Joachim De Lataillade
email: joachim.de-lataillade@pps.jussieu.fr

Curry-style type isomorphisms and game semantics

Curry-style type Isomorphisms and Game Semantics

Introduction

Types isomorphisms. The problem of type isomorphisms is a purely syntactical question: two types A and B are isomorphic if there exist two terms f : A → B and g : B → A such that f • g = id B and g • f = id A . This equivalence relation on data types allows to translate a program from one type to the other without any change on the calculatory meaning of the program. Thus, a search in a library up to type isomorphism will help the programmer to find all the functions that can potentially serve his purpose, and to reuse them in the new typing context [START_REF] Rittri | Using types as search keys in function libraries[END_REF]. This is particularly appealing with functional languages, because in this case the type can really be seen as a partial specification of the program: such a library search up to isomorphisms has been implemented in particular for Caml Light by Jérôme Vouillon. It can also be used in proof assistants to help finding proofs in libraries and reusing them [START_REF] Barthe | Type isomorphisms and proof reuse in dependent type theory[END_REF] (for more details on the use of type isomorphisms in computer science, see [START_REF] Di | Isomorphisms of Types[END_REF]). From a more general point of view, type isomorphisms are the natural answer to the question of equivalence between types in a programming language.

The question of characterising these type isomorphisms is then a very simple problem to formulate, however its resolution is often non-trivial, especially when dealing with polymorphism. Roberto Di Cosmo [START_REF] Di | Isomorphisms of Types[END_REF] has solved syntactically this question for Church-style system F (i.e. system F where types appear explicitly in the terms) by giving an equational system on types equivalent to type isomorphisms. In a preceding work [dL07], we have given a new proof of this result by using a game semantics model of Church-style system F. In this more geometrical approach, types were interpreted by an arborescent structure, hyperforests: the natural equality for this structure happened to be exactly the equality induced by type isomorphisms. The efficiency of game semantics in this context was an incitement to go further and to explore the possibility of resolving this question for other languages. Curry-style system F. In the present work, we deal with type isomorphisms for Curry-style system F, i.e. system F where the terms grammar is simply the untyped λ-calculus' one. Although this system appears to be less relevant than Church-style system F in proof-theory (a term does not correspond exactly to one proof), it is actually more accurate when we consider programming languages. Indeed, in Church-style

Γ ⊢ t : A (∀I) Γ ⊢ t : ∀X.A if X Γ Γ ⊢ t : ∀X.A (∀E) Γ ⊢ t : A[B/X]
Equalities:

(λx.t)u = t[u/x] (β) λx.tx = t if x t (η) π 1 (u, v) = u (π 1) π 2 (u, v) = v (π 2) π 1 (u), π 2 (u) = u (×)
Type isomorphism:

(t, u) s.t.            ⊢ t : A → B ⊢ u : B → A λx.t(ux) = λx.u(tx) = λx.x
Figure 1: Curry-style system F 2 Compared with this system, Church-style system F has a different grammar of terms:

t ::= x | λx A .t | (tt) | t, t | π 1 (t) | π 2 (t) | ΛX.t | t{A}
different typing rules for the quantification:

Γ ⊢ t : A (∀I) Γ ⊢ ΛX.t : ∀X.A if X Γ Γ ⊢ t : ∀X.A (∀E) Γ ⊢ t{B} : A[B/X]
and two additional equalities:

(ΛX.t){A} = t[A/X] (β2) ΛX.t{X} = t if X t (η2)
As can be seen on the typing rules, a λ-term t is of type A if there exists a term t of Church-style system F such that t is obtained from t by erasing all the type indications (for example, ΛX.λx ∀Y.Y λy Y .x{Y} becomes λxλy.x). In this case, we say that t is the erasure of t.

The characterisation of type isomorphisms for Curry-style system F is not directly reducible to the Church-style corresponding question: indeed, types of the form ∀X.A and A with X A are not equivalent in the Church-style setting, but they are in the Curry-style one (where the isomorphism is realised by the identity). We prove in this paper that the distinction between Church-style and Curry-style type isomorphisms can be resumed in one new and non-trivial equation. To express it, one first have to recall the definition of positive and negative type variables in a formula1 : Definition 1 If A is a formula, its sets of positive variables Pos A and negative variables Neg A are defined by:

• Pos X = {X} , Neg X = ∅ • Pos ⊥ = Neg ⊥ = ∅ • Pos A×B = Pos A ∪ Pos B , Neg A×B = Neg A ∪ Neg B • Pos A→B = Neg A ∪ Pos B , Neg A→B = Pos A ∪ Neg B • Pos ∀X.A = Pos A \ {X} , Neg ∀X.A = Neg A \ {X}

We also define FTV(A) = Pos

A ∪ Neg A .
The new equation is then the following:

∀X.A ≃ ε A[∀Y.Y/X] if X Neg A
It is true in Curry-style but false (in general) in Church-style system F. Note that, although the isomorphism is realised by the identity, the Church-style terms t : ∀X.A → A[∀Y.Y/X] and u : A[∀Y.Y/X] → ∀X.A, from which we extract the identity by erasing explicit types, are not trivial (they will be explicitly described in the proof of theorem 2 at the end of the paper). This is a difference with Church-style system F, where type isomorphisms were exactly the expected ones, even if proving that point was not an elementary task. Type isomorphisms for Curry-style system F are finally characterised by the following equational system:

A × B ≃ ε B × A A × (B × C) ≃ ε (A × B) × C A → (B → C) ≃ ε (A × B) → C A → (B × C) ≃ ε (A → B) × (A → C) ∀X.∀Y.A ≃ ε ∀Y.∀X.A A → ∀X.B ≃ ε ∀X.(A → B) if X FTV(A) ∀X.(A × B) ≃ ε ∀X.A × ∀X.B ∀X.A ≃ ε A[∀Y.Y/X] if X Neg A
The purpose of this paper is to prove correctness and completeness of this characterisation by using a game model.

The model. Models of second order calculi do not come about easily due to impredicativity. Among the different possibilities, we choose models based on game semantics because of their high degree of adequation with the syntax: indeed, game semantics has been widely used to construct fully complete models for various calculi, such as PCF [AJM00, HO00], µPCF [Lai97], Idealized Algol [START_REF] Abramsky | Full abstraction for idealized algol with passive expressions[END_REF], etc. This means that this semantics gives a very faithful description of the behaviour of the syntax modulo reduction rules in the system. And this is precisely what we need to deal semantically with type isomorphisms: a model which is so precise that it contains no more isomorphisms than the syntax. The present paper introduces a game model for Curry-style system F. This model was largely inspired by two preceding game semantics works: the PhD thesis of Juliusz Chroboczek [START_REF] Chroboczek | Game Semantics and Subtyping[END_REF], which presents among others a game semantics for an untyped calculus that we will almost copy-paste in this paper; and the game semantics model for generic polymorphism by Samson Abramsky and Radha Jagadeesan [START_REF] Abramsky | A game semantics for generic polymorphism[END_REF], from which we will extract many ideas in our context. Other game semantics models had an influence on our work: Dominic Hughes gave the first game models of Church-style system F [START_REF] Hughes | Hypergame semantics: full completeness for system F. D.Phil[END_REF] and introduced the notion of hyperforests that we reuse here; Andrzej Murawski and Luke Ong presented a simple and efficient model for dealing with affine polymorphism [START_REF] Murawski | Evolving games and essential nets for affine polymorphism[END_REF], and their presentation of moves inspired ours.

It shall be noticed that the design of our Curry-style game model is actually very connected to the concepts present in the syntax: the notion of erasure we introduce is of course reminiscent of the erasure of types in a Church-like term to obtain a Curry-like term. This is no surprise as we need a model describing very precisely the syntax (that is why, in particular, one cannot be satisfied by an interpretation of the quantification as an intersection or a greatest lower bound). The specificities of (HON-)game semantics, as for example the arborescent structure that interprets types, are however decisive for our demonstration.

General definitions

In this section we give general constructions that will apply on the different grammars we use in the model. These constructions are strongly related to usual HON-style games operations (cf. [HO00]).

Moves

We consider the set of type variables X, Y, . . . to be in bijection with N\{0}, and we will further write this set X = {X j | j > 0}.

All along this article, we define several grammars of the form:

µ ::= ↑µ | ↓µ | α i µ | j (i ∈ I, j ∈ N)
Let us note M the set of words (often called moves) defined by this grammar. Intuitively, the token ↑ (resp. ↓) corresponds to the right side (resp. the left side) of an arrow type, the α i 's are related to additional (covariant) connectors, the constants j ∈ N\{0} correspond to free type variables X j and the constant 0 corresponds either to bounded type variables or to ⊥.

On such a grammar, we define automatically a function λ of polarity, with values in {O, P}:

• λ(j) = O • λ(↑µ) = λ(α i µ) = λ(µ) • λ(↓µ) = λ(µ)
where O = P and P = O.

We also introduce an enabling relation

⊢ ⊆ M ∪ (M × M): • ⊢ j • if ⊢ µ then ⊢ α i µ, and ⊢ ↑µ • if ⊢ µ and ⊢ µ ′ then ↑µ ⊢ ↓µ ′ • if µ ⊢ µ ′ then α i µ ⊢ α i µ ′ , ↑µ ⊢ ↑µ ′ and ↓µ ⊢ ↓µ ′ .
which induces a partial order ≤ for this grammar by reflexive and transitive closure. If ⊢ µ we say that µ is an initial move (in which case λ(µ) = O).

Substitution

As we want to deal with polymorphism, we need some operations acting directly on the leafs j:

• a function ♯ of leaf extracting: -♯(j) = j -♯(↑µ) = ♯(↓µ) = ♯(α i µ) = ♯(µ) • an operation of substitution µ[µ ′]: -j[µ ′] = µ ′ -↑µ[µ ′] = ↑(µ[µ ′]), ↓µ[µ ′] = ↓(µ[µ ′]) and α i µ[µ ′] = α i (µ[µ ′]) We say that µ 1 is a prefix of µ 2 if there exists µ ′ ∈ M such that µ 2 = µ 1 [µ ′]. This is denoted µ 1 ⊑ p µ 2 .

Plays and strategies

Definition 2 (justified sequence, play) A justified sequence on a given grammar is a sequence s = µ 1 . . . µ n of moves, together with a partial function f : {1, . . . , n} ⇀ {1, . . . , n} such that: if f (i) is not defined then ⊢ µ i , and if f (i) = j then j < i and µ j ⊢ µ i : in this case we say that µ j justifies µ i .

A play on a grammar is a justified sequence s = µ 1 . . . µ n on this grammar such that: for every

1 ≤ i ≤ n -1, if λ(µ i) = P then λ(µ i+1) = O and if λ(µ i) = O then λ(µ i+1) = P and ♯(µ i) = ♯(µ i+1).
We note E the set of plays of even length. If s and t are two plays, we note t s if t is a prefix of s.

The definition of a play implies that if sµν is an even-length play then ♯(µ) = ♯(ν). This will be a very significant property in our model.

Definition 3 (strategy)

A strategy σ on a given grammar is a non-empty set of even-length plays, which is closed under even-length prefix and deterministic: if sµ and sν are two plays of σ then sµ = sν. Definition 4 (view, innocence) Let s be a play on a grammar, we define its view s by:

• ε = ε • sµ = s µ if λ(µ) = P • sµ = µ if ⊢ µ • sµtν = s µν if λ(ν) = O and µ justifies ν
A strategy σ is called innocent if, for every play sν of σ, the justifier of ν is in s , and if we have: if sµν ∈ σ, t ∈ σ, tµ is a play and sµ = tµ then tµν ∈ σ.

Definition 5 (bi-view)

A bi-view on a given grammar is a justified sequence s = µ 1 . . . µ n (with n ≥ 1) such that any move is justified by its predecessor. The set of bi-views is denoted BV.

Composition

Composition is usually defined between arenas of the form A → B and B → C. We are going to define it in a context where arenas do not explicitly exist, but are however represented by the tokens ↑ and ↓. Definition 6 (shape) Let ζ ∈ ({↑, ↓} ∪ {α i } i∈I) * , a move µ is said to be of shape ζ if ζ0 ⊑ p µ.

Let Σ be a finite set of elements ζ j ∈ ({↑, ↓} ∪ {α i } i∈I) * . A justified sequence is said to be of shape Σ if each of its moves is of shape ζ j for some j. A strategy is of shape Σ if each of its plays is of shape Σ.

In the case where Σ = {↑, ↓}, we say that the justified sequence (or the strategy) is of arrow shape.

Consider a justified sequence s = µ 1 . . . µ n , we define the sequence s↾ ζ as the restriction of s to the moves of shape ζ where the prefix ζ has been erased, and the pointers are given as follows: if

µ i = ζµ ′ i is justified by µ j = ζµ ′ j in s, then the corresponding occurrence of µ ′ i is justified by µ ′ j Consider ζ, ξ ∈ ({↑, ↓} ∪ {α i } i∈I)
* such that neither of the two is a prefix of the other. Let us define the sequence s↾ ζ,ξ : first we consider s ′ , the restriction of s to the moves of shape ζ and the moves of shape ξ hereditarily justified by a move of shape ζ. s↾ ζ,ξ is the sequence s ′ where the prefix ζ has been replaced by ↑ where it appears, the prefix ξ has been replaced by ↓ where it appears, and the pointers are given as follows: Definition 8 (totality on a shape) Let σ be a strategy and ζ ∈ ({↑, ↓} ∪ {α i } i∈I) * . We say that σ is total on the shape ζ if, for every play s ∈ σ of shape ζ, for every move µ such that sµ is a play of shape ζ, there exists a move ν of shape ζ such that sµν ∈ σ.

if µ i = ζµ ′ i (resp. µ i = ξµ ′ i) is justified by µ j = ζµ ′ j (resp. µ j = ξµ ′ j) in s,

Presentation of the Curry-style model

Our model is defined through three grammars:

• X is the grammar of untyped moves which generate the untyped model to interpret untyped lambdaterms

• A is the grammar of occurrences which are used for the interpretation of formulas

• M is the grammar of typed moves which generate an interpretation of the terms of Church-style system F.

The interpretation of Curry-style system F in the model will be as follows:

• a type A will be interpreted as a game (also denoted A), i.e. a specific structure based on the grammar A

• a term t of type A will be interpreted as a strategy σ on the grammar X, with the condition that this strategy is the erasure of a strategy σ, defined on the grammar M and played on the game A (this will be denoted σ :: A)

• two additional properties are required: hyperuniformity which applies on σ, and uniformity which applies on σ.

In what follows, we first define the untyped model to interpret untyped lambda-terms, then we define games and typed strategies on games, and finally we introduce the notion of erasure and prove that we have a model of Curry-style system F. Next we prove, using this model, our result on type isomorphisms.

The untyped model

In this section we give a semantics for the untyped λ-calculus with binary products, i.e. for the calculus of figure 1 restricted to the language of terms with their reduction rules.

The untyped model that we present below has been defined by Julius Chroboczek in his PhD thesis [START_REF] Chroboczek | Game Semantics and Subtyping[END_REF]. Our definition is formally a little bit different from Chroboczek's one, but the substance of the work is the same.

Untyped moves

The grammar of untyped moves is the following:

x ::= ↑x | ↓x | rx | lx | j (j ∈ N)
The set of untyped moves is denoted X.

The justified sequences, plays and strategies induced by this grammar will be called untyped justified sequences, plays and strategies.

Basic strategies

We define the following strategies:

• identity: id = {s ∈ E | s of arrow shape and ∀t ∈ E, t s ⇒ t↾ ↑ = t↾ ↓ }

• projections:

π r = {s ∈ E | s of shape {↑, ↓r, ↓l} and ∀t ∈ E, t s ⇒ t↾ ↑ = t↾ ↓r } π l = {s ∈ E | s of shape {↑, ↓r, ↓l} and ∀t ∈ E, t s ⇒ t↾ ↑ = t↾ ↓l }
• evaluation:

eval = {s ∈ E | s of shape {↑, ↓l↑, ↓l↓, ↓r} and ∀t ∈ E, t s ⇒ t↾ ↑ = t↾ ↓l↑ ∧t↾ ↓r = t↾ ↓l↓ }
We also define three basic operations on strategies:

• pairing without context: if σ and τ are two strategies, σ, τ a = {s ∈ E | s of shape {r, l} and s↾ l ∈ σ and s↾ r ∈ τ}

• pairing with context: if σ and τ are two strategies of arrow shape, σ, τ b = {s ∈ E | s of shape {↑r, ↑l, ↓} and s↾ ↑l,↓ ∈ σ and s↾ ↑r,↓ ∈ τ}

• abstraction: if σ is a strategy of shape {↑, ↓r, ↓l}, Λ(σ) is the strategy of shape {↑↑, ↑↓, ↓} which is deduced from σ by replacing each move ↑x by ↑↑x, each move ↓rx by ↑↓x and each move ↓lx by ↓x.

Hyperuniformity

We have enough material to define an untyped model. However, our use of untyped strategies in the Curry-style model forces us to impose new requirements: for example, consider the formula X 1 → X 1 . It would be reasonable to think that the innocent strategy σ whose set of views is {ε, ↑1 • ↓1} has this type. However, because we deal with a Curry-style model, any strategy of type X 1 → X 1 should also have the type ∀X 1 .X 1 → X 1 , and thus A → A for any A, and should be able to do a copycat between the left and the right side of the arrow. This is the meaning of the notion of hyperuniformity defined below.

Definition 9 (copycat extension of an untyped play) Let s = x 1 . . . x n be an untyped play, x i an O-move of s and v = y 1 . . . y p ∈ BV. Suppose s = s 1 x i x i+1 s 2 . The copycat extension of s at position i with parameter v is the untyped play s ′ = cc s (i, v), defined by :

• s ′ = s 1 x i [y 1]x i+1 [y 1]s 2 if p = 1 • s ′ = s 1 x i [y 1]x i+1 [y 1]x i+1 [y 2]x i [y 2] . . . x i+1 [y p]x i [y p] if p even • s ′ = s 1 x i [y 1]x i+1 [y 1]x i+1 [y 2]x i [y 2] . . . x i [y p]x i+1 [y p] if p > 1

and p odd

Definition 10 (hyperuniform strategy) An untyped strategy σ is called hyperuniform if it is innocent and if, for any play s ∈ σ, any copycat extension of s is in σ.

Lemma 1

The identity strategy, the projections and the evaluation strategy are hyperuniform. If σ and τ are hyperuniform then σ, τ and Λ(σ) are hyperuniform.

The preceding lemma is straightforward. The interesting case is composition:

Lemma 2 If σ and τ are hyperuniform then σ; τ is hyperuniform.

P: Let us consider a play s = x 1 . . . x p ∈ σ; τ, an O-move x i of s and a bi-view v = y 1 . . . y q . We have to prove that s ′ = cc s (i, v) belongs to σ; τ.

There exists a justified sequence u such that u↾ ↑,↓↓ = s, u↾ ↓↑,↓↓ ∈ σ and u↾ ↑,↓↑ ∈ τ. If u = t 1 x i b 1 . . . b q x i+1 t 2 , we build a new justified sequence U depending on the value of p :

• if p = 1, U = t 1 x i [y 1]b 1 [y 1] . . . b q [y 1]x i+1 [y 1]t 2 • if p even, U = t 1 x i [y 1]b 1 [y 1] . . . b q [y 1]x i+1 [y 1]x i+1 [y 2]b q [y 2] . . . b 1 [y 2]x i [y 2] x i+1 [y p]b q [y p] . . . b 1 [y p]x i [y p] • if p odd and p > 1, U = t 1 x i [y 1]b 1 [y 1] . . . b q [y 1]x i+1 [y 1]x i+1 [y 2]b q [y 2] . . . b 1 [y 2]x i [y 2] x i [y p]b 1 [y p] . . . b q [y p]x i+1 [y p]
We have U↾ ↓↑,↓↓ ∈ σ and U↾ ↑,↓↑ ∈ τ by hyperuniformity of σ and τ. So, U↾ ↑,↓↓ = s ′ ∈ σ; τ.

Semantics of the untyped λ-calculus with binary products

We now present the interpretation of the untyped calculus. Instead of directly interpreting terms, we interpret sequents of the form Γ ⊢ t, where t is a term and Γ is simply a list of variables that includes the free variables occurring in t.

The interpretation is as follows:

x

⊢ x = id Γ, x ⊢ x = π r if Γ ∅ Γ, y ⊢ x = π l ; Γ ⊢ x Γ ⊢ λx.t = Λ(Γ, x ⊢ t) Γ ⊢ (tu) = Γ ⊢ t , Γ ⊢ u a(Γ) ; eval Γ ⊢ t, u = Γ ⊢ t , Γ ⊢ u a(Γ) Γ ⊢ π 1 (t) = Γ ⊢ t ; π l Γ ⊢ π 2 (t) = Γ ⊢ t ; π r with a(Γ) = a if Γ = ∅ and a(Γ) = b otherwise.
From lemmas 1 and 2 we derive:

Lemma 3 Let t be a term whose free variables are contained in the list Γ, then Γ ⊢ t is a hyperuniform strategy.

Proposition 1 If two terms t and u are equal up to the equalities of the language, and if all their free variables are contained in the list Γ, then Γ ⊢ t = Γ ⊢ u .

See [START_REF] Chroboczek | Game Semantics and Subtyping[END_REF] for the proof of the equivalent proposition in Chroboczek's setting.

Games

Interpretation of a formula

In this section we introduce the notion of game2 , the structure that will interpret Curry-style types. This structure is very similar to the one presented in [START_REF] Abramsky | A game semantics for generic polymorphism[END_REF].

We define the following grammar of occurrences:

a ::= ↑a | ↓a | ra | la | ⋆a | j (j ∈ N)
The set of all occurrences is denoted A.

We define a translation E from A to X: E(a) is obtained by erasing all the tokens ⋆ in a. Inductively:

• E(i) = i • E(⋆a) = E(a) • E(αa) = αE(a) if α ∈ {↑, ↓, r, l}.
The syntactic tree of a formula A is a tree with nodes labelled by type connectors (→, ×, ∀) or integers, edges labelled by the tokens ↑, ↓, r, l, ⋆, and possibly some arrows linking a leaf to a node. It is defined as follows:

• T ⊥ is reduced to a leaf 0 • T X i is reduced to a leaf i
• T A→B consists in a root → with the two trees T A and T B as sons; the edge between → and T A (resp. T B) is labelled ↓ (resp. ↑)

• T A×B consists in a root × with the two trees T A and T B as sons; the edge between × and T A (resp. T B) is labelled l (resp. r)

• T ∀X i .A consists in a root ∀ with the tree T as unique son, where T is deduced from T A by linking each of its leafs labelled by i to its root, and relabelling these leafs by 0; the edge between ∀ and T is labelled ⋆.

A maximal branch in a syntactic tree is a path from the root to a leaf; it will be described by the sequence of labels of its edges, with the index of the leaf at the end of the sequence. Such a maximal branch is then an occurrence.

The set O A of occurrences of a formula A is the set of maximal branches of T A . We define a function of linkage L A : O A → A ∪ { †} as follows: if the leaf reached by the maximal branch a is linked to a node c, then L A (a) is the sequence of labels of the edges we cross to reach c starting from the root, with a 0 at the end; otherwise, L A (a) = †.

The structure (O A , L A) will be called a game. It will also be denoted A, with no risk of confusion.

Example:

The type A = ∀X 1 .(X 1 → ((∀X 2 .X 2) → (X 3 × ⊥))
) has as set of occurrences:

O A = {⋆↓0 , ⋆↑↓ ⋆ 0 , ⋆↑↑l3 , ⋆↑↑r0}
And its function of linkage is given by:

               L A (⋆↓0) = ⋆0 L A (⋆↑↓ ⋆ 0) = ⋆↑↓ ⋆ 0 L A (⋆↑↑l3) = † L A (⋆↑↑r0) = †

Definition 11 (game) A game A is defined by a finite non-empty set O A ⊆ A and a function of linkage L A : O A →

A ∪ { †} satisfying the following conditions:

• O A is coherent: for every a ∈ O A , either ⊢ a or ∃a ′ ∈ O A , a ′ ⊢ a • O A is non-ambiguous: ∀a, a ′ ∈ O A , if E(a) ⊑ p E(a ′) then a = a ′ • for every a ∈ O A , either L A (a) = † or L A (a) = a ′ [⋆0] ⊑ p a for some a ′ ∈ A • for every a ∈ O A , if ♯(a) 0 then L A (a) = †
The set of games is denoted G.

We stress the fact that the set O A shall not be empty: this will be a crucial point in our proofs.

Definition 12 (auxiliary polarity) Given a game A, we define its auxiliary polarity as a partial function paux

A : O A ⇀ {O, P} by: paux A (c) = λ(L A (c)) if L A (c) †, otherwise it is undefined.

Alternative, inductive interpretation of a formula

We define the following constructions on games:

(atoms) ⊥ = ({0}, 0 → †) X i = ({i}, i → †) for i > 0. (product) if A, B ∈ G, we define A × B by: • O A×B = {la | a ∈ O A } ∪ {rb | b ∈ O B } • L A×B (la) =        † if L A (a) = † lL A (a) otherwise L A×B (rb) =        † if L B (b) = † rL B (b) otherwise (arrow) if A, B ∈ G, we define A → B by: • O A→B = {↓a | a ∈ O A } ∪ {↑b | b ∈ O B } • L A→B (↓a) =        † if L A (a) = † ↓L A (a) otherwise L A→B (↑b) =        † if L B (b) = † ↑L B (b) otherwise (quantification) if A ∈ G and i > 0, we define ∀X i .A by: • O ∀X i .A = {⋆a | a ∈ O A ∧ ♯(a) i} ∪ {⋆a[0] | a ∈ O A ∧ ♯(a) = i} • L ∀X i .A (⋆a) =        † if L A (a) = † ⋆L A (a) otherwise L ∀X i .A (⋆a[0]) = ⋆0
This gives rise to an inductive interpretation of a formula, which coincides with the one defined from the syntactic tree.

Finally, we define an operation of substitution on games:

Definition 13 (substitution) Let A, B ∈ G. The substitution of X i by B in A is the game A[B/X i] defined by: • O A[B/X] = {a ∈ O A | ♯(a) i} ∪ {a[b] | a ∈ O A ∧ ♯(a) = i ∧ b ∈ O B } • L A[B/X] (a) = L A (a) and L A[B/X] (a[b]) =        † if L B (b) = † a[L B (b)] otherwise
One can check that this coincides with the operation of substitution on formulas.

The typed model

Moves and strategies on a game

We are now going to describe how we can play in a game. We will take advantage of the way we have defined games: whereas in many second order game models like [START_REF] Hughes | Hypergame semantics: full completeness for system F. D.Phil[END_REF] or [dL07] moves have a complex structure, here they will be easy to derive from O A and L A .

As in [START_REF] Abramsky | A game semantics for generic polymorphism[END_REF], the intuition is that a move in A can either be built directly from an occurrence of O A , or it can be decomposed as m 1 [m 2], where m 1 is built from an occurrence of O A and m 2 is a move in another game B which substitutes a quantifier.

Note that the moves and strategies defined this way do not constitute the morphisms of our model, but they will be used as interpretations of Church-style terms.

We introduce the grammar of typed moves:

m ::= ↑m | ↓m | rm | lm | ⋆ B m | j (B ∈ G, j ∈ N)
These moves form the set M. The operation of anonymity A : M → A erases the game indication in a typed move:

• A(i) = i for i ≥ 0 • A(⋆ A m) = ⋆A(m) • A(αm) = αA(m) for α ∈ {r, l, ↑, ↓}.
For m ∈ M and a ∈ A, we define a partial operation of formula extraction m a by:

• ⋆ B m ⋆0 = B • if m a is defined, ⋆ B m ⋆a = αm αa = m a where α ∈ {↑, ↓, r, l}
Definition 14 (moves of a game) Let A be a game. Its set of moves M A ⊆ M is given by defining the relation m ∈ M A by induction on m:

• if A(m) = a ∈ O A and L A (a) = † then m ∈ M A • if m = m 1 [m 2], where A(m 1) = a ∈ O A , L A (a) † and m 2 ∈ M B with B = m 1 L A (a) , then m ∈ M A .
This definition is well-defined, because in the second case we necessarily have at least one token ⋆ B in m 1 , so the size of m 2 is strictly smaller than the size of m 1 [m 2]: that is why we say that the definition is inductive.

Example: Let us recall the type

A = ∀X 1 .(X 1 → ((∀X 2 .X 2) → (X 3 × ⊥)
)) of the preceding example. One possible way to "play a move" in this game3 is to instantiate the variable X 1 with a type B (take B = ⊥ × X 3 for example), then to go on the left side of the first arrow and to play a move of B.

This corresponds to a move like m = ⋆ B ↓r3. One can check with the definition that this move indeed belongs to

M A : m = m 1 [m 2] with m 1 = ⋆ B ↓0 and m 2 = r3. A(m 1) = ⋆↓0 ∈ O A , L A (⋆↓0) = ⋆0 and ⋆ B ↓0 ⋆0 = B. Moreover, A(m 2) = r3 ∈ O B and L B (m 2) = † so m 2 ∈ M B (first case of the definition). So, m ∈ M B (second case of the definition).
Intuitively, we have the following:

• m 1 is the part of the move played in A, and c = A(m 1) is the corresponding occurrence

• L a (c) indicates where the interesting quantifier has been instantiated

• m 1 L A (c) = B
indicates by which game it has been instantiated

• m 2 is the part of the move played in B.

Definition 15 (justified sequence, play on a game) Let A be a game and s be a play (resp. a justified sequence) on the grammar M. If every move of s belongs to M A , then we say that s is a play (resp. a justified sequence) on the game A. The set of plays on the game A is denoted P A .

Example: Let us consider the play

s = ⋆ B ↑↑l3 • ⋆ B ↓r3 with B = ⊥ × X 3 . This is of course a play in A = ∀X 1 .(X 1 → (∀X 2 .X 2) → (X 3 × ⊥)).
What is interesting to notice is that, if for example C = X 3 × ⊥, then the sequence s ′ = ⋆ C ↑↑l3 • ⋆ B ↓r3 is not a play because it is not a justified sequence: indeed, one must have B = C if we want m 2 = ⋆ B ↓r3 to be justified by m 1 = ⋆ C ↑↑l3.

More generally, for any move m in a play s which contains the token ⋆ B , there is a sequence of moves m 1 , . . . , m n that also contains the token ⋆ B at the same place, with m n = m and m i justifies m i+1 for 1 ≤ i < n. If this sequence is chosen to be of maximal length, then m 1 is the minimal hereditarily justifier of m which contains the token ⋆ B : it is the first time that it appears (at the right place). We will say that B is played by λ(m 1) at the level of m 1 . Note that λ(m 1) = paux A (m).

One can formalise this definition:

Definition 16 (level) If a move m in a play s ∈ P A contains the token ⋆ B , then it can be written m

= m 0 ⋆ B [m 1].
We say that B is played (by λ(m 0)) at the level of m if m 1 does not contain the token ↓.

Typed strategies are defined as expected:

Definition 17 (strategy on a game) Let σ be a strategy on the grammar M, we say that σ is a strategy on A and we note σ :: A if any play of σ belongs to P A . We say that σ is a typed strategy in this case.

Strategies on games have to be understood as interpretations4 of Church-style system F terms; they will be used in the Curry-style model because we have to express in the model the fact that a well-typed Curry-style term is the erasure of a well-typed Church-style term.

Uniformity

In [dL07], we saw that strategies defined as generally as possible were not able to capture exactly the type isomorphisms of the syntax, because they were generating too many isomorphisms in the model. That is why we introduced a notion of uniformity, which restrained the behaviour of strategies (in order to avoid confusion, we will call weak uniformity the notion of uniformity defined in [dL07]; by the way, weak uniformity plays no role in the present model).

The situation is similar here: we are not able to derive the characterisation of Curry-style type isomorphisms if the well-typed Church-style terms are interpreted by the (typed) strategies defined above. So we introduce a notion of uniformity on these strategies.

The intuition of this notion is the following: consider an η-long, β-normal term t of the Church-style system F, and suppose ⊢ t : ∀X.A. The term t has the form t = ΛX.t ′ with ⊢ t ′ : A: so it behaves like if it was instantiating the quantifier (∀X) with a variable (X). More generally, the terms of the Church-style system F should be interpreted by strategies where, each time O has to play a game, he gives a variable game X i .

But these strategies (that we will call symbolic) do not compose: in the Church-style syntax, this corresponds to the fact that the term ⊢ t : ∀X.A can be instantiated at any type B through the operation t → t{B}, and so the term t can be extended to any type A[B/X]. In the model, this means that the symbolic strategy interpreting t must be extensible to a more complete strategy, where O can play any game he wants. This extension consists in playing copycat plays between the different occurrences of the variables X (like in the syntax, the η-long β-normal form of t{B} is generated from t through η-expansions), that is why it is called the copycat extension.

To sum up, a uniform strategy will be a symbolic strategy extended by copycat extension. This idea has to be related with the strategies of Dominic Hughes [START_REF] Hughes | Hypergame semantics: full completeness for system F. D.Phil[END_REF] and, above all, with Murawski's notion of good strategies [START_REF] Murawski | Evolving games and essential nets for affine polymorphism[END_REF]. The notion of weak uniformity discussed above is an analogous, but less restrictive, condition: uniformity implies weak uniformity. Finally, uniformity has of course a strong connection with hyperuniformity: the two notions express analogous ideas, but hyperuniformity applies on untyped strategies, whereas uniformity is formulated in a typed context, and then requires more cautiousness.

In the following definition, BV(A) stands for the set of bi-views in a game A, and m[B/ j] (resp. s[B/ j])

is obtained from the move m (resp. the play s) by replacing each token of the form ⋆ A by ⋆ A[B/X j] . Note that s[B/ j] is a play, but does not necessarily belong to any M A for some A: actually, this play will only be used as an intermediate construction.

Definition 18 (copycat extension of a typed play) Let s = m 1 . . . m n be a typed play on the game A, let B ∈ G and j > 0.

We first define the flat extension of s: given a sequence of initial moves r = (r i) i∈N in M B , Fl s j,B (r) is the play t[B/ j] where t is obtained from s by replacing each sequence m i m i+1 such that ♯(m i) = j and λ(m

i) = O by m i [r i]m i+1 [r i].
Let m i be an O-move of s such that ♯(m i) = j, suppose Fl s j,B (r

) = s 1 m ′ i [r i]m ′ i+1 [r i]s 2 with m ′ i = m i [B/ j] and m ′ i+1 = m i+1 [B/ j],
and let v = n 1 . . . n p ∈ BV(B). The B-copycat extension of s at position i along the index j (with parameters v, r) is the play s ′ = CC s j,B (i, v, r) defined by:

• s ′ = s 1 m ′ i [n 1]m ′ i+1 [n 1]s 2 if p = 1 • s ′ = s 1 m ′ i [n 1]m ′ i+1 [n 1]m ′ i+1 [n 2]m ′ i [n 2] . . . m ′ i+1 [n p]m ′ i [n p] if p even • s ′ = s 1 m ′ i [n 1]m ′ i+1 [n 1]m ′ i+1 [n 2]m ′ i [n 2] . . . m ′ i [n p]m ′ i+1 [n p] if p > 1

and p odd

Definition 19 (symbolic strategy) A play s on the game A is said to be symbolic if, whenever a game is played by O it is a variable game X i FTV(A). These variable games are called the copycat variables of the play.

A symbolic strategy is a strategy which contains only symbolic plays.

Definition 20 (copycat extension of an innocent symbolic strategy) The copycat extension of an innocent symbolic strategy σ : A is the smallest innocent strategy which contains σ and is stable under any copycat extension along a copycat variable.

Definition 21 (uniform strategy) Let σ be a strategy on the game A. σ is said to be uniform if there exists a symbolic innocent strategy σ on A such that σ is the copycat extension of σ.

Proposition 2 If σ :: A → B and τ :: B → C are two uniform strategies then σ; τ :: A → C is uniform.

The proof of this proposition can be found in appendix A.

The Curry-style model

We are now ready to define our model: the key ingredient will be to relate untyped strategies with typed strategies through a notion of realization. First we relate untyped moves with typed moves through an operation of erasure erase : M → X defined by: erase = E • A Definition 22 (realization) Let σ be an untyped strategy and σ a typed strategy on A. We say that σ is a realization of σ on A if we have: for every sxy ∈ σ and s

′ ∈ σ, if s ′ m ′ ∈ P A is such that erase(s ′ m ′) = sx then there exists n ′ such that s ′ m ′ n ′ ∈ σ and erase(s ′ m ′ n ′) = sxy.
At present we have all the ingredients to define the model:

• objects are games

• a morphism between A and B is an untyped strategy σ such that:

σ is hyperuniform there exists a typed strategy σ which is a realization of σ on A → B σ is uniform.

In this case we note σ : A → B.

Let us prove that we have a model of Curry-style system F indeed.

Lemma 4 If σ : A → B and τ : B → C then σ; τ : A → C.

P: If we note σ and τ two realizations of σ and τ respectively, we obtain a realization of σ; τ on A → C by taking the composite σ; τ in the grammar M. Indeed, suppose sxy ∈ σ; τ, s ′ ∈ σ; τ with erase(s ′) = s and s ′ m ′ ∈ P A→C with erase(s ′ m ′) = sx. There exist an untyped justified sequence u such that u↾ ↓↑,↓↓ = s 1 ∈ σ, u↾ ↑,↓↑ = s 2 ∈ τ and u↾ ↑,↓↓ = sxy, and a typed justified sequence t such that t↾ ↓↑,↓↓ = t 1 ∈ σ, t↾ ↑,↓↑ = t 2 ∈ τ and t↾ ↑,↓↓ = s ′ .

We note u = u 0 xb 1 . . . b q y, with b 1 , . . . b q of shape ↓↑. Suppose for example that m ′ is of shape ↓. Then there exists n ′ 1 such that t 1 m ′ n ′ 1 ∈ σ and erase(t

1 m ′ n ′ 1) = s 1 xb 1 ; we set T 1 = tm ′ n ′ 1 . Then there exists n ′ 2 such that t 2 n ′ 1 n ′ 2 ∈ τ5 and erase(t 2 n ′ 1 n ′ 2) = s 2 b 1 b 2 ; we set T 2 = tm ′ n ′ 1 n ′ 2 , etc
. So, we construct step by step a justified sequence T such that T↾ ↓↑,↓↓ ∈ σ, T↾ ↑,↓↑ ∈ τ and erase(T) = u. This gives us also that T↾ ↑,↓↓ = s ′ m ′ n ′ is a play, so it belongs to σ; τ and erase(s ′ m ′ n ′) = sxy.

Finally: σ and τ are innocent and uniform, so σ; τ is innocent and uniform by prop. 2; σ and τ are hyperuniform so σ; τ is hyperuniform by lemma 2.

Lemma 5 If σ : Γ → A and X j Γ then σ : Γ → ∀X j .A P: Let us consider σ :: Γ → A a realization of σ on Γ → A: if σ is the copycat extension of a symbolic strategy σ, then we define the strategy σ′ as the strategy σ where each move written ↑m in a play has been replaced by ↑ ⋆ X j m. This strategy is symbolic on Γ → ∀X j .A, and its copycat extension σ′ is a realization of σ because of hyperuniformity (indeed, the only difference between σ and σ′ is a copycat extension along X j). Let us now prove the uniformity of σ′ : if σ is the copycat extension of a symbolic strategy σ, we consider a view s of σ. Let X j be the first copycat variable appearing in s, choose a variable X k FTV(A) ∪ FTV(B) and we call s k the (unique) X k -copycat extension of s along j. Let us define E(s) as the smallest set of plays containing s k and stable by B-copycat extensions along k. The strategy σ′ will be the smallest innocent strategy containing all the sets E(s), for s describing all the views of σ. Then one can check that σ′ is the copycat extension of σ′ .

Lemma 7

The following holds:

• id : A → A • π r : Γ × A → A • If σ : Γ → A and τ : Γ → B then σ, τ : Γ → (A × B). • eval : (A → B) × A → B 5 More precisely n ′ 1 = ↑n ′′ should be renamed as ↓n ′′ . • If σ : Γ × A → B then Λ(σ) : Γ → (A → B).
These cases are trivial: for example, a realization of id on A → A is ρ = {s ∈ P A→A | s of arrow shape and ∀t ∈ E, t s ⇒ t↾ ↑ = t↾ ↓ } and it is uniform, with symbolic strategy ρ defined by: ρ = {s ∈ P A→A | s of arrow shape, s symbolic and ∀t ∈ E, t s

⇒ t↾ ↑ = t↾ ↓ }
If Γ is a typing context of the form Γ = x 1 : A 1 , x 2 : A 2 , . . . , x n : A n , we define the sequence of variables Γ = x 1 , x 2 , . . . , x n and the type |Γ| = A 1 × A 2 × • • • × A n , and we have:

Proposition 3 If Γ ⊢ t : A then Γ ⊢ t : |Γ| → A.
This, together with prop. 1, means that we have obtained a model of Curry-style system F.

Hyperforests

In this section we introduce the notion of hyperforest, an arborescent structure built from games. In [dL07], following [START_REF] Hughes | Hypergame semantics: full completeness for system F. D.Phil[END_REF], we interpreted second-order types directly as hyperforests (that we called polymorphic arenas). But the substitution was difficult to define in this context, and moves had a complicated formulation; that is why in this paper we introduce hyperforests only as an indirect interpretation of types.

Hyperforests will be the fundamental structure for our work on isomorphisms.

Forests and hyperforests

In what follows, the set of subsets of a set E will be denoted P(E).

Definition 23 (forest)

A forest is an ordered set (E, ≤) such that, for every y in E, {x | x ≤ y} is finite and totally ordered by ≤. The forest is finite if E is finite.

Definition 24 (hyperforest) An hyperforest H = (F , R, D) is a finite forest F together with a set of hyperedges R ⊆ F × P(F) and a partial function of decoration D : F ⇀ X, where:

• for every (t, S) ∈ R, if s ∈ S then t ≤ s and D(s) is undefined We are now going to exhibit the hyperforest structure associated with a game A.

• for every b = (t, S) and b ′ = (t ′ , S ′) in R, S ∩ S ′ ∅ ⇒ b = b ′ We note T H = {t ∈ F | ∃S ⊆ F , (

From partially ordered sets to forests

Let (E, ≤) be a partially ordered set. The relation ⊢⊆ E ∪ (E × E) is given by:

       ⊢ e iff e ′ ≤ e ⇒ (e ′ = e) e ⊢ e ′ iff e ≤ e ′ ∧ ∀ f, e ≤ f ≤ e ′ ⇒ (e = f ∨ e ′ = f)
One defines the set F of paths in (E, ≤), i.e. the set of sequences e 1 e 2 . . . e n of elements of E such that ⊢ e 1 and e i ⊢ e i+1 for 1 ≤ i ≤ n -1. If we consider the prefix ordering ≤ ′ on F, then (F, ≤ ′) is a forest.

We also define the operation or : F → E by or(f) = e n if f = e 1 . . . e n (or(f) is called the origin of f).

From games to hyperforests

If A is a game, O A is a finite partially ordered set, to which one can associate a forest F A through the preceding construction. Extending ⊢ to F A generates the enabling relation of the forest: this justifies a posteriori the definition of an enabling relation for arbitrary moves given in section 2. Furthermore, one deduces from

L A the relation R A ⊆ F A × P(F A) as follows: let L = {a[⋆0] ∈ A | ∃a ′ ∈ O A , a[⋆0] ⊑ p a ′ }. Then :
(t, S) ∈ R A iff there exists y ∈ L such that, for every s ∈ S:

• L A (or(s)) = y • t ≤ s • y ⊑ p or(t) • for every t ′ ≤ t, y ⊑ p or(t ′) implies t ′ = t.

One also defines the partial function D

A : F A ⇀ X by: D A (x) = X i iff ♯(or(x)) = i (i > 0).
Then we have:

Lemma 8 If A is a game, then H A = (F A , R A , D A) is an hyperforest. Example: Consider the type A = ∀X 1 .((X 1 × X 2) → (X 1 × ⊥)).
We have:

O A = {⋆↓l0, ⋆↓r2, ⋆↑l0, ⋆↑r0} and:                L A (⋆↓l0) = ⋆0 L A (⋆↓r2) = † L A (⋆↑l0) = ⋆0 L A (⋆↑r0) = †
The paths are:

a = ⋆↑l0, b = ⋆↑l0 • ⋆↓l0, c = ⋆↑l0 • ⋆↓r2, d = ⋆↑r0, e = ⋆↑r0 • ⋆↓l0 and f = ⋆↑r0 • ⋆↓r2. Besides, L = {⋆0}.
Hence the hyperforest H A is given by:

F A = {a, b, c, d, e, f } R A = {(a, {a, b}), (d, {e})} D A (c) = D A (f) = X 2
This can be resume in the following representation of H A :

2 a b c e f d X 2 X
One can extend the definition of polarity to the nodes of the hyperforest: if A is a game with associated hyperforest H A = (F A , R A , D A), then for a ∈ F A we define λ(a) = λ(or(a)). This coincides with an alternative definition of polarity, which is common in arena games: λ(a) = O (resp. λ(a) = P) if the set {a ′ ∈ F A | a ′ ≤ a} has an odd cardinality (resp. an even cardinality). Note also that paux A (or(a)) = λ(ref A (a)).

Finally, if A is a game, we note:

fr A = fr H A ref A = ref H A S A = S H A T A = T H A
Note that the nodes of the forest F A contain "more information" than the occurrences of O A . Indeed, given a node c ∈ F A , one is able to give the ordered list of its ancestors, whereas for an occurrence we may have many ancestors that are not compatible one with the order for the ordering. This idea will be used in the proof of theorem 1 to reason about plays with nodes instead of occurrences.

Type isomorphisms

Isomorphisms in the model

Definition 26 (Church-isomorphism) Let H 1 = (F 1 , R 1 , D 1) and H 2 = (F 2 , R 2 , D 2) be two hyperforests. We say that H 1 and H 2 are Church-isomorphic (H 1 ≃ Ch H 2) if there exists a bijection f : F 1 → F 2 which preserves the hyperforest structure, i.e. such that:

• a ≤ a ′ iff f (a) ≤ f (a ′) • R 2 = f (R 1) • D 2 • f = D 1 Definition 27 (Curry-isomorphism) Let H 1 = (F 1 , R 1 , D 1) and H 2 = (F 2 , R 2 , D 2) be two hyperforests. We say that H 1 and H 2 are Curry-isomorphic (H 1 ≃ Cu H 2) if there exists a bijection f : F 1 → F 2 such that: • a ≤ a ′ iff f (a) ≤ f (a ′) • S H 2 = f (S H 1) • for every (t, S) ∈ R 1 (resp. (t, S) ∈ R 2), if there exists s ∈ S such that λ(s) λ(t), then (f (t), f (S)) ∈ R 2 (resp. (f -1 (t), f -1 (S)) ∈ R 1) • D 2 • f = D 1 .
Definition 28 (game isomorphism) A game isomorphism between two games A and B is a couple of untyped strategies σ : A → B and τ : B → A such that σ; τ = τ; σ = id. We note A ≃ g B if there is a game isomorphism between A and B.

We are now able to formulate the key theorem of our paper. This theorem provides a geometrical characterisation of isomorphisms in the model, which is the core of the proof of equational characterisation for the syntax.

Theorem 1 Let A, B ∈ G. If there exists a game isomorphism (σ, τ) between A and B (A ≃ g B) then their hyperforests are Curry-isomorphic (H A ≃ Cu H B).

The proof of this theorem can be found in appendix B.

Characterisation of Curry-style type isomorphisms

Proving theorem 1 was the main step towards the characterisation of Curry-style isomorphisms: we are now able to establish our final result.

Let us recall the equational system ≃ ε which we claim to characterise Curry-style type isomorphisms:

A × B ≃ ε B × A A × (B × C) ≃ ε (A × B) × C A → (B → C) ≃ ε (A × B) → C A → (B × C) ≃ ε (A → B) × (A → C) ∀X.∀Y.A ≃ ε ∀Y.∀X.A A → ∀X.B ≃ ε ∀X.(A → B) if X FTV(A) ∀X.(A × B) ≃ ε ∀X.A × ∀X.B ∀X.A ≃ ε A[∀Y.Y/X] if X Neg A
Lemma 9 Let A and B be two types such that the hyperforests H A and H B are Curry-isomorphic. Then A and B are equal up to the equational system ≃ ε .

P: Let A ′ and B ′ be the normal forms of A and B for the following rewriting system:

∀X.C ⇒ C[∀Y.Y/X] if X Neg C and C X If D 1 = ∀X.C and D 2 = C[∀Y.Y/X] with X Neg C , then H D 1 ≃ Cu H D 2 : indeed, the bijection f : F D 1 → F D 2 which preserves the ordering and such that S D 2 = f (S D 1) and D D 2 • f = D 1 is easy to define (in fact O D 1 and O D 2
are already in bijection). The fact that X Neg C precisely implies that, for any (t, S) ∈ R D 1 corresponding to the quantification ∀X (i.e. such that L ∀X.A (or(s)) = ⋆0 for every s ∈ S), there is no s ∈ S such that λ(s) λ(t). Reciprocally, if for any (t, S) ∈ R D 2 corresponding to a quantification ∀Y.Y, S = {t} so there is no s ∈ S such that λ(s) λ(t). Any other hyperedge is preserved by f . Moreover, being Curry-isomorphic is a congruence (i.e. it is preserved by context), so

H A ≃ Cu H A ′ , H B ≃ Cu H B ′ , and hence H A ′ ≃ Cu H B ′ . H A ′ and H B ′ are such that for every (t, S) ∈ R A ′ (or (t, S) ∈ R B ′
), either S = {t} or S contains a node s with λ(t) λ(s). Because of the definitions of ≃ Cu and ≃ Ch , this implies

H A ′ ≃ Ch H B ′ .
It has already been proved in [dL07] 6 that in this case A ′ ≃ ′ ε B ′ , where ≃ ′ ε is the same equational system as ≃ ε , except that it does not make use of the last equation. Hence, we have A ≃ ε B.

Theorem 2 Two types A and B are isomorphic in Curry-style system F if and only if A ≃ ε B.

P: The implication comes from the fact that we have a model (so, each type isomorphism in Curry-style system F implies a game isomorphism) and from theorem 1 and lemma 9.

For the reciprocal, we already know from [START_REF] Di | Isomorphisms of Types[END_REF] the existence in the Church-style system F of the isomorphisms corresponding to each equation of ≃ ε , except the last one (∀X.A ≃ ε A[∀Y.Y/X] if X Neg A). This implies their existence in the Curry-style system F.

Hence, we need, given a type A such that X Neg A , to find two Curry-style terms t : ∀X.A → A[∀Y.Y/X] and u : A[∀Y.Y/X] → ∀X.A which compose in both ways to give the identity. We suppose Y does not appear at all in A, even as a bounded variable.

We take t = λx.x: indeed, the identity can be shown to be of type ∀X.A → A[∀Y.Y/X] through the following type derivation:

x : ∀X.A ⊢ x : ∀X.A x : ∀X.A ⊢ x : A[∀Y.Y/X] ⊢ λx.x : ∀X.A → A[∀Y.Y/X]
t is easy to build: consider the Church-style term M = λx ∀X.A .(x){∀Y.Y}. We have ⊢ M : ∀X.A → A[∀Y.Y/X] in Church-style system F, and t is the λ-term obtained by erasing each type indication in M. Then we necessarily have ⊢ t : ∀X.A → A[∀Y.Y/X], and besides t = λx.x.

To define u, let us consider the Church-style term P which is the η-long normal form of the identity on A[∀Y.Y/X]. This term takes the form P = λx A[∀Y.Y/X] .P ′ . Now consider the Church-style term Q obtained from P ′ by replacing each occurrence of y{Z}, where Z is some type variable and y has the type ∀Y.Y coming from the substitution of X, by y{X}. For example, if A = X → ⊥ → ⊥, this would give us Q = (x)λy (∀Y.Y)→⊥ .(y)λz ∀Y.Y .(z){X}

Then we introduce the Church-style term N = λx A[∀Y.Y/X] .ΛX.Q, and we can check that ⊢ N : A[∀Y.Y/X] → ∀X.A in Church-style system F. u is now defined to be the erasure of N. Then we necessarily have ⊢ u : A[∀Y.Y/X] → ∀X.A, and besides u = λx.x (modulo η-reductions) because we only modified the type indications when going from P to N.

Finally, t and u trivially compose to give the identity in both directions.

Conclusion

We have proved that type isomorphisms in Curry-style system F can be characterised by adding to the equational system of Church-style system F isomorphisms a new, non-trivial equation:

∀X.A ≃ ε A[∀Y.Y/X] if X Neg A .
Otherwise said, this equation characterises all the new type equivalences one can generate by erasing type indications in Church-style terms.

We used a game semantics model in order to take advantage of its dynamical and geometrical properties. The main features of the model were however often inspired by a precise analysis of the syntax: indeed, an interpretation of the quantifier as an intersection (or a lower bound like in [START_REF] Chroboczek | Game Semantics and Subtyping[END_REF]) was not precise enough to be able to characterise type isomorphisms.

One can notice that our type system does not contain the type ⊤; correspondingly, our model has no empty game. This is because the rule generally associated to ⊤ takes the form: t = ⋆ if Γ ⊢ t : ⊤. This rule is of course difficult to insert in a Curry-style setting, where terms are not typed a priori, and we have no clue whether such a rule can be adapted to this context. Anyway, the introduction of an empty game in the model would break the proof and, more interestingly, give raise to new isomorphisms like ∀X.(X → ⊥) ≃ g ⊥. The characterisation of isomorphisms in this model, and the possible connection with an actual syntax, have to be explored.

But the main trail of future exploration concerns parametric polymorphism. The notion of relational parametricity, introduced by Reynolds [START_REF] Reynolds | Types, abstraction and parametric polymorphism[END_REF], comes historically from the idea that a second-order function shall not depend on the type at which it is instantiated. This has led first to a semantic definition of parametricity, then to a syntactic formalisation of this notion, first by Abadi-Cardelli-Curien [START_REF] Abadi | Formal parametric polymorphism[END_REF] and then by Plotkin-Abadi [START_REF] Plotkin | A logic for parametric polymorphism[END_REF]. Dunphy [START_REF] Patrick | Parametricity as a notion of uniformity in reflexive graphs[END_REF] recently gave a categorical characterisation of parametric polymorphism.

The great advantage of parametric models is that second-order enjoys nice and natural properties in these models. For example:

• ∀X.X → X is a terminal object • ∀X.(A → B → X) → X is a product of A and B • ∀X.X is an initial object • ∀X.(A → X) → (B → X) → X is a coproduct of A and B.
All these properties are of course wrong in the model described in the present paper.

Trying to build a parametric game model is a highly appealing challenge: one would be glad to extend the concrete notions and flexible features of games into a context where parametricity is understood. Studying isomorphisms in this context would be a natural question, considering the particularly powerful ones corresponding to the above properties.

Finally, relational parametricity seems to be related to Curry-style system F, if we believe in a conjecture of Abadi-Cardelli-Curien which says the following: suppose you have two terms of type A whose type erasures are the same. Then they are parametrically equal (the converse is false). This means that the parametric equality is (strictly) stronger than the Curry-style equality: the study on both Curry-style system F and parametricity in the context of games may help to explore this question.

• we iterate this process until we get to n[M q+1] for some M q+1 : this gives us a justified sequence u ′ on (A → B) → C which can be copycat extended to u 1 U, and such that u ′ ↾ ↓↑,↓↓ ∈ σ, u ′ ↾ ↑,↓↑ ∈ τ. Now we iterate this process for each subsequence of u having the same properties as U, and what we obtain is a justified sequence u ′′ on (A → B) → C such that u ′ ↾ ↓↑,↓↓ ∈ σ, u ′ ↾ ↑,↓↑ ∈ τ and t = u ′′ ↾ ↑,↓↓ is a play. Moreover each D j has been replaced by X j (it might actually not be the case if some D j did not correspond to any of our sequences, but in this case we just replace D j by X j harmlessly), so t ∈ ρ. Finally, u can be obtained from u ′′ by copycat extension, so s can be obtained from t by copycat extension. Hence, s ∈ ρ. P: For the sake of simplicity, we will throughout this proof identify the nodes of F A (resp. of F B) with the corresponding nodes of F A→B .

B Proof of

Zig-zag property

Let σ : A → B and τ : B → A be the untyped strategies which form the game isomorphism, and let σ :: A → B and τ :: B → A be two realizations of σ and τ, respectively on A → B and B → A.

We begin with the following:

• every play of σ or τ is zig-zag • τ = {s | s ∈ σ} • σ and τ are total on the shape {↑, ↓}. This has been proven in a simply typed context, i.e. with strategies playing on forests, in [START_REF] Laurent | Classical isomorphisms of types[END_REF]. The present situation is actually a particular case of the simply typed one where the two forests to consider are universal (in the sense that they contain any move). Totality for universal forests immediately implies totality on the arrow shape.

One consequence of totality on the arrow shape is that, whenever s ∈ σ, we have erase(s) ∈ σ.

Copycat property

We now prove the following:

if sm 1 [m ′ 1]m 2 [m ′ 2] ∈ σ with A(m 1), A(m 2) ∈ O A→B , then erase(m ′ 1) = erase(m ′ 2)
We call it the copycat property. Note that this property will hold only because (σ, τ) is a game isomorphism, it is not true in general.

The construction of f will use the determinacy of σ and τ, which generates a unique move starting from a play with its complete history (not just the last move). That is why we could not work with a function f ′ : O A → O B , because in that case, the choice of f ′ (a) would depend not only on a, but also on the choice of the ancestors. As said at the end of section 7, the information contained in a node c ∈ F A is precisely the node or(c) ∈ O A plus its ancestors: so, the forests are the good structure to ensure that the function f is well-defined. Having this in mind, one can identify or(a i) (resp. or(f (a i))) with a i (resp. f (a i)), and try to prove:

E(f (a 1))[i]E(a 1)[i]E(a 2)[i]E(f (a 2))[i]E(f (a 3))[i]E(a 3)[i] • • • ∈ σ.
Moreover, by the property of non-ambiguity (cf. def. 11), one has, for any b in F A (resp. in F B):

E(a i) = E(b) ⇒ b = a i (resp. E(f (a i)) = E(b) ⇒ b = f (a i))
. That is why we will also identify a i (resp. f (a i)) with E(a i) (resp. E(f (a i))). What has to be proved is then:

f (a 1)[i]a 1 [i]a 2 [i] f (a 2)[i] f (a 3)[i]a 3 [i] • • • ∈ σ If p = 1, we build a symbolic play s = m 1 ∈ P B→A such that erase(m 1) = a 1 [i] for X i = m 1
L B→A (a 1) . Let b be the only untyped move such that a 1 [i]b ∈ τ (which exists by totality of τ). τ being a realisation of τ, there must be a play m 1 M ∈ τ with erase(M) = b, and we have a decomposition

M = m 2 [m ′ 2] with A(m 2) = c ∈ O B→A .
We choose f (a 1) = c, and we have erase(m ′ 2) = i because of the copycat property. If p = p ′ + 1 with p ′ odd, we have by induction hypothesis:

f (a 1)[i]a 1 [i]a 2 [i] f (a 2)[i] . . . f (a p ′)[i]a p ′ [i] ∈ σ,
and by totality of σ there exists a unique move x such that f (a 1)

[i]a 1 [i]a 2 [i] f (a 2)[i] . . . f (a p ′)[i]a p ′ [i]a p [i]x ∈ σ. One is able to build inductively a play S ∈ σ such that erase(S) = f (a 1)[y 1]a 1 [y 1] . . . f (a p ′)[y p ′]a p ′ [y p ′] for a good choice of the moves y k : indeed, if S ′ ∈ σ with erase(S ′) = f (a 1)[y 1]a 1 [y 1] . . . f (a k)[y k]a k [y k] (the case erase(S ′) = f (a 1)[y 1]a 1 [y 1] . . . a k [y k] f (a k)[y k] is similar), we choose a move M = m 1 [m 2] with A(m 1) = a k+1 and m 2 initial move of M D where D = m 1
L A→B (a k+1) ; we note erase(m k+1) = y k+1 . σ being a realisation of σ, we have S ′ MM ′ ∈ σ for some typed move M ′ , and erase(M ′) = a k+1 [y k+1] by hyperuniformity of σ. Hence we have obtained

S = S ′ MM ′ ∈ σ such that erase(S) = f (a 1)[y 1]a 1 [y 1] . . . a k+1 [y k+1] f (a k+1)[y k+1
] for some y k+17 . Then one chooses a typed move N such that tN ∈ P A→B and erase(M) = a p [y p] for some initial move y p (it suffices once again to choose y p as initial in M D for the appropriate game D).

As

f (a 1)[y 1]a 1 [y 1] . . . f (a p ′)[y p ′]a p ′ [y p ′]a p [y p]x[y p] ∈ σ by hyperuniformity, we have tNN ′ ∈ σ for some N ′ with erase(N ′) = x[y p]. So x = b[z] with b ∈ O A→B , and we choose f (a p) = b. By the copycat property z[y p] = y p , so z[i] = i: this means f (a 1)[i]a 1 [i]a 2 [i] f (a 2)[i] . . . a p [i] f (a p)[i] ∈ σ.
If p = p ′ + 1 with p ′ even, one can do the same reasoning by using τ instead of σ.

In the same way, one can associate a function g with τ and easily verify that f • g is the identity on O B and g • f is the identity on O A , so f is a bijection. Moreover, by construction, if a ≤ a ′ then f (a) ≤ f (a ′).

Construction of the typed copycat play

To prove that f satisfies the requirements of a Curry-isomorphism, we will construct a play s p ∈ σ such that L A→B (c) . In the plays s p , we will use the games (C j) j∈N defined by: C 1 = ⊥ × ⊥ and C j+1 = C j × C j . Note that each initial move of C j takes the form b 1 (b 2 (. . . (b j (0)) . . .)), where each b i can be either r or l. We call r j the initial move of C j where each b i is equal to r. These games will be used in order to have "fresh" moves, i.e. moves that cannot come from a game defined before C j is played. In what follows, the integer n p is made to ensure that no game defined before step p can belong to C q for q ≥ p.

We now build the triple (s p , y p , n p) inductively:

• If p = 1, we define the typed move M 1 = m 1 [m 2] such that: A(m 1) = f (a 1), the d 1 games played at the level of m 1 are C 1 , . . . , C d 1 and we choose m 2 = ♯(f (a 1)) if paux A→B (f (a 1)) is undefined, m 2 = r j if m 1 L A→B (f (a 1)) = C j . As M 1 ∈ P A→B and σ is a realization of σ, there exists M ′ 1 such that M 1 M ′ 1 ∈ σ and erase(M 1 M ′ 1) = f (a 1)[y 1]a 1 [y 1], where y 1 = erase(m 2). We choose s 1 = M 1 M ′ 1 . Let us define N as the biggest number of tokens r in any initial occurrence of a game D defined at the level of M ′ 1 . We choose n 1 = max(d 1 , N) + 1.

• If p = p ′ + 1 with p ′ odd, we define the typed move M p = m 1 [m 2] such that: erase(m 1) = f (a p), the d p games defined at the level of m 1 are C n p ′ , . . . , C n p ′ +d p and m 2 is chosen as follows:

if paux A→B (f (a p)) is undefined, m 2 = ♯(f (a p)) As s p ′ M p ∈ P A→B and σ is a realization of σ, there exists M ′ p such that s p ′ M p M ′ p ∈ σ and erase(s p ′ M p M ′ p) = t p if y p = erase(m 2). We choose s p = s p ′ M p M ′ p . Let us define N as the biggest number of tokens r in any initial occurrence of a game D defined at the level of M ′ p . We choose n p = max(n p ′ + d p , N) + 1. • If p = p ′ + 1 with p ′ odd, we do the same choices as in the preceding case, except that f (a p) must be replaced by a p , and conversely.

-if paux A→B (f (a p)) = O, m 2 = r j if m 1 L A→B (f (a p)) = C j -if paux A→B (f (a p)) = P, let D =
Suppose paux A→B (a p) is defined, then ref A→B (a p) = b is also defined. It is important for the next section of the proof to understand the link between b and the play s p . First, note that b = a i for some 1 ≤ i ≤ p; then, because of the definition of the set R A→B of hyperedges, we know that a i is the minimal occurrence c of O A→B such that L A→B (a p) is a prefix of c. Hence, if M i (resp. M p) is the move in s p such that erase(M i) = a i [y i] (resp. erase(M p) = a p [y p]) and if D = M p L A→B (a p) , then the game D is played by paux A→B (a p) at the level of M i . So, in the construction of s p , D has been played at step i.

We also need to build a play u p ∈ τ such that erase(u p) = v p , where The procedure is similar (we just need to swap σ and τ). Note that we do not have in general u p = sp , or even erase(u p) = wp with w p = erase(s p), because the untyped moves y i and y ′ i may differ.

v p =        a 1 [y ′ 1] f (

Curry-isomorphism

We are now going to prove that the bijection f satisfies each requirement of a Curry-isomorphism.

We first prove that D B • f = D A : suppose D A (a p) = X i , then s p = s p-1 MM ′ with erase(M) = a p [i] and erase(M ′) = f (a p)[i]; likewise, u p = u p-1 NN ′ with erase(N) = f (a p)[i] and erase(M ′) = a p [i]. If paux A→B (f (a p)) = O then one should have i = r j for some j by construction of s p , which is impossible. If paux A→B (f (a p)) = P then paux B→A (f (a p)) = O and one should have i = r j for some j by construction of u p , which is impossible. Then paux A→B (f (a p)) is not defined, and ♯(f (a p)) = i which means D B (f (a p)) = X i . Similarly, D B (f (a p)) = X i implies D A (a p) = X i as well.

Lemma 6

 6 If σ : Γ → ∀X j .A and B is a game then σ : Γ → A[B/X j]. P: If σ is a realization of σ on Γ → ∀X j .A, a realization σ′ on Γ → A[B/X j] is obtained by taking only plays where each initial move takes the form ↑ ⋆ B m, and by replacing each move ↑ ⋆ B m by ↑m.

f

 erase(s p) = t p , wheret p = (a 1)[y 1]a 1 [y 1]a 2 [y 2] f (a 2)[y 2] . . . f (a p)[y p]a p [y p] if p odd f (a 1)[y 1]a 1 [y 1]a 2 [y 2] f (a 2)[y 2] . . . a p [y p] f (a p)[y p] if p even for an appropriate choice of the moves y i . Moreover, one will have s p = s p-1 m 1 [m 2]M ′ where A(m 1) = c ∈ O A→B and erase(m 2) = y p uniquely determined by D = m 1

m 1 L 2 L

 12 A→B (f (a p)) . Either there exists c ∈ O D such that ⊢ c and L D (c) †, and in this case one choosesm 2 = m ′ 2 [m ′ 3] with A(m ′ 2) = c, m ′ D (c) = ⊥ × ⊥ and m ′ 3 = l0; we note r D = erase(m 2)8 , and we require that r D is a function of D; or there exists no such c and in this case we choose m 2 such that A(m 2) is one of the initial occurrences of D: we just require that this choice is a function of D, and note it r D .

interacting sequence, composition) An interacting sequence s

 = µ 1 . . . µ n is a justified sequence of shape {↑, ↓↑, ↓↓} such that s↾ ↑,↓↑ , s↾ ↓↑,↓↓ and s↾ ↑,↓↓ are plays. The set of interacting sequences is denoted Int.Suppose we have two strategies σ and τ. We call composition of σ and τ the set of plays σ; τ = {u↾ ↑,↓↓ | u ∈ Int, u↾ ↑,↓↑ ∈ τ and u↾ ↓↑,↓↓ ∈ σ} σ; τ is a strategy: this can be proven like in the standard HON game model. Moreover if σ and τ are innocent then σ; τ is innocent.

	then the corresponding occurrence of
	↑µ ′ i (resp. ↓µ ′ i) is justified by ↑µ ′ j (resp. ↓µ ′ j); and if µ i = ξµ ′ i is hereditarily justified by a move µ j = ζµ ′ j in s, then the corresponding occurrence of ↓µ ′ i is justified by the corresponding occurrence of ↑µ ′ j iff ⊢ µ ′ i and ⊢ µ ′ j .
	Definition 7 (

 A ≃ g B ⇒ H A ≃ Cu H B Definition 29 (zig-zag play) A play s of arrow shape is said to be zig-zag if • each Player move following an Opponent move of the form ↑m (resp. ↓m) has the form ↓m ′ (resp. ↑m ′) • each (Player) move which follows an (Opponent) initial move is justified by it • s↾ ↑ and s↾ ↓ have the same pointers. If s is a zig-zag even-length play, we note s the unique zig-zag play such that s↾ ↑ = s↾ ↓ and s↾ ↓ = s↾ ↑ . Let A, B ∈ G. If there exists a game isomorphism (σ, τ) between A and B (A ≃ g B) then their hyperforests are Curry-isomorphic (H A ≃ Cu H B).

	Theorem 1

 a 1)[y ′ 1] f (a 2)[y ′ 2]a 2 [y ′ 2] . . . a p ′ [y p ′] f (a p ′)[y p ′] if p odd

		a 1 [y ′ 1] f (a 1)[y ′ 1] f (a 2)[y ′ 2]a 2 [y ′ 2] . . . f (a p)[y ′ p]a p [y ′ p]	if p even	for an appropriate choice of the moves
	y	i .	

Typing rules:(ax)x 1 : A 1 , . . . , x n : A n ⊢ x i : A i Γ, x : A ⊢ t : B (→ I) Γ ⊢ λx.t : A → B Γ ⊢ t : A → B Γ ⊢ u : A (→ E) Γ ⊢ (tu) : B Γ ⊢ t : A Γ ⊢ u : B (×I) Γ ⊢ t, u : A × B Γ ⊢ t : A × B (×E1) Γ ⊢ π 1 (t) : A Γ ⊢ t : A × B (×E2) Γ ⊢ π 2 (t) : B

All along this article we will identify the notions of type and formula (according to the Curry-Howard correspondence).

The denomination arena would also fit, but we wanted to stress the fact that our games are not trees like HON-arenas, but just partial orders.

This notion is related to the idea of evolving game introduced in [MO01] and reused in[dL07].

We chose not to explicit this interpretation because we do not need it; one could also prove that we have a model of Church-style system F, but it is not an important question here.

In[dL07] the interpretation of types was directly hyperforests.

In the next part of the proof we will also build a typed play s p ∈ σ such that erase(s p) = f (a 1)[y 1]a 1 [y 1] . . . f (a p)[y p]a p [y p], but there will be more constraints on s p .

In this case, m 2 is precisely built in such a way that we cannot have r D = r j for any j.

A Uniform strategies compose

Proposition 2 If σ :: A → B and τ :: B → C are two uniform strategies then σ; τ :: A → C is uniform. P: Consider the following strategy ρ = {u↾ ↑,↓↓ | u ∈ Int ∧ u↾ ↓↑,↓↓ ∈ σ ∧ u↾ ↑,↓↑ ∈ τ ∧ u↾ ↑,↓↓ symbolic play} It is an innocent strategy on A → C (the proof is the same as in HON models), and it is of course symbolic. We call ρ its copycat extension, and we want to prove that ρ = σ; τ.

First we prove that ρ ⊆ σ; τ: as ρ ⊆ σ; τ, we need to show that σ; τ is stable by any copycat extension along any index j. Note that, if the variable game X j is played by O in A → C, it is also played by O in A → B or B → C. Consider the play s ′ = Fl s j,D (r) for s = m 1 . . . m n ∈ σ; τ, D ∈ G and r sequence of initial move in M D . One shows that s ′ ∈ σ; τ: indeed there exist a justified sequence u and two plays s 1 ∈ σ and s 2 ∈ τ such that u ↾ ↓↑,↓↓ = s 1 , u ↾ ↑,↓↑ = s 2 and u ↾ ↑,↓↓ = s. Let us consider the justified sequence U 0 obtained from u by replacing each sequence m i b 1 . . . b q m i+1 by m

1 ∈ σ (it is a flat extension, hence a copycat extension, of s 1), U↾ ↑,↓↑ ∈ τ (it is a flat extension, hence a copycat extension, of s 2) and U↾ ↑,↓↓ = s ′ ∈ σ; τ. Now consider a move m i of s such that ♯(m i) = j and a bi-view v = n 1 . . . n p in the game D, and set

one can build another justified sequence U ′ , depending on the value of p:

1 was the flat extension) so U ′ ↾ ↓↑,↓↓ ∈ σ, and similarly

The last thing to prove is that σ; τ ⊆ ρ. We suppose that σ and τ are the copycat extensions of the symbolic strategies σ and τ respectively. Consider a play s ∈ σ; τ, there exists a justified sequence u for which u↾ ↓↑,↓↓ = s 1 ∈ σ, u↾ ↑,↓↑ = s 2 ∈ τ and u↾ ↑,↓↓ = s.

Let D 1 , . . . , D N be the sequence of games played by O in u at the level of moves of shape ↑ or ↓↓. Suppose for simplicity that X 1 , . . . , X N FTV(A). Consider a subsequence

, and b 1 , . . . , b q are of shape ↓↑ whereas m, n are not of this shape. Suppose U is the first such sequence in u and m is of shape ↑ (the case where m is of shape ↓↓ is similar). Then m L (A→B)→C (c) = D j for some 1 ≤ j ≤ N (it is a game played by O, because paux (A→B)→C (c) = O).

If u = u 1 Uu 2 , we build a new sequence u ′ as follows:

copycat extension of some s1 ∈ σ: indeed, σ is the smallest innocent strategy that contains O and is stable by copycat extension, so t 1 must be composed of many views that are obtained from σ by copycat extensions; besides, U is the first subsequence of its kind, so there is in fact only one of these copycat extensions that applies on a variable played at the level of a move of shape ↑ or ↓↓ (so, only one B j -extension). s1 takes the form s1

copycat extension of some s2 ∈ τ: indeed, τ is the smallest innocent strategy that contains O and is stable by copycat extension, so t 2 must be composed of many views that are obtained from τ by copycat extensions; besides, U is the first subsequence of its kind, so there is in fact only one of these copycat extensions that applies on a variable played at the level of a move of shape ↑ or ↓↓ (so, only one B j -extension). s2 takes the form s2

First consider the case where

is symbolic. We note u = erase(S) and we have u ∈ σ and v = ȗ ∈ τ. We will prove by recurrence that erase(m ′ 1) = erase(m ′ 2), and that it is possible to build a play T ∈ τ such that erase(T) is a copycat extension of v. So, suppose this is true for every t ∈ E such that t s.

We set

and

We have three cases:

2) = 0 and O has only played symbolically), so paux B→A (a 2) = O. As we have T ′ ∈ τ such that t ′ = erase(T ′) is a copycat extension of t (so t ′ ∈ τ by hyperuniformity), one can build T ′ m 2 [j] ∈ P B→A for some j 0 (remember O plays symbolically), so by definition of the realization there exists N ∈ M B→A such that

] ∈ σ for some j such that X j FTV(A), so paux A→B (a 2) is defined. The case paux A→B (a 2) = P implies paux B→A (a 2) = O; as we have T ′ ∈ τ such that t ′ = erase(T ′) copycat extension of t (so t ′ ∈ τ by hyperuniformity), there exists k such that

One still has to build in this case the play T ∈ τ such that erase(T) is a copycat extension of v: we have T ′ ∈ τ such that t ′ = erase(T ′) copycat extension of t (so t ′ ∈ τ by hyperuniformity); moreover, if D = m 2 L A (a 2) then there is at least one initial move

• if paux A→B (a 1) = P, then paux B→A (a 1) = O. As we have T ′ ∈ τ such that t ′ = erase(T ′) copycat extension of t, one can build as above T ′ m 2 [M] ∈ P B→A for some typed move M (if D = m 2 L A (a 2) then there is at least one initial move M ∈ M D), so T ′ m 2 [M]N[N ′] ∈ τ for some N, N ′ with A(N) = c ∈ O B→A . We set y = erase(M), z = erase(N) and z ′ = erase(N ′). There are two possibilities: if paux A→B (a 2) = O, then M = j for some j. As tx 2

Finally, if S is not symbolic, there exists a symbolic play

2) because of the definition of the copycat extension.

Construction of the untyped copycat play

Let a be a node of F A and a 1 , . . . , a p be the sequence of nodes of F A such that ⊢ a 1 , a i ⊢ a i+1 and a p = a. We are going to construct a function f : F A → F B such that, for any i ∈ N:

We then prove that f (S A) = S B : if a p ∈ S with (t, S) ∈ R A for some t, suppose L A→B (f (a p)) = †. If paux A→B (a p) = O then s p = s p-1 MM ′ with erase(M) = a p [y p] and erase(M ′) = f (a p)[y p], and one should have y p = r j for some j by construction of s p . But this is impossible since

and erase(N ′) = a p [y p] and one should have y p = r j for some j by construction of u p . But this is impossible since

Finally, we need to prove the following: for every (t, S) ∈ R A , if there exists c ∈ S such that λ(c) λ(t), then (f (t), f (S)) ∈ R B (the reciprocal would be done similarly). Let us take a 1 , . . . , a p the sequence of nodes such that: ⊢ a 1 , a i ⊢ a i+1 and a p = c. We necessarily have t = a i for some i ≤ p.

First we prove that ref B (f (a p)) = f (a i): suppose that it is false, then ref B (f (a p)) = f (a j) with j i. First take j < i: if paux A→B (a p) = O, then f (a p) is an O-move on A → B, so s p = SM p M ′ p where:

. So we should have y p = r k to be the move we choose in D, which is impossible by construction of n i-1 . If paux A→B (a p) = P, we simply note that paux B→A (a p) = O and do the same reasoning with u p in B → A. In the case where i < j, the reasoning is similar: if paux A→B (a p) = P, then s p = SM p M ′ p where:

L A→B (a p) = D for some D chosen at step i; and

We consider that paux A→B (f (b)) = O (if not, one works with u p on B → A), so paux A→B (a p) = P and

L A→B (a p) , we necessarily have that y p = r k = erase(r D). But a problem arises with b and f (b): as a first case, suppose that b has the polarity P in A. Then there is a play s ′ q = s ′ q-1 M 1 [M 2]M ′ 1 [M ′ 2] in σ constructed the same way as s p , such that erase(s ′ q) = erase(s ′ q-1)b[y ′ q] f (b)[y ′ q], and where