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Abstract 

 

This paper considers a "striking outwards" reed coupled to a 

resonator.  This expression, due to Helmholtz, is not discussed here :  it 

corresponds to the most common model of a lip-type valve, when the 

valve is assumed to be a one degree of freedom oscillator. The presented 

work is an extension of the works done by Wilson and Beavers (1974),  

Tarnopolsky (2000). The range of the playing frequencies is investigated. 

The first results are analytical : when no losses are present in the 

resonator, it is proven that the ratio between the threshold frequency and 

the reed resonance frequency is found to be necessarily  within the 

interval between unity and the square root of 3.  This is a musical sixth. 

Actually the interval is largely smaller, and this is in accordance with e.g. 

the results by Cullen et al.. The smallest blowing pressure is found to be 

directly related to the quality factor of the reed.  Numerical results 

confirm these statements, and  are discussed in comparison with previous 

ones by Cullen et al (2000).   

 

INTRODUCTION 

 

In an important paper Wilson and Beavers [1974] studied the oscillation thresholds for a 

clarinet-type reed exciting a cylindrical duct, using both theory and experiment. They 

especially showed that the control of oscillations with a playing frequency close to the a 

duct resonance requires a sufficient damping of the reed. Moreover they showed that the 

playing frequency is always smaller than the first reed resonance. More recently, studies 

have been published concerning a more general class of reeds, with a similar theory and 

new experimental results [Tarnopolsky , 2000 ; Cullen, 2000]. 

In the present paper we will apply the method of Wilson and Beavers to the case of a 

“striking outward” reed, and exhibit major differences with a “striking inward”  one. 

This kind of reed corresponds to the most common model of a lip-type valve, when the 

valve is assumed to be a one degree of freedom oscillator (for a discussion, see e.g. 

[Cullen, 2000]). Our goal is to derive approximate expressions, exhibiting some basic 

properties of such reed-tube system. 

We first present the model, then the characteristic equation to be solved, finally 

analytical and numerical results. 
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MODELLING A STRIKING OUTWARDS REED 

 

 

 

 

 

 

 

 

 

 

Figure 1 : schematic representation of a striking outwards reed (after [Fletcher, 1991]  

 

The model we use is very classical, and extremely simplified. A one degree of 

freedom oscillator is submitted to pressure forces : a pressure mp in the mouth, assumed 

to be constant, and an acoustic pressure p at the input of a resonator. This is described 

by the following equation: 
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where y(t) is the reed displacement, qr the damping parameter, rω the angular 

eigenfrequency, and µ  the mass per unit length of the reed. For a lip-reed, the 

displacement has a vertical component, therefore the behavior is much more 

complicated than this of the spring shown in Fig. 1. Nevertheless we assume the model 

to be valid. We emphasize that in static regime, if the pressure p is zero, the pressure mp  

needs to be negative for the reed to be closed. Following [Wilson, 1974, see also 

Kergomard, 1995], we chose to use dimensionless variables. The origin for y(t) being 

the position when pm=p=0, we define -H  as the position and -pM as the pressure for  

which the reed is closed, H and pM being positive quantities : 

Hp rM

2µω= . 

 

Writing γ= pm /pM ,  x=y/H -γ  and  replacing  p/pM  by p,  Eq. (1) becomes : 
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The following equation is nonlinear : it is the Bernoulli equation, written with certain 

hypotheses, relating the volume velocity to the opening area of the reed and the pressure 

difference. We write it directly using dimensionless variables and parameters : 

pxu −++= γγζ )1(                  (3) 

where ζ  is related to both the reed opening and stiffness :
M

c
p

wHZ
ρ

ζ 2= .  wH is the 

reed opening at rest, Zc = ρc/S the characteristic impedance of the tube. u  is  the 

volume velocity multiplied by Zc/pM . These equations are in accordance with the 

equations given by Wilson and Beavers, but two signs have to be changed, in order to 

consider an outwards instead of an inwards reed. Finally, the last equation gives the 

mp

p
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input admittance of the tube, written in the frequency domain (we use capital letters for 

variables in the frequency domain) : 

                                             )()()( ωωω PYU =         (4) 

Equations (2) to (4) give the complete model. In order to get the characteristic 

equation, we need to rewrite (2) in the frequency domain, and to linearize Eq. (3) : 
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CHARACTERISTIC EQUATION  

 

Substracting the d.c. component of (6), and using Eqs. (4) and (5) leads to the 

characteristic equation :    
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It can be compared to the equation for the case of an inwards reed : 
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  The latter equation is in accordance with (Wilson, 1974]). In both cases the 

volume velocity due to the reed movement is ignored (see [Kergomard, 2000]). The 

characteristic equation can be solved for a given set of parameters, searching for a 

complex frequency. This has be done numerically, and the instability threshold of the 

static regime can be deduced as follows : when the imaginary parts of all solutions but 

one are positive, all solutions but one are exponentially decreasing, and the instability 

threshold corresponds to one real frequency, obtained when one parameter varies ζ, γ, 
ωr., etc… We do not discuss here the method for solving such equations, and give in the 

last section some examples of results.  

 We notice that the instability threshold of the static regime is not always the 

oscillation threshold : it is true only for direct bifurcation (see e.g. [Grand, 1996]). This 

question is important, because for an inverse bifurcation, the pressure threshold can be 

slightly different, but hopefully the playing frequency does not vary too much with the 

parameters such as the blowing pressure γ. This question remains to be investigated. 

 

ANALYTICAL APPROXIMATION 

 

Solving Eq. (7) for real frequency gives the instability thresholds, as done by Wilson 

and Beavers. In order to get some basic results, we first ignore the losses in the 

resonator, so that Y(ω) is purely imaginary. Eq. (7) is split into two equations, written 

for the particular case of a cylindrical tube :  

η
ηγ
+

−=
2

   (8)     ;     
)1(

cot
2ϑη

ϑγζ
ϑ

−
−= r

r

q
Lk   (9)      where  

2

22
2

1
1

ϑ
ϑϑη

−
+−= rq  . 

L is the length of the resonator, ck rr /ω= , and  rωωϑ /= . For a given resonator 

length, the two equations can be solved for the two unkowns, the mouth pressure γ and 
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the playing frequency ϑ, at the threshold. The parameter γ can be eliminated from these 

equations, and the following equation is obtained for ϑ : 
 

)()Im( ϑζ GqY r=  

where [ ] [ ] 2/122222/12222 )1)(3()1()(
−− −−−−+−= ϑϑϑϑϑϑϑ rr qqG          (10).  

The last quantity in bracket, in order for the square root to be real, needs to be 

positive. As a consequence, the playing frequency lies within the following range : 
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This important result shows, thanks to this simple model, that for a given reed 

eigenfrequency, the maximum range for the playing frequency is less than one musical 

sixth. Is it very different for the case of an inwards reed, for which the range lies 

between 0 and the reed frequency. There is no “duality” between the two kinds of reed. 

Moreover, in practice, the interval is shortened because the possibility to get a sound  

depends on the value of the pressure threshold for a given set of parameters. We notice 

that the existence of square roots in (10) is related to the Bernoulli equation.  

Concerning the pressure threshold, taking now resonator losses into account, it 

can be shown to depend on both reed damping and tube losses, but the minimum of the 

threshold when the length of the resonator varies depends mainly on reed damping. This 

can be seen on the following equation :  
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Yn is a minimum (real) value of the input (reduced) admittance of the resonator for a 

given mode (index n). As a consequence, losses in the tube can increase significantly  

the mimimum of pressure threshold, especially when the parameter ζ  is small. We do 

not give here neither the derivation of Eq. (12) nor all the analytical results, which will 

be given in a future article. 

 

NUMERICAL RESULTS 

In what follows, we consider a resonator with a single mode and losses, i.e. with the 

following expression for the input admittance :  

)(
1 22 ωω

ωω
−−= n

n

nnn
j

YjQYY  . 

Solving Eq. (7) by searching for complex frequencies, we are able to get results 

for various values of the parameters. Figure 2 shows an example of result for the 

frequency and pressure thresholds, with respect to the ratio nrn ωωϑ /1 =− . When the 

length or the resonator increases (ωr decreases), the threshold frequency decreases to ϑ1, 

close to unity (see Eq. (11)), while when the length decreases, the threshold frequency 

increases to ϑ2, close to 3 , and cannot be larger because the threshold pressure tends 

to infinity. For the chosen values of parameters qr  and ζ , the practical range of possible 
resonator eigenfrequencies is very narrow, and the minimum value of the threshold 

pressure lies just above qr . The influence of the losses in the resonator (Zn=1/Yn ) is 

very small because parameter  ζ  is not very small. 

  

 Figure 3 shows the same quantities for the case of an striking inwards 

reed, with the same values of the parameters. For large length of the resonator, the  
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Figures 2 and 3: results for fr=440Hz  ; qr=0.100  ; ζ=0.3, and different values of the 
impedance peak of the resonator. The abscissa is the ratio of the reed frequency to the 

resonator frequency. The upper and lower curves represent the ratio of the threshold 

frequency to the reed frequency, and the threshold pressure, respectively. Fig. 2(above) 

represents the outwards case, while Fig. 3(below) represents the inwards one. 
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threshold frequency reaches the resonator frequency, the curve becoming hyperbolic, 

and the pressure threshold tends to a value above 1/3, depending on the losses in the 

resonator.  These properties are well known. For small resonator length, the threshold 

frequency tends to the reed frequency, but cannot become larger, because the reed 

becomes beating (γ>1).  A similar behavior should be found for the outwards case if 

negative blowing pressures were considered. Finally the minimum pressure threshold 

lies just below  qr : one can show that 






 −= rr qq
2

3
10γ . It is smaller than the value for 

the outwards case. This comparison between the outwards and inwards cases are in 

qualitative accordance with the work by Cullen et al  [2000]. 

Returning the the outwards case, Figure 4 shows the effect of reed damping, 

which can be compared to the inwards case (see [Wilson, 1974]) : in both cases weak 

damping makes easier the oscillation near the minimum value of the threshold pressure, 

and leads to a threshold frequency closer to the reed frequency. 

 

Figure 4: : results for fr=440Hz ; ζ=0.3 ; Zn=50, and different values of qr.. The abscissa is  the 
ratio of the reed frequency to the resonator frequency. The upper and lower curves represent 

the ratio of the threshold frequency to the reed frequency, and the threshold pressure, 

respectively.  

Figures 2 to 4 show results in a similar form than these of Wilson and  

Beavers. Figure 5 shows results in another form for the case of a cylindrical tube with a fixed 

length, L, and vaying reed frequency. The effect of the different modes of the resonator can be 

observed: using the ability to change his lips resonance frequency, the player can keep in tune 

by bending upward or downward the playing frequency. There are limitations to this action: 

first, as it can be seen on the upper curve, there exist frequency gaps, i.e. frequencies ranges that 

cannot be reached without varying the bore length. Then, especially at low frequencies for some 

values of ωr , the oscillation threshold is very high, so that a brass player is not able to produce 

such mouth pressure. Finally, in the higher register, the sensitiveness of playing frequency to lip 

resonance frequency decreases. Tuning by means of the lips only is more difficult in higher 

registers than in lower ones, this result corresponding to the feeling of a brass player. 
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Figure 5 : results for a fixed length L=1m ; qr=0.3 ; ζ=0.2. The abscissa is krL, 
proportional to ωr. The upper curve gives the threshold frequency, the lower curve gives 

the threshold pressure. 

. 

CONCLUSIONS  

 

 The present work is based upon previous works, without any novelty concerning 

the model. What is new is probably the possibility to get analytical results, allowing to 

understand some essential features, such as the values of the minimum threshold 

pressures, and the maximum possible value of the threshold frequency compared to the 

reed eigenfrequency. Further work needs to examine the nature of the bifurcation, using 

the first harmonic approximation, or better, the small oscillation approach [Grand, 

1996]. 
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