Bernard Bel 
  
PATTERN GRAMMARS IN FORMAL REPRESENTATIONS OF MUSICAL STRUCTURES

Keywords: pattern languages, formal grammars, stochastic automata, music analysis

This paper introduces several formal models of pattern representation in music. Polyvalent multimodal grammars describe partially overlapping sound events as found in polyphonic structures. Bol Processor grammars are characterizations of sequential events in terms of substring repetitions, homomorphisms, etc. Parsing techniques, stochastic production and recent developments of BP grammars are briefly described.

La musique est le suprême mystère des sciences de l'homme, celui contre lequel elles butent et qui garde la clé de leur progrès. (Lévi-Strauss 1964:27) Music representation is a vast subject covering two separate topics: sound models and musical structures. Although in the field of computer-aided composition much work has been devoted to new sound generation techniques, many studies of structural models are still limited to the analysis of Western tonal music. Beyond this domain (particularly in ethnomusicology) there has been a tendency to borrow concepts from linguistics on the basis of assumed parallels between language and traditional musical systems. Feld's provocative paper (1974), however, introduced to ethnomusicologists an epistemological dilemma which resulted in the virtual rejection of purely abstract speculations that Feld termed 'the hollow shell of formalism': Only Blacking (...) and Lindblom and Sundberg (...) have dealt explicitly with basic theoretical issues... The rest of the literature ignores issues like the empirical comparison of models, a metatheory of music, evaluation procedures, and the relation of the models to the phenomena they supposedly explain. (Feld 1974:210).

'Precomputer' studies have been limited to descriptions of 'frozen' data, thereby ignoring models that would produce musical scores:

1 Bernard Bel is a computer scientist with a background in electronics. Since 1979 he has been collaborating with anthropologists, musicologists and musicians on a scientific study of North Indian melodic and rhythmic systems. In 1981 he built a sophisticated real-time Melodic Movement Analyser (MMA) with the aid of which he developed automatic transcription and analysis of raga music (in collaboration with Dr. Wim van der Meer). In 1986 he joined GRTC, an AI laboratory of the Centre National de la Recherche Scientifique in Marseille. At present he is working on algorithms for automatic rule generation derived from hypotheses on training methods in traditional tabla (in collaboration with ethnomusicologist Dr. Jim Kippen). He is also involved in research on computer music at the Laboratoire Musique et Informatique de Marseille (MIM).

Our theory of music is...based on structural considerations; it reflects the importance of structure by concerning itself not with the composition of pieces but with assigning structures to already existing pieces. (Jackendoff & Lerdahl 1982:85) In fact, computers make it possible not only to check analytical models against large data sample sets but also to adjust grammars with a view to improving the machine's ability to compose music or to assist a human composer by suggesting channels of 'musical thinking' unknown to him/her. This is -broadly speaking -the 'expert system' approach (Kippen & Bel 1989c) 2 . Several teams are working on Western tonal music along these lines, trying to setup validations of the structural models proposed by Ruwet and Jackendoff & Lerdahl (Camilleri 1989).

Research in analysis and composition of music by means of computers implies the choice of adequate representational models of music. This paper deals with issues relevant to both approaches. Two models of musical patterns imbedded in formal grammars are introduced: Polymodal Multivalent Grammars (PMG) and Bol Processor (BP) grammars. PMGs have been proposed by Vecchione (1978ff) as a general syntactic model of music which lends itself to a paradigmatic analysis based on resemblance, and may therefore be used as an aid to music composition3 . BP grammars have been designed by [START_REF] Kippen | forthcoming 'The identification and modelling of a percussion "language", and the emergence of musical concepts in a machine-learning experimental set-up[END_REF] for an experimental study of improvisation/evaluation schemata in North Indian tabla drumming. The Bol Processor was first implemented in assembly language on the Apple IIc for fieldwork with traditional musicians 4 . Recent developments of this model in the light of contemporary music theory and practice are briefly introduced in §2.55 .

A detailed description of the BP's modus operandi is found in Kippen & Bel (1989a). The problem of transferring knowledge from informants to machines using automatic rule generation -the present focus of the author's project -is discussed in Kippen & Bel (1989b,c,d).

Pattern grammars, languages, and musical structures

Definitions and notations

It is assumed that elementary musical events ('atoms') may be transcribed with the aid of a finite set of symbols, namely the alphabet Vt of terminal symbols. For example, many pieces of tabla music belonging to the qa'ida repertoire may be transliterated with Vt = {dhin, tin, dhee, tee, dha, ta, ghi, ki, ge, ke, ka, na, ne, ra, -}, in which the hyphen denotes a silence6 . Each symbol is a quasi-onomatopoeic mnemonic representation of a musical event (stroke or bol7 ). In the same way, any finite set of elementary sound events (e.g. notes) may be viewed as a terminal alphabet for music.

A monodic sequence is a string on Vt. The set of finite strings on alphabet Vt is notated Vt*. The length of string s is |s|. For instance, |dhee na ge na| = 4. The nil string is λ, hence |λ| = 0. The set on non-nil finite strings on Vt is Vt + . In set notation, Vt + = Vt* -{λ}. The number of elements in a set S (the cardinal of S) is notated card(S). ∅ denotes the empty set, hence card(∅) = 0.

To describe languages we may need an enumerable set of variables or non-terminal symbols Vn such that Vn ∩ Vt = ∅. Throughout this paper, variables will be represented with upper-case characters sometimes followed with numbers denoting paradigmatic variants or metric durations, e.g. X2, TA14, etc... ta is notated as mir(dha), and teenakena as mir(dheenagena). Homomorphisms are suitable for describing any structural relationship that is built on transformations of the terminal symbols, e.g. transposition, octave shift, etc. in tonal music.

Pattern grammars

Leaving aside its parallels with language, music may be seen as an algorithmic (non-random) signal sequence. Since automatic (i.e. automata-generated) sequences lie somewhere between periodicity and chaos, yet closer to periodicity (Allouche 1987:264), a workable hypothesis is one that envisages the description of all kinds of musical events as generated by automata, or, equivalently, formal grammars.

Yet both the atomistic theory of music -"la mélodie n'est autre chose qu'une succession de sons déterminés" (Vincent d'Indy ) -and the classical 'scheme' model -"ABA is a Lied pattern" -are one-level conceptualizations of music. The atomistic conception, which was followed by Schönberg, Webern, etc. 8 , resulted in attempts to proclaim set theory as the foundation of tonal (cf. Babbitt) and atonal (cf. Forte) music. As put by Roads (1984:10):

With this approach, abstract properties -such as invariance relationships under formal operationsmay be studied, while properties which are not amenable to such an approach are often ignored (e.g. timbral and spatial relationships, articulation factors, clusters and clouds of sound, dramatic and expressive qualities, and so on). [START_REF] Ruwet | Roads, C. 'An overview of music representations[END_REF]Ruwet ( ,1972:100-34) :100-34) and Nattiez (1976:239-78) -both involved in surface, Schenkerian and prosodic analysis -and later Jackendoff & Lerdahl (1983) 9 , introduced linguistic/semiotic descriptions in which several layers of music constituents may be assigned to a single (monodic or homophonic) sequence.

Unfortunately, these sequential models have been unable to account for the structural organization of overlapping constituents as found in polyphonic musical structures:

At the present stage of development of the theory, we are treating all music as essentially homophonic (...) For the more contrapuntal varieties of tonal music, where this condition does not obtain, our theory is inadequate. We consider an extension of the theory to account for polyphonic music to be of great importance. However, we will not attempt to treat such music here except by approximation. (Lerdahl & Jackendoff 1983:37) To achieve this, it is necessary to disconnect the set of musical constituents from the set of the time-span intervals which support them 10 . The set of constituents is always structured as a tree (a hierarchy of partitions), whereas the set of time-span intervals is structured as an joinsemilattice (Birkhoff 1984:22) which may or may not be tree-shaped. Musical structure is therefore determined by a morphism between these two structures: a bijective morphism defines a sequential structure whereas injective morphisms define non-sequential structures [START_REF] Vecchione | Pour une théorie générale des grammaires musicales formelles[END_REF](Vecchione :139ff, 1985:207ff):207ff).

The idea of dissociating musical constituents from their time-span intervals comes in response to Xenakis ' (1963, 1972:57) suggestion to separate out-time structures, the structure of time and the resulting in-time structure, i.e. the Cartesian product of the former two.

Consider for instance the 9th measure (2nd theme of the first movement) in J.S. Bach's fifth Brandenburg Concerto in D major:

Fl. V. Pr. A1 C B1 B2 A2
mes. 9 (Vecchione 1984:137) The set of constituents may be structured as a tree 9 a model recognising four components: metrical structure, grouping structure, time-span reduction and Schenkerian prolongational reduction -the latter was criticised and expanded by Deliège . 10 This hypothesis has not been considered by all researchers in the field. See for instance Chemillier (1986Chemillier ( :2, 1987,2:380ff),2:380ff). Interestingly, Xenakis introduced three structures in his early work (1963:190-1,200): in-time, out-time structures and structure of time, the former being a mapping between the latter two. Yet in 1972 he did not deal any more with the structure of time. 

∅

Note that if the universal lower bound '∅' is not represented, the structure becomes a joinsemilattice with universal upper bound I(S), the minimal elements of which are arranged in a strict sequence: I(A11)=I(B21), I(A12)=I(B111)=I(B22), I(A13)=..., I(C2).

The weakness of this representation lies in the fact that some of the time-span intervals have been chopped into smaller intervals, e.g. I(B11), I(B12) that do not necessarily support meaningful musical constituents. The same problem arises in set representations, e.g. [START_REF] Chemillier | Toward a theory of formal musical languages[END_REF] who developed a formal language for polyphonic music based on trace languages and partially commutative free monoïds [START_REF] Mazurkiewicz | Traces, histories, graphs: instances of a process monoïd[END_REF][START_REF] Chemillier | Monoïde libre et musique: deuxième partie[END_REF].

Another aspect of the present research, therefore, is an attempt to deal with time as a topological entity: considering non-Euclidian metric durations is necessary when dealing with contemporary music, most extra-European systems, and European music prior to the 15th Century. Wiggins & al. (1988) pursued this line of thinking in a logic representation of musical constituents, defining an ordered set of 'times' and a linearly ordered commutative group 'duration'. Another fruitful approach is based on a single set of open intervals (of rational numbers) carrying two binary relations: inclusion and precedence (Van Benthem 1983:58-79).

In the linguistic/semiotic model, applying a rule in a formal grammar amounts to a step in string concatenation. In the description of polyphony, however, thirteen distinct operations are possible (Van Benthem 1984:70, Vecchione 1984:150ff):

X α -α -β1 β1 β3 -β3 β4 -β4 γ -γ δ -δ β2 -β2 ( ) X Y Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y
Comparisons of time-span intervals may be worked out by calculus or with reference to the fact that that the ear may perceive event X as starting or ending before, simultaneously, or after event Y.

If I(X) and I(Y) are the time-span intervals supporting X and Y respectively, operations α, β1, ..., δ yield a constituent X∪Y, the time-span interval of which is the smallest interval covering both I(X) and I(Y), e.g.

β3 δ I( I( (X,Y)) (X,Y)) I(X) I(Y) I(Y) I(X)
Note that γ is a strict sequence and both α and -α strict superimpositions. The latter two are identical.

If a binary-tree structure is assigned to constituents A1, A2, B1, B2 and C in the Bach example, e.g.

S A1 C B1 B2 A2
then S is the result of the following operation:

S = β1(γ(A1,C),-β3(B1,γ(B2,A2)))
Obviously this description does not retain the entire topological information: the combination of A1 and B1 might as well have been β4(A1,B1) or β2(A1,B1).

If more information must be made explicit, then alternative formulae, built on all the supposingly 'meaningful' binary trees -in terms of musical analysis -may reduce ambiguity:

S = β1(γ(A1,C),-β3(B1,γ(B2,A2))) = -β4(α(β4(A1,B1),γ(B2,A2)),C) = .
.. (up to 5! = 120 formulae). Vecchione (1984:185ff) implicitly used time operators as predicates (i.e. Boolean operators) in his syntactic model ('Ω-syntax'), actually using the same notation for operators and their corresponding predicates. In this way, the first expression of S may be written:

S -> β1(X,Y) X -> γ(A1,C) Y -> -β3(B1,Z) Z -> γ(B2,A2)
Rules in this format may contain more than one predicate, thereby allowing hierarchical descriptions more general than binary trees, e.g.

S A1 B1 X C B2 A2
resulting in a more compact (and less ambiguous) representation:

S -> β4(A1,B1) -β1(A1,X) γ(A1,C) -β3(B1,X) -β4(B1,C) -β4(X,C) X -> γ(B2,A2)
where the right side of the first rule is a conjunction of predicates 11 .

In many cases only part of the information on time-span intervals is musically significant. If E = {A1,A2,B1,B2,C}, P(E), the set of all subsets of E, is a complete lattice which may be represented as a graph in which each node indicates a subset. Edges marking the inclusion relation X ⊃ Y may be labeled with the predicate which is verified on (X,Y), in fact always α, β1, or β3. The graph may then be complemented until it is complete. Other temporal relations: β2, β3, β4, γ, δ (and their symmetric counterparts) are visible in the complete graph.

Consider for instance the subgraph concerning A1, A2 and B1 in the example:

{A1,A2,B1} {A1,A2} {A2,B1} {A1,B1} A1 A2 B1 α α β1 β3 β3 β3 β3 α β3 β1 β3 α β3 β3 β1 β3 β3 β4 β4 β4 β3
Bold edges are those belonging to the lattice.

If only part of the information about time is known (i.e. significant), it may be completed with the aid of a transitivity table: given f(X,Y) and g(Y,Z), the table yields f*g(X,Z). In many cases the result is a disjunction of predicates; in some cases it is even unknown (hence it is a disjunction of the thirteen predicates). Part of the 13x13 square table is:

-β2 β2 β4 γ δ -β2 β2 β4 γ δ -β2 -β1 ∨ -β2 ∨ β4 ∨ γ ∨ δ δ δ β2 ∨ β3 ∨ β4 ∨ γ ∨ δ δ δ δ δ δ δ δ δ δ δ β4 ∨ γ ∨ δ β2 ∨ β3 ∨ β4 β2 ∨ β3 ∨ β4 α ∨ β1 ∨ β2 ... β2 β2 ∨ β3 ∨ β4 ∨ γ ∨ δ -β1 ∨ -β2 ∨ β4 ∨ γ ∨ δ -β1 ∨ -β2 ∨ β4 -β1 ∨ -β2 ∨ β4 α ∨ β1 ∨ -β1 ∨ β2 ∨ -β2 ∨ β3 ∨ -β3 ∨ β4 ∨ -β4 (unknown) * f * g | f(X,Y) ∧ g(Y,Z) -> f*g (X,Z)
11 These examples of tree structures do not claim any musical relevance.

For example, β2(X,Y) ∧ γ(Y,Z) -> [β2 ∨ β3 ∨ β4] (X,Z). The graph with incomplete information about time may be computed as a constraint network (Allen & Kautz 1985:255ff). The model makes no assumptions on relations that have deliberately been left unknown. Rather it is a enumeration of all structures consistent with the input data.

Unambiguous predicate representation requires n(n-1)/2 predicates in a rule containing n variables. The following matrix lay out is self-explanatory:

A1 C X B1 A1 B1 X C α β4 -β1 γ -β4 α α α -β3 -β4 β1 β3 -β4 -γ β4 β4 S -> α β4 -β1 γ -β4 α -β3 -β4 β1 β3 α -β4 -γ β4 β4 α [A1,B1,X,C]
or equivalently:

α β4 -β1 γ -β4 α -β3 -β4 β1 β3 α -β4 -γ β4 β4 α S -> T [A1,B1,X,C] with T =
Vecchione's general format for context-sensitive time-predicate rules (which he calls 'Ωsyntax rules') is the following (1985:276):

θq [A J B] -> θr [C K D]
in which θq, θr are matrixes of time predicates, and A, B, C, D possible contexts. A, B, C, D, J, K are strings of variables corresponding to 'significant' units 12 . In general, |K| ≥ |J| to ensure decidability. If A=C and B=D the rule is context-sensitive in the common sense. The following subclass of rules

θq [C J D] -> θq [E J F]
may be called change of context. Depending on whether changes occur in the time-predicate matrix, in the medium part of the list ('J') or in its right and left contexts, eight modes of transformation can be defined and related to musical transformations 13 (Vecchione 1985:277ff).

12 Derived from a meaningful segmentation.

In grammars, unary or n-ary predicates may also be used to express relationships other than those on time-span intervals: location in time and space, modes of significance, voice or instrument processing, etc. Grammars containing several classes of predicates (taking their arguments in several sets of values) have been called Polymodal Multivalent Grammars (PMG) (Vecchione 1985:257ff). Time predicates are equivalent to the thirteen primitive relations in Allen & Kautz's model of naive temporal reasoning (1985), while [START_REF] Oppo | Per una teoria generale del languaggio musicale[END_REF] considered only seven relations given the fact that, for any time predicate ω, ω(X,Y) =ω(Y,X). In a PMG it is necessary to use the thirteen values to obtain a canonic rule format that is meaningful for computing rule resemblances [START_REF] Bel | The "OC" project[END_REF].

Formulae using time operators and conjunctive expressions of time predicates may be matched or evaluated using tree unification as implemented in the Prolog language [START_REF] Colmerauer | Equations and inequations on finite and infinite trees[END_REF]. The Prolog II-III implementation of generation/parsing techniques for PMGs is under study at the MIM laboratory [START_REF] Risch | Prolog II et les grammaires temporelles[END_REF].

PMGs belong to a class of formal grammars which we call pattern grammars:

A pattern grammar is an ordered 6-tuple (Vt, Vn, A, S, F, P) such that:

Vt is the terminal alphabet, Vn a finite set of variables, Vt ∩ Vn = ∅ and S ∈ Vn;

A is any enumerable set; P is a set of predicates, i.e. applications of (Vn ∪ A) n to {true, false} where n is a positive integer;

F is a finite number of triplets (p,q,R) such that p,q ∈ (Vn ∪ Vt) + and R a conjunctive expression using predicates in P whose arguments are variables occurring in q. Triplets of F can be notated: p -> q where R . In many cases, A is the set of positive integers; consequently, predicates may accept numeric arguments, see for instance §2.1.

In the field of pattern recognition, [START_REF] Evans | Grammatical Inference in Pattern Analysis[END_REF] first proposed an effective procedure for inferring pattern grammars from examples. This author has achieved a similar goal using topdown parsing and postponed unification in a Prolog II program [START_REF] Bel | Grammaires de génération et de reconnaissance de phrases rythmiques[END_REF].

The pattern grammar concept may be further elaborated depending on its actual implementation (rewriting systems, logic, etc.) Contextual information may be conveyed in a sophisticated way, e.g. feature-grammars or metamorphosis grammars [START_REF] Colmerauer | Equations and inequations on finite and infinite trees[END_REF]. Metamorphosis grammars are easier to parse than context-sensitive grammars [START_REF] Véronis | Bottom-up parser generation in Prolog[END_REF]). An example of logic representation implicitly conveying contextual information may be found in Wiggins & al. (1988).

We shall see ( §2.1) that Bol Processor grammars are a combination of pattern grammars and a sequential model derived from pattern languages. The following ( §1.3-1.4) is a formal description of the sequential model which may be skipped by readers unfamiliar with formal language theory.

Pattern languages

If H denotes the set of all λ-free homomorphisms (with respect to concatenation) of (Vn ∪ Vt)* to itself, an element of H which is the identity when restricted to Vt is called a substitution. If the image set of a substitution is Vt*, the substitution is terminal. A substitution which is a bijection of Vn to itself when restricted to Vn is called a renaming of variables.

A pattern is any element of (Vn ∪ Vt)*. If p is a pattern and s a substitution, then s(p) is a derivation of p. A pattern containing no variable is a terminal derivation or a sentence. Two patterns, p and q, are equivalent (i.e. p ≈ q) if and only if there exists a renaming of variables r such that p = r(q). Another binary relation (notated p ≤ q) is defined as follows: p is less general than (or more specific than) q iff for some substitution s, p = s(q). Since a substitution is a λ-free homomorphism, p ≤ q => |p| ≥ |q|.

The language generated by a pattern p is the set of terminal derivations of p, namely L(p) = {s ∈ Vt + : s ≤ p}. It can be proved that: ≤ is transitive p ≤ q => L(q) ⊇ L(p) p ≈ q <=> p ≤ q and q ≤ p However, the question of finding an effective procedure to decide whether L(q) ⊇ L(p) given arbitrary patterns p and q appears to be open (Angluin 1980:49-52).

The mirror mapping (see 1.1) can be extended to the set of patterns with the following definition:

∀p,q ∈ (Vn ∪ Vt)*, p = mir(q) <=> ∀s ∈ Vt + , s ≤ q => mir(s) ≤ p A transcription of a few variations of a qa'ida is given below 14 : Tabulation has been used to denote beats; each beat comprises six strokes (bols) 15 .

Conventionally, the first item is the theme of the qa'ida whereas [2], [3] and [4] are called variations. The problem may be defined as the description of the whole set of possible variations of this theme. One obvious feature of this sample sequence is that some variations are 14 Qa'ida is an Urdu word meaning 'rules' or 'system', and is derived from the Arabic word qava'id meaning 'grammar'. Tabla players often refer to the concept of grammaticality to denote correct arrangements of 'words' built on a limited vocabulary of bols. 15 In the onomatopoeic system used by North Indian drummers, Vt is practically a prefix code mapping strokes/sounds to the English lower-case alphabet. In other words, any string of Vt* (like dheenedheenagena) can be identified deterministically from left to right as a unique sequence of bols (dhee/ne/dhee/na/ge/na). Therefore strings of Vt* are usually represented without spaces.

of the same duration as the theme (16 beats) while others are double (32 beats). Doubling the length is an improvisation technique commonly used by tabla players of the Lucknow style (Kippen 1988:166-67). These sets of variations may be roughly described with the following patterns, where X, Y, Z are variables: Single variations: Let L be the language representing all acceptable variations of this qa'ida, L1 the subset of single variations, and L2 the subset of double variations: L = L1 ∪ L2. L(p1) and L(p2) are the languages generated by p1 and p2 respectively. We will agree (on the basis of much larger sample sets) that L(p1) and L(p2) contain non trivial subsets of L1 and L2. An elaborated description of L1 and L2 has been published in Bel (1987b).

Ideally, the search is for descriptive patterns of L1 and L2. A pattern d is descriptive of a language L if L(d) ⊇ L and for every pattern q such that L(q) ⊇ L, L(q) is not a proper subset of L(d).

L is always a finite set: in this qa'ida, for example, all acceptable strings of Vt* have lengths shorter than or equal to 32 x 6 = 192 symbols, therefore card(L) ≤ (1+card(Vt)) 192 . Yet, all we know about L is a set of positive and negative instances (correct and incorrect variations) called the presentation. The subsets of positive and negative instances are notated S + and S -.

A pattern p matches a presentation S = S + ∪ Siff p is descriptive of S + and S -∩ L(p) = ∅. A pattern p is a tight fit of S if L(p) = S + . Evidently, any tight fit of S is descriptive of S + and matches S.

There is an effective procedure to infer a descriptive pattern from a set of positive instances S + , but the problem appears to be NP-complete in most cases (Angluin 1980:54-55). In addition, the class of pattern languages is not closed under any of the basic set operations: union, complement, and intersection. Therefore it is not possible to construct systematically a pattern description of a language. In order to achieve such an analytical task it is necessary to define more suitable classes of languages.

Restricted pattern languages (RPL)

If p is a pattern, a subclass of L(p) may be defined with the aid of restrictions on acceptable derivations of p. For example, we may define the subclass of strings in L(p) with specified length n: L n (p) = {s ∈ Vt + : s ≤ p and |s| = n}. In the example above, evidently |X| = |Y| = 24 and |Z| = 12. In addition, we can write that Y = mir(X).

There are other ways to formalize specifications with the aid of rewriting rules: we notate p -> q, the fact that every acceptable derivation of q is an acceptable derivation of p, i.e. q ≤ p. If S is the set of all substitutions, p -> q denotes the subset Sp->q such that ∀s ∈ Sp->q, s(p) = q. Since the problem of deciding whether p ≤ q given arbitrary patterns p and q is NPcomplete (Angluin 1980:52) Sets of substitutions for rules 10 and 14 may be represented as S p10->q10 = {..., ZD ZE/ZG ZH, ...} and S p14->q14 = {..., ZC/dhin--,...}, where '...' indicates the (denumerable) possible substitutions of all strings of (Vt ∪ Vn) + except the specified ones (ZD ZE and ZC). We find that S p10->q10 ∩ S p14->q14 = {..., ZD ZE/ZG ZH, ... , ZC/dhin--,...}.

The result of all intersections is:

S o = {P192/C Z D A E Z D B, A/tagetirakitadhin--dhagena D,
B/tagetirakitadhin--dhagenadhatigegenakadheenedheenagena, C/dhin--dhagenadha--dhagenadhatigegenakadheenedheenagena A, D/dhatigegenakateeneteenakena, Z/ZC ZD ZE ZF, ZC/dhin--, ZD ZE/ZG ZH, ZF/dha--, ZG ZH/dhagenadha--} where every derivation is explicit. Therefore S o contains a unique substitution that yields the sentence.

If we select R o = {1,2,3,4,5,8,10,13,14,15,21} we get S p10->q10 = {..., ZD ZE/ZG ZH, ...}, S p15->q15 = {..., ZD/dhin--,...}, and S p20->q20 = {..., ZE/dha--,...}. Let us call S 15,20 = S p15- >q15 ∩ S p20->q20 = {..., ZD/dhin--,..., ZE/dha--,...}. For any s ∈ S 15,20 , s(ZD ZE) = s(ZD) s(ZE) = dhin--dha--. Therefore ZD ZE may never be substituted to ZG ZH, which contradicts S p10->q10 . Consequently, S o = ∅ and the derivation is aborted.

Remark: we may also define S o as a maximal (hence most specific) consistent conjunctive expression using predicates (p i = q i ) such that (p i -> q i ) ∈ R .

Theorem:

The class of finite languages coincides exactly with that of RPLs.

Proof:

Each subset of the (finite) set of rules in a RPL yields at most one terminal derivation. Therefore the set of terminal derivations is finite. Conversely, for any finite language there exists a non-imbedding rightlinear grammar G that generates exactly L. Let G = (Vt, Vn, S, R) where S is the starting symbol and R a finite set of rules in format A -> a or A -> aB such that A,B ∈ Vn, A≠B, and a ∈ Vt. It is easy to prove that G generates exactly the RPL L R (p) such that p = S, which completes the proof.

Corollary:

The class of RPLs is recursive, and it is closed under union, catenation and intersection. We can define an effective procedure for constructing L R (p) = L R1 (p1)∪L R2 (p2) as follows:

Assume that L R1 (p1) and L R2 (p2) are defined with: p1 = S1 and R1 = {S1 -> q1, ...} p2 = S2 and R2 = {S2 -> q2, ...} in which we renamed variables in R2 so that no variable occurs in both R1 and R2 . We construct L R (p) defined with: p = S and R = {S -> S1, S -> S2} ∪ R1 ∪ R2.

The set L R (p) of terminal derivations of S is the union of the sets of terminal derivations of S1 and S2, therefore L R (p) = L R1 (p1)∪L R2 (p2). In addition, since R1 and R2 contain only well-formed rules, R contains also well-formed rules. Consequently, L R (p) is a RPL.

RPLs form a class of formal languages that is closed under union, and there is even a procedure for building a language from its subsets. In addition, the class is recursive and therefore membership tests can be computed. These properties are useful for building representational models that lend themselves to descriptive generalization.

Bol Processor grammars

Pattern rules

Since stroke sequences in North Indian drumming are homophonic, then in any pattern xyz the time predicates γ(x,y), γ(y,z) and δ(x,z) are implicit. Therefore the only predicates that need to be made explicit are those denoting repetitions (equal) and mirror substitutions (mirror).

For example the rewriting rules defining P96 and P192 in §1.4 may be represented with the following pattern grammar: P96 -> X A Y B where mirror(X,Y) and length(X,24) P192 -> C Z1 D A E Z2 D B where equal(Z2,Z1) and length(Z1,12) and mirror(C,E)

In this example the meaning of predicates mirror, length and equal is self-explanatory.

It is clear that if two variables linked with an equal/mirror predicate appear in the conclusion of a rule, the leftmost variable denotes a sequence of strokes that has been played first and served as a reference. For example, using the following set of rules:

A -> B C where equal(B,C) B -> dhagena the terminal derivation dhagenadhagena is such that the first dhagena has served as a reference for the second. Thus we may notate this sentence:

(= dhagena) (: dhagena)
with the meaning that the parenthesis with an equal sign denotes the reference, and that with a colon is the copy. In fact, in the machine implementation, the content of the second parenthesis is merely a pointer to the reference:

We use the same convention in rules, e.g.:

A -> (= B) (: B)
As to notating mirrors, we use an asterisk to indicate that the following sequence between brackets is unvoiced. For example, given the mirror mapping of §1.1, in the following grammar: (2) The same variable may appear twice in a rule premise (if not linked with repetition markers), e.g. A A -> q is correct but not (=A) (:A) -> q.

(3) Mirrors shall be represented with an asterisk.

Using these conventions, the BP grammar generating the RPL language defined under §1.3 is:

( 9,10,11,15,16,17,20,21 and 23 have been deleted. This representation is more compact although it generates the same language. The syntactic graph of the sentence generated in §1.4 is now: In BP representations, a grammar is generally layered in several transformational 'subgrammars'. The term 'transformational' is used here as it is defined in formal language theory (Bel 1987a:356), not linguistics. In a subgrammar there is more than one starting symbol, and a derivation sequence consists of transforming a string of starting symbols P1 to a string of terminal symbols P2. Symbols that are terminal to a subgrammar may become the starting symbols of the next subgrammar(s) to be applied, and so on (Kippen & Bel 1989a:3).

1) P192 -> (=C) (=Z) (=D) A * (:C) (:Z) (:D) B (2) A -> tagetirakitadhin--dhagena D (3) B -> tagetirakitadhin--dhagenadhatigegenakadheenedheenagena (4) C -> dhin--dhagenadha--dhagenadhatigegenakadheenedheenagena A (5) D -> dhatigegenakateeneteenakena (6) Z -> tirakitatirakitatirakita (7) Z -> Z6 Z6 (8) Z -> Z3 Z3 Z3 Z3 (12) Z3 Z3 -> dhagenadhin-- (13) Z3 Z3 -> dhagenadha-- (14) Z3 -> dhin-- (18) Z3 -> dha-- (22) Z6 -> dheenedheenedheene (24) Z6 -> dha-dha-dha- in which rules

The membership test in Bol Processor grammars

BP grammars may be viewed as declarative statements on the languages they generate. Nevertheless, a membership test is a recognition procedure by which a given string is checked against the grammar. Since the membership test algorithm implemented in the BP is bottom-up deterministic, emphasis is put on a procedural description. Discriminating compositional and analytical processes has been one of the major reasons why the BP could be used for modelling part of the musical 'behaviour' of traditional musicians 16 .

A membership test should provide an explanation of its failures by pointing to a deficiency of the grammar, i.e. an easy step by step trace. For these reasons the test implemented in the BP is bottom-up deterministic. Informally, the algorithm is the following:

(1) If G is a transformational grammar, its dual is obtained by swapping the premise and conclusion in every rule.

(2) If G 1 , G 2 , ... G n are the subgrammars of the language, a membership test is the result of the context-sensitive canonic rightmost derivation of the sentence by G n , ... G 2 , G 1 .

(3) If the membership test has yielded S, the starting symbol, the input sentence is assessed 'correct'. It is 'incorrect' in any other case.

The concept of context-sensitive canonic (leftmost) derivation was defined by Hart (1980:82) for strictly context-sensitive grammars, i.e. grammars in which all rule premises contain no more than one variable. This author has extended this definition to all length-increasing grammars:

Context-sensitive canonic rightmost derivation: definition

The formal definition of the context-sensitive rightmost definition adapted from [START_REF] Hart | Derivation Structures for Strictly Context-Sensitive Grammars[END_REF] and used in the membership test of LIN grammars is the following:

Let G be a length-increasing grammar. The derivation in G:

W 0 => W 1 => ... => W n is context-sensitive rightmost iff: ∀i ∈ [0, n-1], W i = X i L i C i R i Y i W i+1 = X i L i D i R i Y i when applying rule f i : L i C i R i -> L i D i R i ,
and at least one of the two following conditions is satisfied:

(C1) |C i+1 R i+1 Y i+1 | > |Y i | (C2) |L i+1 C i+1 R i+1 Y i+1 | > |R i Y i |
In Hart's definition (1980:82)

, |C i | = |C i+1 | = 1, so that C1 may be written |R i+1 Y i+1 | ≥ |Y i |.
The diagram and commentary below illustrate conditions C1 and C2:

Yi+1 Ri+1 Ci+1 Li+1 Xi Li Di Xi+1 Xi+1 Li+1 Ci+1 Ri+1 Yi+1 Yi Ri Ri Yi Ci Li Xi C1 C2
Suppose that neither conditions C1 nor C2 are satisfied. Since C2 is not true, rule f i+1 could have been applied before f i as L i+1 C i+1 R i+1 would be a substring of R i Y i . Besides, since C1 is not true, applying rule f i+1 would only modify Y i without changing the context R i . In such a case the order of application of f i and f i+1 might have been inverted. This change in the order would have been justified since all symbols rewritten by f i+1 are to the right of those rewritten by f i . Now, an explanation of how the inference engine of the BP handles ambiguity in bottom-up parsing will be given. Suppose that for a working string W i there are two candidate rules:

f i L i C i R 1 -> L i D i R i f' i L' i C' i R' i -> L' i D' i R' i where X i L i C i R i Y i = X' i L' i C' i R' i Y' i = W i
The selection criterion is the following: f i will have priority over f' i if one of the following conditions (in this order) is satisfied:

(D1) |X i L i C i | > |X' i L' i C' i | (D2) |X i L i C i R i | > |X' i L' i C' i R' i | (D3) |L i C i R i | > |L' i C' i R' i | (D4) i > i'
It can be proved (Bel 1987a:8) that once D1 has been considered, D2 is no longer relevant and ambiguity may therefore be handled by D3 and D4. D3 makes a decision on the basis of the length of the conclusions of the two rules, and D4 is a final arbitrary decision that takes into account the order in which the rules appear in the grammar.

To augment efficiency, D3 is not considered by the inference engine of the BP; it is therefore the task of the analyst to take into account the following partial ordering of rules:

'Chunk' rule:

In a BP grammar, the conclusion of rule f i may not be a substring of the conclusion of f j such that j<i.

There are a few more restrictions on rule formats imposed by the membership test procedure (Bel 1987a-b). One is that right contexts may only contain symbols of an alphabet external to the grammar.

Templates

Sentences can only be parsed if they have been entered into the editor complete with structural information, i.e. brackets, asterisks, etc. Yet in view of the fact that the Bol Processor has to perform membership tests on large amounts of data comprising examples to which it is not always easy to assign a structure, this limitation is held to be unacceptable. In response to this, the inference engine of the Bol Processor is able to generate templates from a grammar, i.e. a list of possible structures in which each dot represents a terminal symbol of one unit. Templates are enumerated and stored in the grammar file, for instance: In analysis the Bol Processor takes a new sentence and superimposes it on each template in strict order. A membership test is performed each time the sentence matches a template, so allowing for any structural ambiguity to be assessed. An example of template matching may be found in Kippen & Bel (1989c: appendix).

Stochastic model

The only realistic method for testing a grammar with an expert musician is to instruct the machine to produce one randomly chosen sentence at a time. If the sentence is assessed correct, the procedure is invoked again and another sentence is generated. Generally, the grammar is considered to be satisfactory if all sentences generated within a few sessions have been accepted by the expert.

Since the correctness of a grammar can never be fully assessed -indeed, like musicians themselves, machines may be allowed casual mistakes -it is important to enable the stochastic production process to generate sentences from a wide and representative subset of the language. This can be achieved by weighting the decisions of the inference engine.

Formal grammars offer the possibility of defining consistent probabilistic models that apply to a very wide class of languages. We developed such a model as a response to the need to inhibit rules in context-free grammars.

This model is derived from probabilistic grammars/automata as defined by [START_REF] Booth | Applying Probability Measures to Abstract Languages[END_REF], the difference being that a weight -within the range [0,255] -rather than a probability is attached to every context-free rule. The rule probability is computed from weights as follows: if the weight is zero then the probability is zero; if the weight is positive then the inference engine calculates the sum of weights of all candidate rules, and the rule probability is the ratio of its own weight to the sum. Candidate rules are those whose premise is a substring of the work string. Consider, for example, the set of rules

[1] <100> V3 -> dhagena [2] <100> V3 -> dhatrkt [3] <50> V3 -> dha-- [4] <5> V3 -> dhati-
in which the sum of the weights is 100+100+50+5 = 255. The probability of choosing rule [4] in the derivation of a string containing V3 is therefore 5/255 = 0.0196. Using weights instead of probabilities has the advantage that is does not presuppose the sum of coefficients of all candidate rules to be 1.

Weights (and their associated probabilities) are used in modus ponens to direct the Bol Processor's production along paths more likely to be followed by musicians. In some contextfree grammars -those that fulfil the consistency condition expressed by Booth & Thompson (1973:442) -they may be used for computing a probabilistic sentence function, i.e. a coefficient representing the likelihood of occurrence of each sentence in the language. Grammars that are constructed in a systematic way (or generated from sample sentences, see Kippen & Bel 1989b:205) are good examples of consistent probabilistic grammars.

Another remarkable feature of consistent grammars is that rule probabilities can be inferred from a set of sentences (Maryanski & Booth 1977:525). Given a correct grammar and a subset of the language that this grammar generates (for instance a sample sequence taken from a performance of an expert musician), rule weights are inferred as follows: let all weights be reset to zero; then analyse every sentence and increment by one unit the weights of all rules used in the derivation. (The algorithm described here is more general than the one devised by Maryanski and Booth, since the latter requires the choice of a sample set in which all rules have been used.)

Evidently, rules that are never used in the analysis of a sample set remain with weight (and therefore probability) zero, which inhibits their use in modus ponens. Those rules may be scrutinized to see whether they are incorrect or whether they point to fragments of the language that have not yet been explored. To test this, their weights are set to a high value so that the Bol Processor is forced to generate sentences that either have never been assessed or at least are not being considered by the informant at the time.

An example of weight inference based on the qa'ida introduced in §1.2 may be found in Kippen & Bel (1989a).

Using weighted rules resulted in a marked improvement in the quality of the generated music. This went a long way towards solving the problem of musical credibility encountered in earlier experiments, a problem that arose from the complete randomness of the generative process.

Recent developments of the Bol Processor

These developments have taken place as the result of collaboration with Western composers, more specifically musicians working with digital synthesizers. Many have felt a strong need to implement general abstract models of musical structures. A new version of the Bol Processor has been implemented in C language on the Macintosh. 'BP2' accepts polyphonic structures in a format loosely related to Diener's T-trees (1988). Unlike T-trees, however, where each individual terminal (e.g. a note or a stroke) is viewed as an object (in an object-oriented programming environment), BP2 remains based on strings. Structural units of overlapping events may be represented as sets or trees. Several λ-free homomorphisms may be defined on the same alphabet. Wildcards (local variables that may be instantiated on Vn ∪ Vt ) can be used in the left argument of context-sensitive rules to represent patterns. BP2 is also able to handle metagrammars, i.e. grammars that generate grammars.

A MIDI interface is under study so that the sentences generated may be immediately checked in the way they actually sound.

Conclusion

Pattern grammars (which may be imbedded in production rules, logic descriptions, tree algebra, etc.) are not only powerful tools for music analysis. They also lend themselves to descriptions of creative/evaluation processes. In the phenomenological approach, a pattern is viewed more as a dynamic than static relation:

(La forme) n'est pas la somme des détails intégrés dans l'ensemble qui constitue l'oeuvre. Elle appartient au niveau des structures, c'est à dire des principes. Elle s'identifie avec le schème d'organisation qui suggère l'assemblage des parties en considération de leurs liaisons avec les lois propres du schème organisateur. La forme est liée aux principes de cohésion du système, à la réalisation d'un dynamisme particulier. (Vecchione 1984:11-12) Descriptions may be normative (i.e. based on some kind of rigorous reasoning) when dealing with highly constrained systems (e.g. improvisation in traditional music) or empirical (i.e. based on multi-criteria classification) when applied to the modelling of a compositional process.

The problem lies less in finding a 'universal' abstract representation of music, than in delineating forms of musical 'thinking' that may be operative in the design of tools for computer-aided music creation and performance. _______________________

  Tabla strokes are either open (voiced) or closed (unvoiced). Any sequence of unvoiced strokes may be seen as the closed (mirror) image of a sequence of open strokes through a mapping of Vt* to itself. This mapping mir is a λ-free homomorphism of Vt* to itself whose reduction to Vt is an idempotent mapping of Vt to itself, for instance:

  S -> (= D) * (: D) D -> dhagedheenagena the (only) terminal derivation is (= dhagedheenagena) * (: taketeenakena) and its internal representation: Using these conventions we can simplify the format of rewriting rules in RPLs: (1) If a variable appears several times in the RPL rewriting rule, it shall be represented with repetition markers. For instance, A -> B C B C B shall be represented A -> (=B) (=C) (:B) (:C) (:B).

  [1] (=................)(=........)(=........)*(................)(:........)(=........) [2] (=...............)(=................)*(................)(:................) [3] (=....................)(=........)*(........................)(=........)

  , we must restrict to well-formed rules :

	dhin--dhagena	dha--dhagena dhatigegenaka	dheenedheenagena C
	tagetirakita	dhin--dhagena	dhatigegenaka	teeneteenakena
	dhin--dhagena dha--dha--	dhatigegenaka	teeneteenakena	Z D
	tagetirakita	dhin--dhagena	dhatigegenaka	teeneteenakena	A
	tin--takena	ta--takena	tatikekenaka teeneteenakena	E
	taketirakita	tin--takena	tatikekenaka teeneteenakena	
	dhin--dhagena	dha--dha--	dhatigegenaka	teeneteenakena	Z D
	tagetirakita	dhin--dhagena	dhatigegenaka	dheenedheenagena B
	which may be represented with the following context-sensitive syntactic graph, where 'equ' and
	'mir' indicate repetition and mirror structures:		

Another approach, which will not be discussed here, is the discovery of a system for music composition or improvisation from musical scores[START_REF] Laske | KEITH: a rule system for making music-analytical discoveries[END_REF], Kippen & Bel 1989b).

Vecchione's model takes in consideration polyphonic time structures and other features like modes of space location, modes of significance, modes of voice/instrument processing, modes of performance, etc.

Initial work was part of a research scheme by the International Society for Traditional Arts Research (ISTAR, New Delhi) generously funded by the Ford Foundation and the National Centre for the Performing Arts (NCPA, Bombay). Subsequently, Kippen's work was also supported by the Leverhulme Trust in the UK.

An outcome of discussions in the 'OC' study group involving composers and scientists at Laboratoire Musique et Informatique de Marseille (MIM).

A system of transliterating tabla strokes to non-ambiguous symbolic representations has been proposed byKippen (1988:xvi-xxiii).

from the verb bolna, 'to speak', in North Indian languages; for this reason the machine was named 'Bol Processor'.

This corroboratesLaske's view (1984:168) on analysis versus composition.
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Definition:

Rule p -> q is well-formed iff p ∈ Vn + , q ∈ (Vt ∪ Vn) + , |q| ≥ |p|, and no variable occurs twice in p.

Theorem:

If rule p -> q is well-formed then L(p) ⊇ L(q).

Proof:

All we need to find is a substitution s such that q = s(p) that yields q ≤ p. A procedure for finding s is the following:

(1) substitute the |p|-1 leftmost variables in p with the |p|-1 leftmost symbols in q (2) substitute the rightmost variable in p with the string made of the |q|-|p|+1 rightmost symbols in q. Since no variable occurs twice in p, there are no restrictions on q that render substitutions impossible. This procedure may in fact be derived from Makanin's algorithm (see [START_REF] Makanin | The problem of solvability of equations in a free semi-group[END_REF][START_REF] Roussel | Programmation de l'algorithme de Makanin en Prolog II[END_REF]. For example, a substitution of XYZ yielding abcX is {X/a, Y/b, Z/cX}. Let L(p) be a pattern language and R a set of well-formed rewriting rules. Every rule (p -> q) defines a set of substitutions Sp->q. To construct a sentence of the restricted pattern language L R (p) we proceed as follows:

The selection of R o requires the comments:

(1) If a variable X does not appear in any premise of the selected set of rules, then it may be substituted to any q ∈ (Vt ∪ Vn) + . Consequently, S o is infinite and L R (p) = ∅ .

(2) There are subsets of R that yield S o = ∅, i.e. aborted derivations. For example, if a variable X appears as the premise of two distinct rules in R o , X -> q i and X -> q j , then S X->qi ∩ S X->qj = ∅, hence S o = ∅.

(3) In cases other than (1) and (2) every variable occurs in a pattern with a unique derivation, so that card(S o ) = 1.

The following example will clarify points (2) and (3). A RPL for double-length variations would be L R (p2) where: p2 = P192 and R is the following set of rules: