lated backscatter profile containing a cloud (Fig. 10a).
Two slopes S; and S, are used to describe the majority
of cases, where §; is the molecular slope and S, is the
slope of the backscatter profile in the cloud between
the base and the peak. Figures 10b,c illustrate results
obtained on CBH and cloud-top height (CTH) detec-
tion, respectively. We describe results obtained for
slopes between —0.5 X 107 and —2 x 107'° (m™!
st )m ! for S, and between 1 X 10~ % and 7 X 10~ for
S,. The CBH detection is sensitive to both slopes, but
the maximum resulting error is —3 gates (—45 m for
LNA profiles). CTH detection depends on the slope of
backscatter in the particle layer. CTH errors are biased
high between 0 and 5 gates (0 to 75 m for LNA data) for
the largest S, values.

2) COMPARISON WITH RETRIEVALS FROM
CEILOMETER

We compare cloud-base height retrievals derived by
applying STRAT to LNA data to those derived by a
Vaisala ceilometer located nearby (100 m). Figure 11a
shows the PDF of cloud-base height for the two systems
based on 12 months of observation. We limit our com-
parisons to situations where each retrieval is consistent
for 10 min. We note that the LNA misses clouds below
1300 m, due to the large overlap function. Above 5000
m, the ceilometer data become unreliable due to lim-
ited power. Comparisons of cloud and cloud-free oc-
currence detections by the two systems for the 1300-
5000-m vertical range are shown in Table 3. In situa-
tions labeled as cloud free by the ceilometer, we find
92% agreement, and 8% cloud detection by LNA/
STRAT. In situations where the ceilometer detects a
cloud between 1300 and 5000 m, LNA/STRAT detects
a particle layer 93% of the time with 74% clouds and
19% aerosols. The cloud-versus-aerosol discrepancy
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TABLE 3. Comparison between STRAT detection and ceilometer
detection. The asterisk denotes cloud and aerosol free.

LNA lidar ceilometer Cloud free* Cloud Aerosol
No detection 92 8 —
Cloud 7 74 19

can result from the simple cloud/aerosol threshold used
in STRAT as well as possible aerosol detection by the
855-nm ceilometer. Next we compare CBH retrieved
by both systems when they agree that a cloud is present
in the 1300-5000-m range. Figure 11b shows a scatter-
plot of LNA CBH versus ceilometer CBH and Fig. 11c
shows the PDF of the difference between the two re-
trievals, based on 12 months of observation. The
VAISALA CBH detection method (Vaisala propri-
etary algorithm) is based on the detection of high back-
scatter in the profile, so the retrieved CBH is frequently
placed between the base of the cloud and the altitude of
maximum backscatter in the cloud. The position of the
ceilometer CBH in the lidar backscatter is illustrated in
Fig. 12. The mean difference between LNA/STRAT
and ceilometer CBH is —178 m, which is consistent with
the result of Fig. 12. The standard deviation of the com-
parison is 265 m. The PDF can be divided into three
zones: zone 1 contains 80% of detections and gathers
the situations with most consistent retrievals, zone 2
includes 5% of the situations for which ceilometer
CBHs are lower than corresponding STRAT retrievals,
and zone 3 contains 14% of the distribution for which
STRAT retrievals are lower than the ceilometer CBH.

¢. Boundary layer height detection and comparison
with radiosounding retrievals

Figure 13 shows a comparison of the BLH estimated
from radiosoundings (launched every day at 1200 UT
15 km from SIRTA) and BLH processed by the
STRAT algorithm on LNA data. The method used to
extract BLH from soundings is a threshold method ap-
plied on the Richardson number R;,(z) (Menut et al.
1999), calculated as

(z — z9) [6(z) — 6(z)]

g
Ri(z) = 0(z)  u(z)y*+ vz’

(23)

where 6 is the potential temperature, g is the accelera-
tion due to gravity, z is the height, z, is height of the
surface, and u and v are the zonal and meridian wind
components. The BLH is estimated with a threshold
value of 0.21 (Vogelezang and Holtslag 1996). The li-
dar-derived BLH is the median BLH extracted be-
tween £, and £, + 5’ (Menut et al. 1999), where ¢, is the
radiosonde launch time.
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We study 200 temporally and spatially collocated ra-
diosonde (RS) and lidar profiles; 125 situations corre-
spond to clear-sky events without clouds below 5000 m
and without aerosol layers above the boundary layer in
a 20-min window around the RS launch. The mean dif-
ference between lidar and RS-derived BLH estimates is
99 m with a standard deviation o of 452 m, hence the
standard error in the mean is 62 m for a 95% confi-
dence interval. We find that 83% of the population is
within =500 m (close to 1o).

We assume that points beyond =500 m are outliers
and restrict the comparison to situations when the dif-
ference is in the interval [-500 m, +500 m], the mean
difference becomes 21 m, the standard deviation is 200
m, and the standard error is 30 m. When we further
restrict the comparison to clear-sky situations, we find
very similar statistics (see Table 4). The population of
BLH differences contains two subgroups, one repre-
senting 83% of the situations where BLH retrievals
agree within 20 m = 30 m (95% confidence) and the
other (17% of the population) representing cases with
very large discrepancies (between 500 and 1500 m). The
inconsistency between the two retrieval methods can be
due to lack of mixing or entrainment of aerosols, or
poor collocation of radiosonde and lidar profiles. Table
4 shows that the presence of cloud does not introduce
additional discrepancies.

5. Conclusions

The STRAT algorithm has been developed to ana-
lyze large datasets of lidar backscatter profile and to
retrieve the vertical structure of particle layers in the
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FI1G. 13. (a) Scatterplot of BLH retrieved by STRAT algorithm on 532-nm NFOV telescope data and BLH estimated by radiosondes, for

all cases with cross markers and for clear cases with ring markers. (b) PDF of BLH;;y,, — BLH,

atmosphere. The algorithm is based on four successive
detections carried out on individual profiles. The signal
noise level is a key parameter in the algorithm as the
detection thresholds at each step of the process are
determined with respect to it. Hence the algorithm au-
tomatically adjusts to varying levels of signal noise. Mo-
lecular or (near) particle-free layers are determined
with a conservative approach to minimize false detec-
tions so that those layers can effectively be used for
automated normalization processes. Identification of
particle layers is done by using continuous wavelet
transforms to identify discontinuities in the lidar profile
and choosing those that effectively correspond to cloud
or aerosol layer boundaries. We find good consistency
between cloud-base heights retrieved by STRAT and
those provided by a commercial ceilometer analysis.
The height uncertainty inherent to the method is evalu-
ated to be less than 3 times the vertical resolution (e.g.,
less than 45 m for the LNA). Similarly, the transition
from the boundary layer to the free troposphere is ana-

TABLE 4. Comparison between STRAT BLH retrievals and
BLH estimated by radiosondes.

Clear All Clear sky
Situations All  sky (%500 m) (% 500 m)
No. of cases 211 125 173 105
Mean (BLH,;4,, — BLHgg) 99 89 24 51
(m)
Std dev (BLH,;y,, — BLHRg) 452 445 202 199
(m)
Standard error of the mean 62 80 30 38

(BLHjiqor — BLHRs) (m)
(95% confidence interval)

for all cases.

radiosondes

lyzed with wavelet transforms. When compared to
boundary layer heights retrieved from radiosondes, we
find no significant bias in the STRAT retrievals, but the
comparison reveals a large scatter due to the inconsis-
tency between the aerosol-based and the thermody-
namic-based BLH definition. Even though a few test
cases have been carried out with the STRAT algorithm
on 355-, 532-, and 1064-nm lidar systems, with both
analog and photon-counting detection systems, the true
portability of the STRAT algorithm to diverse large
lidar datasets is still under study.

Acknowledgments. This work has been carried out
with the financial support of the French National Space
Agency CNES. The authors would like to acknowledge
Stéphane Mallat for stimulating discussions on our ap-
plication of the CWT method. We extend our acknowl-
edgments to the reviewers for their comprehensive re-
views and useful input.

REFERENCES

Boers, R., J. D. Spinhirne, and W. D. Hart, 1988: Lidar observa-
tions of the fine-scale variability of marine stratocumulus
clouds. J. Appl. Meteor., 27, 797-810.

Bosenberg, J., and Coauthors, 2003: EARLINET: A European
Aerosol Research Lidar Network to Establish an Aerosol
Climatology. MPI Rep. 348, Max-Planck-Institut fiir Meteo-
rologie, Hamburg, Germany, 192 pp.

Brooks, I. M., 2003: Finding boundary layer top: Application of a
wavelet covariance transform to lidar backscatter profiles. J.
Atmos. Oceanic Technol., 20, 1092-1105.

Cadet, B., L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keck-
hut, and A. Réchou, 2003: A sub-tropical cirrus clouds cli-
matology from Reunion Island (21°S, 55°E) lidar data set.
Geophys. Res. Lett., 30, 1130, doi:10.1029/2002GL016342.

Unauthenticated | Downloaded 06/10/21 07:26 AM UTC



MAay 2007

——, V. Giraud, M. Haeffelin, P. Keckhut, A. Rechou, and S.
Baldy, 2005: Improved retrievals of cirrus cloud optical prop-
erties using a combination of lidar methods. Appl. Opt., 44,
1726-1734.

Chazette, P., J. Pelon, and G. Mégie, 2001: Determination by
spaceborne backscatter lidar of the structural parameters of
atmospheric scattering layers. Appl. Opt., 40, 3428-3440.

Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P.
Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus
cloud particle size coupling lidar and three-channel radiomet-
ric techniques. Mon. Wea. Rev., 132, 1684-1700.

Clothiaux, E. E., G. Mace, T. Ackerman, T. Kane, J. Spinhirne,
and V. Scott, 1998: An automated algorithm for detection of
hydrometeor returns in micropulse lidar data. J. Atmos. Oce-
anic Technol., 15, 1035-1042.

Cohn, S. A., and W. M. Angevine, 2000: Boundary-layer height
and entrainment zone thickness measured by lidars and wind-
profiling radars. J. Appl. Meteor., 39, 1233-1247.

Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-
based lidar and radar remote sensing of tropical cirrus clouds
at Nauru Island: Cloud statistics and radiative impacts. J.
Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

Durieux, E., and L. Fiorani, 1998: Measurement of the lidar signal
fluctuation with a shot-per-shot instrument. Appl. Opt., 37,
7128-7131.

Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997: Lidar
determination of the entrainment zone thickness at the top of
the unstable marine atmospheric boundary layer. Bound.-
Layer Meteor., 83, 247-284.

Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based at-
mospheric observatory for cloud and aerosol research. Ann.
Geophys., 23, 253-275.

Hodzic, A., and Coauthors, 2004: Comparison of aerosol chemis-
try transport model simulations with lidar and Sun photom-
eter observations at a site near Paris. J. Geophys. Res., 109,
D23201, doi:10.1029/2004JD004735.

Hoff, R. M., and K. J. McCann, 2002: A Regional East Atmo-
spheric Lidar Mesonet (REALM). Eos, Trans. Amer. Geo-
phys. Union, 83 (Fall Meeting Suppl.), A22C-0147.

Mallat, S. G., and W. L. Hwang, 1992: Singularity detection and
processing with wavelets. IEEE Trans. Inf. Theory, 38, 617
643.

Mathieu, A., J.-M. Piriou, M. Haeffelin, P. Drobinski, F. Vinit,
and F. Bouyssel, 2006: Identification of error sources in con-
vective planetary boundary layer cloud forecast using SIRTA

MORILLE ET AL.

775

observations. Geophys. Res. Lett., 33, 1.19812, doi:10.1029/
2006GL026001.

Melfi, S. H., J. D. Sphinhirne, S. H. Chou, and S. P. Palm, 1985:
Lidar observations of the vertically organized convection in
the planetary boundary layer over the ocean. J. Climate Appl.
Meteor., 24, 806-821.

Menut, L., C. Flamant, J. Pelon, and P. H. Flamant, 1999: Urban
boundary layer height determination from lidar measure-
ments over the Paris area. Appl. Opt., 38, 945-954.

Naud, N., M. Haeffelin, P. Muller, Y. Morille, and A. Delaval,
2004: Assessment of MISR and MODIS cloud top heights
through comparison with a back-scattering lidar at SIRTA.
Geophys. Res. Lett., 31, L04114, doi:10.1029/2003GL018976.

Pal, S. R., W. Steinbrecht, and A. 1. Carswell, 1992: Automated
method for lidar determination of cloud base height and ver-
tical extent. Appl. Opt., 34, 2388-2399.

Platt, C. M., 1979: Remote sounding of high clouds: I. Calculation
of visible and infrared optical properties from lidar and ra-
diometer measurements. J. Appl. Meteor., 18, 1130-1143.

——, and Coauthors, 1994: The Experimental Cloud Lidar Pilot
Study (ECLIPS) for cloud-radiation research. Bull. Amer.
Meteor. Soc., 15, 1635-1654.

Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud
climatology from the Facility for Atmospheric Remote Sens-
ing. Part I: Macrophysical and synoptic properties. J. Atmos.
Sci., 58, 481-496.

——, M. Griffin, and G. Dodd, 1989: Optical scattering and mi-
crophysical properties of subvisual cirrus clouds, and climatic
implications. J. Appl. Meteor., 28, 91-98.

Shimizu, A., and Coauthors, 2004: Continuous observations of
Asian dust and other aerosols by polarization lidars in China
and Japan during ACE-Asia. J. Geophys. Res., 109, D19S17,
doi:10.1029/2002JD003253.

Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation
and model impacts of alternative boundary-layer height for-
mulations. Bound.-Layer Meteor., 81, 245-269.

Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical
property retrieval using multiple remote sensors. J. Appl. Me-
teor., 40, 1665-1682.

Welton, E.J., J. R. Campbell, J. D. Spinhirne, and V.S. Scott,
2001: Global monitoring of clouds and aerosols using a net-
work of micro-pulse lidar systems. Proc. SPIE, 4153, 151-158.

Winker, D., J. Pelon, and P. McCormick, 2003: The CALIPSO
mission: Spaceborne Lidar for observations of aerosols and
clouds. Proc. SPIE, 4893, 1-11.

Unauthenticated | Downloaded 06/10/21 07:26 AM UTC



