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Abstract

This paper describes an effective verification procedure for imperative programs that
handle (balanced) tree-like data structures. Since the verification problem considered
is undecidable, we appeal to a classical semi-algorithmic approach in which the user
has to provide manually the loop invariants in order to check the validity of Hoare
triples of the form { P}C{Q}, where P, ) are the sets of states corresponding to the
pre- and post-conditions, and C' is the program to be verified. We specify the sets
of states (representing tree-like memory configurations) using a special class of tree
automata named Tree Automata with Size Constraints (TASC). The main advantage
of using TASC in program specifications is that they recognize non-regular sets of
tree languages such as the AVL trees, the red-black trees, and in general, specifica-
tions involving arithmetic reasoning about the lengths (depths) of various (possibly
all) paths in the tree. The class of TASC is closed under the operations of union,
intersection and complement, and moreover, the emptiness problem is decidable,
which makes it a practical verification tool. We validate our approach considering
red-black trees and the insertion procedure, for which we verify that the output of
the insertion algorithm is a balanced red-black tree, i.e. the longest path is at most
twice as long as the shortest path.
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1 Introduction

Vferification of programs using dynamic memory primitives, such as allocation, deallocation, and
pointer manipulations, is crucial for a feasible method of software verification. In this paper,
we address the problem of proving correctness of programs that manipulate balanced tree-like
data structures. Such structures are very often applied to implement in an efficient way lookup
tables, associative arrays, sets, or similar higher-level structures, especially when they are used
in critical applications like real-time systems, kernels of operating systems, etc. Therefore, there
arised a number of such search tree structures like the AVL trees, red-black trees, splay trees, and
soon [7].

Tree automata [6] are a powerful formalism for specifying sets of trees and reasoning about
them. However, one obstacle preventing them from being used currently in program verification
is that imperative programs perform destructive updates on selector fields, by temporarily violat-
ing the fact that the shape of the dynamic memory is a tree. Another impediment is the fact that
tree automata represent regular sets of trees, which is not the case when one needs to reason in
terms of balanced trees, as in the case of AVL and red-black tree algorithms.

In order to overcome the first problem, we observe that most algorithms [7] use tree rota-
tions (plus the low-level addition/removal of a node to/from a tree) as the only operations that
effectively change the structure of the input tree. Such updates are usually implemented as short
low-level pointer manipulations [16], which are assumed to be correct in this paper. However,
their correctness can be checked separately in a different formalism, such as [17], or by using
tree automata extended with additional “routing” expressions on the tree backbone as in [11].

The second inconvenience has been solved in the present paper by introducing a novel class
of tree automata, called Tree Automata with Size Constraints (TASC). TASC are tree automata
whose actions are triggered by arithmetic constraints involving the sizes of the subtrees at the
current node. The size of a tree is a numerical function defined inductively on the structure, as for
instance the height, or the maximum number of black nodes on all paths, etc. The main advantage
of using TASC in program specifications is that they recognize non-regular sets of tree languages,
such as the AVL trees, the red-black trees, and in general, specifications involving arithmetic
reasoning about the lengths (depths) of various (possibly all) paths in the tree. We show that
the class of TASC is closed under the operations of union, intersection and complement. Also,
the emptiness problem is decidable, and the semantics of the programs performing tree updates
(node recoloring, rotations, nodes appending/removal) can be effectively represented as changes
on the structure of the automata.

Our approach consists in writing pre- and post-condition specifications of a (sequential) im-
perative program and asking the user to provide loop invariants. The verification problem con-
sists in checking the validity of the invariants and of the Hoare triples of the form {P}C{Q}
where P, () are the sets of configurations corresponding to the pre- and post-condition, and C'is
the program to be verified. We validate our approach on an example of the insertion algorithm
for the red-black trees, for which we verify that for a balanced red-black tree input, the output
of the insertion algorithm is also a balanced red-black tree, i.e. the number of black nodes is the
same on each path.



Related Work  Verification of programs that handle tree-like structures has attracted researchers
with various backgrounds, such as static analysis [12], [16], proof theory [4], and formal lan-
guage theory [11]. The approach that is the closest to ours is probably the one of PALE (Pointer
Assertion Logic Engine) [11], which consists in translating the verification problem into the
logic SkS [15] and using tree automata to solve it. Our approach is similar in that we also spec-
ify the pre-, post-conditions and the loop invariants, reducing the validity problem for Hoare
triples to the language emptiness problem. However, the use of the novel class of tree automata
with arithmetic guards allows us to encode quantitative properties such as tree balancing that are
not tackled in PALE. The verification of red-black trees (with balancing) is reported also in [2]
by using hyper-graph rewriting systems. Two different approaches, namely net unfoldings, and
graph types, are used to check that red nodes have black children and that the tree is balanced,
respectively.

The definition of TASC is the result of searching for a class of counter tree automata that
combines nice closure properties (union, intersection, complementation) with decidability of the
emptiness problem. EXxisting work on extending tree automata with counters [8], [18] concen-
trates mostly on in-breadth counting of nodes with applications on verifying consistency of XML
documents. Our work gives the possibility of in-depth counting in order to express balancing of
recursive tree structures. It is worth noticing that similar computation models, such as alternating
multi-tape and counter automata, have undecidable emptiness problems in the presence of two
or more 1-letter input tapes, or, equivalently, non-increasing counters [13]. This result improves
on early work on alternating multi-tape automata recognizing 1-letter languages [9]. However,
restricting the number of counters is problematic for obtaining closure of automata under inter-
section. The solution is to let the actions of the counters depend exclusively on the input tree
alphabet, in other words, encode them directly in the input, as size functions. This solution
can be seen as a generalization of Visibly Pushdown Languages [1] to trees, for singleton stack
alphabets. The general case, with more than one stack symbol, is a subject of future work.

1.1 Running Example

In this section, we introduce our verification methodology for programs using balanced trees.
Several data structures based on balanced trees are commonly used, e.g. AVL trees. Here, we
will use as a running example red-black trees, which are binary search trees whose nodes are
colored by red or black. They are approximately balanced by constraining the way nodes can
be colored. The constraints insure that no maximal path can be more than twice as long as any
other path. Formally, a node contains an element of an ordered data domain, a color, a left and
right pointer and a pointer to its parent. A red-black tree is a binary search tree that satifies the
following properties:

1. Every node is either red or black.
2. The root is black.

3. Every leaf is black.
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Figure 1: (a) A red-black tree—nodes 10, 15, and 19 are red, (b) the left and right tree rotation

4. If a node is red, both its children are black.
5. Each path from the root to a leaf contains the same number of black nodes.

An example of a red-black tree is given in Figure 1 (a). Because of the last condition, it
is obvious that the set of red-black trees is not regular, i.e. not recognisable by standard tree
automata [6]. The main operations on balanced trees are searching, insertion, and deletion.
When implementing the last two operations, one has to make sure that the trees remain balanced.
This is usually done using tree rotations (Figure 1 (b)) which can change the number of black
nodes on a given path. The pseudo-code of the inserting operation is the following (see [7]):

RB-I nsert (T, x):

Tree-Insert(T,X); % | nserts a new | eaf node x
x->col or = red,
while (x !'= root && x->parent->color == red) {
if (x->parent == x->parent->parent->left) {
i f (x->parent->parent->right->color == red) {
X->par ent - >col or = bl ack; % Case 1

X->par ent - >par ent - >ri ght - >col or = bl ack;

X->par ent - >par ent - >col or = red;

X = X->parent->parent; }

el se {

if (x == x->parent->right) { % Case 2
X = X->parent;
Left Rotate(T, x) }

X->parent - >col or = bl ack; % Case 3

X->par ent - >parent - >col or = red;

Ri ght Rot at e( T, x->parent ->parent); }}

else .... %sane as above with right and | eft exchanged
root - >col or = bl ack

For this program, we want to show that after an insertion of a node, a red-black tree remains a red-
black tree. In this paper, we restrict ourselves to calculating the effects of program blocks which
preserve the tree structure of the heap. This is not the case in general since pointer operations can
temporarily break the tree structure, e.g. in the code for performing a rotation. The operations
we handle are the following:



tests on the tree structure (like x- >par ent == Xx- >par ent - >parent - >| ef t),
changing data of a node (as, e.g., recoloring of a node x- >col or = red),
left or right rotation (Figure 1 (b)),

moving a pointer up or down a tree structure (like x = x- >par ent - >par ent),

a M w0 dpoE

low-level insertion/deletion, i.e. the physical addition/removal of a node to/from a suitable
place that is then followed by the re-balancing operations.

2 Preliminaries

In this paper, we work with the set © of all boolean combinations of formulae of the form z—yoc
or x o ¢, forsome c € Z and ¢ € {<,>}. We introduce the equality sign as syntactic sugar, i.e.
r—y=c: x—y<cAx—y > c Notice that negation can be eliminated from any formula of
®,sincex —y L ¢ < = —1y > c+ 1,andsoon. Also, any constraint of the formx —y > ¢
can be equivalently written as y — x < —c. For a closed formula ¢, we write |= ¢ meaning that
itis valid, i.e. equivalent to true.

The following normal form of formulae from ® is needed later on, in Section 3.3.

Lemma 1 Every formula ¢ of © can be effectively written as a disjunction of formulae of the

following form, for some suitable indexing I = {1, is, ..., iy} Of the free variables:
N-—1
/\xik—xikﬂgck A /\ Ty < dpy N /\ Ty > ey
k=1 meMCI pePCI

Proof: We sketch an algorithm that turns any formula of © into the normal form. Every time
we use the word choose in the algorithm below we mean take the disjunction of all possible
cases. To obtain the normal form, consider a formula ¢ written in DNF and choose an indexing

I = {iy,iy,...,ix} Of the variables in ¢, conjoining to ¢ the induced ordering 6, 2 Ty <y <
... < ;. For any constraint of the form =, — z; < c occurring in ¢, we apply one of the four
cases:

1 if0; =z, <xjandc <0, there exist v; = @5, < @y, < ... < x5 = x5 in ;. Choose
¢ < Cpy Clit, - -, ¢—1 < 0such that le‘:lk ¢s = ¢, and replace the constraint z; — z; < ¢
by the conjunction A\, _, _, i, — z;,,, < csin .

2. if0; = z;, <zj;and c > 0, eliminate z; — z; < ¢ from ¢.
3. if0; =z, > z;and c < 0, replace ¢ by L.

4. otherwise, when 0; = x; > z; and ¢ > 0, there exist v; = z;, <y, < ... <15, = 5
in #;. Choose 0 < ¢, Cps1,...,¢-1 < csuch that Zi;lk ¢s = ¢, and replace constraint
z; — x; < c by the conjunction A\, ., z;, — 7, <csine.
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In the resulting formula, replace any conjunction of constraints of the formz—y < c/Ax—y < ¢’
by z — y < min(c, ¢”). O The size of the disjunction is exponential in the number of variables,
due to the initial choice over all possible orderings, and depends also on the constants ¢;, due
to the choices of the first and fourth bullet above. Note that this construction doesn’t have to be
applied if the number of variables is less than or equal to two, which is our case as we show later
on. A ranked alphabet X is a set of symbols together with a function # : > — N. For f € X, the
value #( f) is said to be the arity of f. We denote by X, the set of all symbols of arity n from .
Let A denote the empty sequence. A tree ¢ over an alphabet Y is a partial mapping ¢ : N* — X
that satisfies the following conditions:

e dom(t) is a finite prefix-closed subset of N*, and
e foreach p € dom(t), if #(t(p)) =n > 0then {i | pi € dom(t)} ={1,...,n}.

A subtree of ¢ starting at position p € dom(t) is a tree ¢, defined as ¢,(q) = t(pq) if
pq € dom(t), and undefined otherwise. Given a set of positions P C N*, we define the frontier
of Pastheset fr(P)={p € P|Vi e Npi ¢ P}. Foratreet, we use fr(t) as a shortcut for
fr(dom(t)). We denote by 7'(X) the set of all trees over the alphabet .

Definition 1 Giventwotreest : N* — Y and ¢’ : N* — ¥, a function i : dom(t) — dom(t') is
said to be a tree mapping between ¢ and ¢’ if the following hold:

e h(A\) =\, and

e forany p € dom(t), if #(t(p)) = n > 0 then there exists a prefix-closed set ) C N* such
that pQQ C dom(t') and h(pi) € fr(pQ) forall 1 <i <mn,.

A size function (or measure) associates to every tree t € T'(X) an integer |t| € Z. Size
functions are defined inductively on the structure of the tree. For each f € X, if #(f) = 0 then
| f| is a constant ¢, otherwise, for #( ) = n, we have:

biltil + i if =0, ..., [ta])
[ty ta)| = .

where by,....b, € {0,1}, ¢1,...,¢, € Z,and dy,...,6, € D, all depending on f. In order
to have a consistent definition, it is required that ¢4, ...,d, define a partition of N”, i.e. &
Var .. Vo, Vicic, 0 A Nicicj<n —(0: AJ;). + Asized alphabet (X, |.|) is a ranked alphabet
with an associated size function.

A tree automaton with size constraints (TASC) over a sized alphabet (%, ].|) is a 3-tuple
A= (Q,A, F)where @ is a finite set of states, /" C () is a designated set of final states, and A

(L, ) g, where f € X, #(f) =n,

is a set of transition rules of the form f(q1, ..., qx)

LFor technical reasons related to the decidability of the emptiness problem for TASC, we do not allow arbitrary
linear combinationsof |¢;| in the defi nition of | f(4, ..., tn)|-

5



and ¢ € © is a formula with n free variables. For constant symbols a € X, #(a) = 0, the
automaton has unconstrained rules of the form a — gq.

A runof Aoveratreet: N* — 3 isamapping 7 : dom(t) — @ such that, for each position
p € dom(t), where ¢ = 7(p), we have:

o if #(t(p)) =n > 0and ¢; = w(pi), 1 <i <mn,then A hasarule

o) a ) LD and e ol ),

e otherwise, if #(t(p)) = 0, then A has a rule t(p) — q.

A run 7 is said to be accepting, if and only if 7(\) € F. As usual, the language of A, denoted as
L(A) is the set of all trees over which A has an accepting run.

Let us give as example a TASC recognising the set of all balanced red-black trees. Let > =
{red, black, nil} with #(red) = #(black) = 2 and #(nil) = 0. First, we define the size func-
tion to be the maximal number of black nodes from the root to a leaf: |nil| = 1, |red(t1,t2)| =
mazx([t1], [t2]), and |black(ty, t2)| = maz(|t1],|t2]) + 1. Let Ay = @y ar}, A, {g}) With

1| =12 1| =12
A = {nil — q, black(qs/r, qy/r) =P, v, Ted (v, qv) =P, q-}. By using g, within
the left-hand side of a transition rule, we mean the set of rules in which either ¢, or g, take the
place of ¢,,,.

3 Closure Properties and Decidability of TASC

This section is devoted to the closure of the class of TASC under the operations of union, inter-
section and complement. The decidability of the emptiness problem is also proved.

3.1 Determinisation

A TASC is said to be deterministic if, for every input tree, the automaton has at most one run. For
every TASC A, we can effectively construct a deterministic TASC A, such that £(A) = L(Aqg).
Concretely, let A = (Q, A, F') and G 4 be the set of all guards labeling the transitions from A and
Gh ={p€Gal||FV(p)| =n}wheren € Nand | F'V ()| denotes the number of free variables
in . Without loss of generality, we assume that any guard ¢ labeling a transition of A of the

form f(q1,...,qn) ®, q has exactly n free variables.? Define B% as the set of all conjunctions

of formulae from G’ and their negations. Let B4 = J,, . B% U {T}. With this notation, define

2We can add conjuncts of the form z; = z; for all missing variables.



Ag = (Qq, Ay, Fy) where Qg = P(Q) x Ba, Fy={(s,¢) € Qq| sNF # 0}, and:

(

5 C {dlfan. a0 LgeAgestands£0
F((51,01) - (5ny0n)) 2> (5,00) € Ay iff o = /\{¢|f(q1,...,qn)ﬂqu,q,-es,-,qes}A
A ol ) e A saeQ\s)

a— (s, T) €Ny iff s={qla—qe A}

Notice that A, has no states of the form (s, L) since they would necessarily be unreachable. The
following theorem proves that non-deterministic and deterministic TASC recognize exactly the
same languages.

Theorem 1 A, is deterministic and £(A,) = L(A).

Proof: (1) To prove that A, is deterministic, suppose ¢ Ai> (s,)andt Ai> (s', '), for some
d d
t € T'(X) and two states (s, @), (s', ¢') € Q4. We prove s = s’ and ¢ = ¢’ by induction on the

structure of t. If t =a € Yywehaves = ={g€ Q| a X q}and ¢ = ¢’ = T, by definition

of A,. Otherwise, lett = f(tq,...,t,) forsome f € ¥, and ty,...,t, € T(X) and, by induction

hypothesis, there exist unique states (s;, ;) € @4 such that ¢ Ai) (si, i), 1 < i < n. Suppose
d
that s £ s that is, there exists a state ¢ € ¢ which either belongs to s and does not belong to s’ or

viceversa. Let us consider the first case, the other one being symmetric. By the definition of A,

/

Ay has two rules f((s1, 1), -, (sny0n)) = (5,0) and f((s1,01), -, (5my 00)) == (5, &)

and A has arule f(q1,...,qn) i q, for some ¢; € s;, 1 < i < n, such that ¢ = 1 and

¢ = . But, since (s, ) and (s’,¢’) are reachable from ¢ in A,, it must be the case that
E o(|ti], .., [ta]) and = @' (Jt1], - - -, |tn]), which leads to a contradiction. Hence s = s/, and,
by definition of A,, we also have ¢ = ¢'.

(2) “L(Ag) € L(A)” We prove that, for all ¢ € T'(X) and (s, ¢) € Q4 such that ¢ Ai> (s, ),
d

for all ¢ € s we have ¢ % q. If t = a € Xy, by definition of A4, we have s = {q¢ | a Z q}.

Otherwise, t = f(ty,...,t,) for some f € %, and t;,...,t, € T(X), and ¢; Ai> (Si, Qi)
d

1 <7 < n. By induction hypothesis, for all ¢ € s; we have ¢, % q. By definition of A, there

existsarule f({(s1,©1),--,{Sn, Pn)) 2, (s, ), such that, for each rule f(q, ..., qn) i q with
¢; € s; and ¢ € s we have ¢ = ). Moreover, the rule is applicable, i.e. = o(|t1],...,|t]).

Hence each rule f(q1,. .., qn) E q is applicable. Therefore, for all ¢ € s we have ¢ % q. If



(s, ) € Fythen, by the definition of A, there exists ¢ € sN F. Hence ¢ is accepted by A, if it is
accepted by A. “L(A4) 2 L(A)” We prove that, forall t € T'(X)and ¢ € Q, ift % q then there

exists (s, ¢) € Q4 suchthat¢ Ai> (s,pyandq € s. Ift =a € ¥y, we have s = {¢|a — ¢} and
d

@ = T. Otherwise, t = f(ty,...,t,) forsome f € ¥, and t,...,t, € T(X), and ¢; % q;, for
some ¢; € @, 1 < i < n. By the induction hypothesis, there exist some (s;, p;) € Q, such that

t; Ai> (si, ;) and ¢; € s;. Also, if t % g qn) % ¢, then |= o(|t1], ..., |ta]). Consider
d

now the set of guards G = {¢ | 3¢1 € s1,...3q, € $,3¢ € Q f(q1,---,qn) % q}. and I'y, be
the set of all subsets of G that contain ¢). By W7 we denote the formula /\QOGI © A /\goeg\l' Q.
Obviously ¢ = \/Iepw Uz, Since = ¥(|ti1], ..., |tn]), there exists some Z € T, such that
EWr(|ti],...,|tau])- Now let s = {q [3q1 € s1,...,3qn € sn f(q1, -, qn) % q, ¥ € I}. and

© = V7. Notice that ¢ € s. By the definition of A, there exists a rule f({s1,©1) ... (Sn, ¥n)) ®,

(s, ) in Ay, and moreover it is applicable, hence ¢ Ai) (s, ). By the definition of Ay, if g € F

d
then (s, ¢) € F, hence t is accepted by A if it is accepted by A,. O
3.2 Union, Intersection and Complementation

In this section, let A; = (Q1, Ay, F1) and Ay = (Q2, Ay, Fy). We can assume w.l.0.g. that ¢,
and -, are disjoint. Then A; U A; = (Q1UQy, AyUA,, F1UE,). Itis easy to check that indeed
L(A; U As) = L(A;)UL(Ay). Forintersection, let A; N Ay = (Q1 X Qo, A1z, F1 X Fy), where:
/ " / " ' /\ g / " H / / ' /
PG ) (dhdl)) T2 (¢ ") € A iff (4, q) Do ¢ € Ay and

/!
Fldl g B g e Ay

The fact that £(A; N As) = L(A;) N L(A,) is again an easy check.
A TASC A = (Q, A, F) is said to be complete if, for any tree t € T'(X) there exists a state

q € Qsuchthatt % q. An arbitrary TASC can be completed by adding a sink state 7 ¢ ¢ and
the following rules, forall f € %, ¢1,..., ¢, € Q, where n = #(f):

fla, .. qn) Dmen, iff 90:/\{_'2/}|f(QI7---7Qn)£q€A}
f(ql,...,ﬁ,...qn)LweAc

A. denotes the set A to which the new transition rules have been added. The complete TASC is

A, = (Q U {7}, A, F). Notice that, if there are no rules f(q1, ..., qn) % q, then there is arule



flar, -, qn) Al) q. Itis trivial to check that £L(A.) = L(A). Moreover, if A is deterministic,
S0 is A.. ‘ )
The complement of a deterministic complete TASC A = (Q, A, F) is defined by A =

(Q,A,Q\ F). The proof that L(A) = T'(X) \ L(A) is as in the case of classical tree automata.

3.3 Emptiness

In this section, we give an effective method for deciding emptiness of a TASC. In fact, we address
the slightly more general problem: given a TASC A = (Q, A, F') we construct, for each state
q € @, an arithmetic formula ¢,(x) in one variable that precisely characterizes the sizes of the

trees whose roots are labeled with ¢ by A, i.e. = ¢,(n) iff 3t || = n and ¢ % q. As it

will turn out, the ¢, formulae are expressible in Presburger arithmetic, therefore satisfiability is
decidable [14]. This entails the decidability of the emptiness problem, which can be expressed
as the satisfiability of the disjunction quF Oq.

In order to construct ¢,, we shall translate our TASC into an Alternating Pushdown Sys-
tem (APDS) whose stack encodes the value of one integer counter. An APDS is a triple S =
(@, T, 6, F') where @ is the set of control locations, I" is the stack alphabet, £ is the set of final
control locations, and § is a mapping from @ x I" into P(P(Q x I'*)). Notice that APDS do
not have an input alphabet since we are interested in the behaviors they generate, rather than
the accepted languages. A run of the APDS is a tree ¢ : N* — (@ x I'*) satisfying the fol-
lowing property: for any p € dom(t), if t(p) = (q,vw), then {t(pi) | 1 < i < #(t(p))} =
{{q1, w1w), ..., {qn, w,w)} where {(q1,w1), ..., {q., w,)} € d(q,~). The run is accepting if all
control locations occuring on the frontier are final.

Next, we use the construction of [3] to calculate, for the given set of configurations o, the set

pre; (o) of configurations with control state ¢ that have a successor set in o, i.e. ¢ = (g, w) N

C C o. Itis shown in [3] that if o is a regular language, then so is pre*(o), and the alternating
finite automaton recognizing the latter can be constructed in time polynomial in the size of the
APDS. Hence, the Parikh images of such pre; (o) sets are semilinear sets definable by Presburger
formulae. In our case, o = {{q,€) | ¢ € F'} is afinite set where ¢ is the (encoding of the) empty
stack. Using a unary encoding of the counter (as a stack), we obtain the needed formulae ¢,(x).

Given a TASC A = (Q, A, F') over an alphabet (X, |.|), let S4 = (Qa,I,4, F4) be the
APDS where Q4 = Q x X UIIL, T' = {—,0,1}, and F'y = {q;} C II. Here, II is an additional
set of states that are needed in the construction of S 4 from A and that are not of the form (g, f).
We use 0 as the beginning of the stack marker, — on top of the stack denotes a negative value,
and 1 is used for the unary encoding of the absolute value of the counter. We shall represent an
integer counter z, by a stack configuration 1”0 if the value of x isn € N, and —1"0 if its value
is —n. The primitive operations on z, i.e. increment, decrement and zero test are encoded by the
moves given in Figure 2.

We shall encode a move of A as a series of moves of S4. As A moves bottom-up on the tree,
S 4 will perform a series of alternating top-down transitions, simulating the move of A in reverse.



r=z+1 d ' =a—1 ! r=0 |,
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(@7.0) = {(¢.0)

Figure 2: Encoding a counter by a stack

The stack (counter) of S, is intended to encode the value of the size function |.| at the current
tree node.
Suppose that A has a transition rule f(q1, ..., qn) », q, that the current node is of the form

f(te, ... ty) With |f(t1, ..., t,)| = |te| + cx, and that = dx(|t1], ..., |ts|), according to the
definition of |.|. The value |¢;| is said to be the reference value of the transition, i.e. the value
on which |f(t,...,t,)| actually depends. We shall also consider that ¢ A J, € © has been
already converted into the normal form of Lemma 1 that is, a disjunction of formulae of the
form \'70 @i, — @iy, < do A Npeps Tm < em A Nyepp > L With M. P € {1,....n} and
ds, em, 1, € .3

After each sequence of universal moves, S, creates n copies of its counter z, let us name
them z,, ..., z,. The counter x; is intended to hold the value |¢;| for 1 < ¢ < n, and the counter
x holds the value | f (¢4, . . ., t,)|. Assume that the reference value of the transition is encoded by
zi,, 1.8, x = x;, + ¢;,. With this notation, Figure 3 (a) shows the alternating moves of S, that
simulate the A-transition considered (for one disjunct of ¢ A ;). Figure 3 (b) shows the moves
for transitions of the form a — g¢.

Filled circles in Figure 3 represent states from ¢ x X and empty circles are additional states
from II. The only accepting state of S4, named ¢y, is marked by a double circle. We denote
the configurations with control states from @ x X by (q, f)* where x is the current value of
the counter, and the configurations with control states from IT simply by marking the value of
the counter. sgn(...) denotes the sign function, i.e. sgn(n) = 1 ifn > 0, sgn(0) = 0 and
sgn(n) = —1ifn < 0. vy, vy, ... are symbolic names for the universal moves performed by S 4.

When simulating the A-transition f(q1, ..., q,) 2, q, S 4 starts with the configuration (g, f)®

(Figure 3 (a)). In order to derive the reference value z;, from z, S4 performs c;, decrement or
increment actions, depending on whether the sign of ¢;, is positive or negative. Then S 4 performs
the universal move v, making three copies of itself. The upper one starts in a state from II to
which two existential (non-deterministic) transitions are attached. The first one decrements the
counter an arbitrary number of times in order to obtain some smaller value, while the second
moves to a different state starting a sequence of increment/decrement operations of length d;._;
in order to obtain the value x;,_, from z;, (since z;,_, < x;, + di_1). A similar sequence

3 The case by, = 0 can be treated in asimilar way. We only need to guess the reference value, which can be done
by a nested increment/decremet loop of the APDS.

10



o3 e

/ +sgn (dy— 1) x;
x’ —17%“((, ) k
iy s f1)" k
(g, f)I

I —wfsgn(dk+1) 1 -
dﬂt‘(fu,ﬁl’f}cﬂ) k1

Q oO——0 ...
=z +1 <—> =z +1

=z 41

o ...
2/ =z — sgn(lal) z =0 A Tz =z —sgn(em)
&——=0 ... 0O—0© it
(g, a)® d

.Q_>o o
(b) (g, fY*m ©

Figure 3: Simulation of a TASC by an APDS

of transitions is performed by the lower universal branch, whereas the middle branch simply
changes the control state into (g;, , f) without modifying the counter. The symbols fi._1, fx, fr+1
are chosen arbitrarily that is, for each triple (g1, g2, g3) € 33, S performs three universal moves
that are identical to v, 15, 3, With g1, g2, and g5 substituted for f;._1, fr and fx.1, respectivelly.
The construction continues until all values z;,, z;,, ..., x;, are obtained. Clearly, such values
will satisfy the constraint ¢ A d,, and all assignments satisfying this formula can be obtained in
a run of S, by iterating the increment/decrement self-loops a sufficient number of times.*

In order to simulate moves of the form a — ¢ (Figure 3 (b)), S4 simply decrements/increments

the counter, depending on the sign of |a|, a number of times equal to the absolute value of |a.
The condition x = 0 ensures that S, accepts only with the empty stack. The universal dotted
branch in Figure 3 (c) is used to test that z,, < e,, for some 1 < m < n. A similar test for
x, > 1, can be issued by replacing 2’ = x + 1 with 2’ = x — 1 on the loop. The following lemma
is a concretization of the above considerations:

Lemma 2 For each TASC A = (Q, A, F') over a sized alphabet (3, |.|) there exists an APDS
Sy = (QA, I, FA) such that:

1. for any tree ¢t € T'(X) and any run 7 : dom(t) — @ of A on t, there exists an accepting
run p : N* — (Qa x N) of S4 and a one-to-one tree mapping & between 7 and p such

that: Vp € dom(t)3q € Qa p(h(p)) = glt! (1)

2. for any accepting run p : N* — (Qa x N) of S, there exists a tree t € T'(X), a run
7 : dom(t) — @ of A ont and a one-to-one tree mapping / between 7 and p satisfying

(D).

“Notice that since APDS do not have input, the universal branches are not synchronized, hence the iterations can
be performed separately.
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Moreover, S 4 can be effectively constructed from the description of A.

Proof: Let S, = (Qa,I',0, Fa) besuchthat Q4 = Q x XUIL T' = {0, —,1} and Fy = {qs} C
I1. For each transition of the form f(q1,..., ) ®, g from A, 4 has a distinct set of transitions
as in Figure 3 (a) and (c). Transitions of the form a — ¢ are translated as in Figure 3 (b).

(1) Lett € T(X) be atree and 7 : dom(t) — @ be arun of A on¢. We construct p and h by
the following algorithm. Initially p and / are undefined all over N*, and all positions of dom(t)
are unmarked. At each step, p’ and »’ refer to the updated values of p and h, respectivelly.

1. set h/(A) = Aand p/(\) = (x(\), t (AN,

2. repeat
choose some unmarked p € {p € dom(t) | #(t(p)) = n > 0and p(h(p)) = (z(p), t(p))"*'}

(a) consider a run @ of S 4, starting in state p(h(p)) such that fr(0) = {s1,...,s,} and
0(s:) = (m(pi), t(pi))™!, forall 1 <i < n.

(b) extend hand pas follows: forall 1 <i <n, h/(pi) = h(p)-s;, and forall s € dom(9),
p'(h(p) - s) = 0(s).
(c) mark p as visited.

until no more positions match.

Note that it is always possible to find 6 at step (2.a), due to the construction in Figure 3 (a).
Suppose that the reference value of the transitionis k&, 1 < k < n, i.e. [t,| = [t}x| + ¢, for some

¢k € Z. Moreover, since the A-transition f(qq,...,qn) LR q is possible for t = f(t1,...,t,)

and t; = f;(...), 1 < i < n,itisthe case that = ¢(|t1],...,|ts]). Also, due to the definition
of |.|, we have = 6x(|t1|,. .., |ts]). The normal form of Lemma 1 of ¢ A ¢, ensures that =
/\;‘;11 tisl = ti | S diANtm] < em AN > 1, With d;, e, [, € Z. By sufficiently iterating

the increment/decrement self-loops on the universal branches of .S 4 one can obtain the values |¢;|
from |¢|, which guarantees that 6(s;) = (m(pi), t(pi))™, forall 1 < i < n.

The algorithm terminates, since dom(t) is finite. Moreover, h is a tree mapping, according
to Definition 1. It is one-to-one since at no point in the algorithm two different locations from
dom(m) are mapped into the same location from dom/(p). By induction on the length of p we
can prove that: for all p € dom(t), p(h(p)) = ((p), t(p))"»!, which trivially implies (1). Since,
forall p € fr(t) we have that p(h(p)) = (g, )", with a — ¢ € A, for those positions, p(h(p))

leads uniquely to the accepting configuration q?, according to Figure 3 (b). The other positions
on fr(p) correspond to branches testing z,, ¢ e,, in Figure 3 (c), which also lead to q?. This
proves that p is accepting.

(2) Let p : N* — (Q4 x N) be an accepting run of S4. We construct ¢, = and h using the
following algorithm. Initially ¢, = and A are undefined all over N*, and all positions from dom(p)
are unmarked. At each step, ¢/, 7’ and &’ refer to the updated values of ¢, 7w and h, respectivelly.

1. for p(A) = (q, f)*sett/(\) = f, 7'(A\) = qgand h'(\) = A,

12



2. repeat
choose some unmarked p € {p € dom(p) | p(p) = {(q, f)"}

(8) let S = {s € dom(pp,) | pp(s) € @ x X x NandVs' < s pj,(s’) € II x N}. For each
s € S let v, denote the difference between the number of increment and the number
of decrement operations performed along the branch leading from p to ps. Fix some

indexing of S = {sy,..., s,}. Choose an A-transition f(q1, ..., qn) », g€ Aandk

a number between 1 and n be such that | (¢4, ..., t,)| = |tx|+ cx, with side condition
Ox. LetZ = {iy,...,4,} be an indexing of the free variables {z1, ..., x,} such that
vs, = d;, and = (@ A 6g) [, [Vsy, - -+, T [Us,]-

(b) forall s; € S such that p(ps) = (gi, fi)“, 1 < i <nsett(pi) = f;, #'(pi) = ¢; and
W (pi) = psi.

(c) mark p as visited.

until no more positions match.

Note that it is always possible to find the set S of positions corresponding to the start points of
a (bottom-up) A-transition, since every sequence of .S 4-moves as in Figure 3 (a) corresponds to
some A-transition. The rest is finding the matching A-transition, which can be done by enumer-
ating them, since A is finite. The algorithm terminates, because dom(p) is finte.

By induction on the height of ¢|,,, we prove that, for all p € dom(t), p(h(p)) = (7 (p), t(p)) e,
For the base case p € fr(t) (the height of b is one) we have that p(h(p)) = (g, a)!*! for some
transition « — ¢ € A, by the construction in Figure 3 (b) and the fact that p is accepting. For

the induction step, suppose p(pi) = (g, fi)ltwil forall 1 < i < n, f(qi,...,q) . ¢ e Aand

|f(t1, .. ta)| = |tk| + ey E Ok(|ta],- .-, |ta]) for some 1 < k < n. By the construction in
Figure 3 (a), we have that p(h(p)) = (g, f)!**I*e. This guarantees that condition (1) is satisfied.

Moreover, = ¢(|t1], ..., |ta]) is the case, so the A-transition is enabled. By the same induc-
tive argument, this guarantees that 7 is a valid run of A. It is easy to see that, 4 is a tree mapping
and it is one-to-one. O

As a remark, the decidability of the emptiness problem for TASC can be also proved via
a reduction to the class of tree automata with one memory [5] by encoding the size of a tree
as a unary term. The inequality constraints from the guards of the TASC can be simulated
analogously by adding increment/decrement self loops to the tree automata with one memory.

4 Semantics of Tree Updates

As explained in Section 1.1, there are three types of operations that commonly appear in proce-
dures used for balancing binary trees after an insertion or deletion: (1) navigation in a tree, i.e.
testing or changing the position a pointer variable is pointing to in the tree, (2) testing or chang-
ing certain data fields of the encountered tree nodes, such as the color of a node in a red-black
tree, and (3) tree rotations. In addition, one has to consider the physical insertion or deletion
to/from a suitable position in the tree as an input for the re-balancing.
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It turns out that the TASC defined in Section 2 are not closed with respect to the effect of
some of the above operations, in particular the ones that change the balance of subtrees (the dif-
ference between the size of the left and right subtree at a given position in the tree). Therefore,
we now introduce a subclass of TASC called restricted TASC (rTASC) which we show to be
closed with respect to all the needed operations on balanced trees. Moreover, rTASC are closed
with respect to intersection and union, amenable to determinisation and minimization, though
not closed with respect to complementation. The idea is to use rTASC to express loop invariants
and pre- and post-conditions of programs as well as to perform the necessary reachability com-
putations. TASC are then used in the associated language inclusion checks (where they arise via
negation of rTASC).

4.1 Restricted TASC

A restricted alphabet is a sized alphabet consisting only of nullary and binary symbols and a
size function of the form |f(t1,t2)| = max(|ti|, |t2|) + a with a € Z for binary symbols. A
restricted TASC is a TASC with a restricted alphabet and with binary rules only of the form

f(q1,q2) =12=b qgwithb € Z.

Notice that any conjunction of guards of an rTASC and their negations reduces either to false,
or to only one formula of the same form, i.e. |1| — |2| = b. Using this fact, one can show that the
intersection of two rTASC is again an rTASC, and that applying the determinisation of Section
3.1 to an rTASC yields another rTASC. Moreover, the intersection of an rTASC with a classical
tree automaton is again an rTASC.® Clearly, rTASC are not closed under complementation, as
inequality guards are not allowed.

Minimization of rTASC. The simple form of the guards allows us to have a practical min-
imization procedure based on the minimization for classical bottom-up tree automata [6]. If
(X, ].]) is a restricted alphabet, let X5 be the infinite ranked alphabet {(f,d) | f € ¥.d € Z}
with #((f,d)) = #(f). Forany t € T'(X), let 6(t) € T'(X;) be the tree defined by the following
conditions:

e dom(t) = dom(d(t)),
o forall p € dom(t), if #(t(p)) = 0, we have §(¢)(p) = (t(p), |t(p)|), and
o forall p € dom(t), if #(t(p)) = 2, we have §(t)(p) = (t(p), [tjp1| — |tip2l)-

Obviously, 4 is a (bijective) function from 7'(X) to T'(3s), which we extend pointwise to sets
of trees. If A is an rTASC over the restricted alphabet (3, |.|), let As be the bottom-up tree
automaton over X5 defined by replacing each transition rule of A of the form:

® a — qby(a,la]) — ¢,and

5 A bottom-up tree automaton can be seen as a TASC in which all guards are true.

14



1 —[2[=b
-

o flq1,q) — q by (f,0)(q1,92) — q.

Note that we can always define As over a finite subset of X5 since the number of rules in A is
finite. Moreover, the size of A (number of states) equals the size of A;. Last, the transformation
of A into A is always reversible.

Lemma 3 Given an rTASC A over a sized alphabet (%, |.
te L(A)ifandonly if 6(t) € L(As).

), for all trees ¢t € T'(X), we have

Proof: We prove that ¢ x, q iffo(t) >, ¢ by induction on the structure of t. If t = a € ¥g,a —

A As A

11—=12|=0b

g ifand only if 6(a) = (a, |a|) A—> q. Otherwise, lett = f(t,t) Z} a1, ) % q
9

with ¢; % ¢i, 1 <i <2.Then,|t;|—|ta| = b, hence 6(t) = (f,b)(5(¢1),(t2)). By the induction

*

hypothesis, we have 4(¢;) Ai> ¢; and, by the definition of As, (f,0)(q1, ¢2) A—> q. The other
9 9
direction is symmetrical. O

Now given an rTASC A we compute A, minimize it using the classical construction from
[6], obtaining As™™. The minimal rTASC A™" is obtained by performing the reverse operation
on A;™™, i.e. moving back the integer constants from the symbols to the guards. To convince
ourselves that A™" is indeed minimal, suppose there exists a smaller rTASC A’ recognizing
the same language, i.e. £(A) = L(A™") = L(A). Then, §(L(A)) = 6(L(A")) = L(A)) =
L(A;™™). Since A’ and A} have the same number of states, we contradict the minimality of
Aémzn.

4.2 Representing Sets of Memory Configurations

Let us consider a finite set of pointer variables V = {x,y, ...} and a disjoint finite set of data
values D, e.g. D = {red, black}. In the following, we let ¥ = P(V U D U {nil}) where nil
indicates a null pointer value. The arity function is defined as follows: #(f) = 2 if nil ¢ f,
and #(f) = 0 otherwise. For a tree ¢ € T'(3) and a variable = € V), we say that a position
p € dom(t) is pointed to by « if and only if = € t(p).

For the rest, let A = (Q, A, F) be an rTASC over ¥. We say that A represents a set of
memory configurations if and only if, for each ¢ € L(A) and each z € V, there is at most one
p € dom(t) such that x € t(p). This condition can be ensured by the construction of A: let

Q = Q x P(V) and A consist only of rules of the form f({q1,v1), (g2, v2)) ?, (q,v) where

Dov=(fUvnyUw)nVand (2) fNvy = fNwvy = vy Nug = (. Intuitively, a control state
(q,v) "remembers” all variables encountered by condition (1), while condition (2) ensures that
no variable is encountered twice.
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Figure 4: Left rotation on an rTASC

4.3 Modeling Tree Rotations

Let x € V be a fixed variable. We shall construct an rTASC A’ = (@', A’, ') that describes the
set of trees that are the result of the left rotation of a tree from L(A) applied at the node pointed
to by x. The case of the right tree rotation is very similar.® In the description, we will be referring
to Figure 4 illustrating the problem.

Let R, = {(ri,m2) € A’ |z € g A 11t flage) =2 g3 A 12t glaa, q3) = g5} be
the set of all the pairs of automata rules that can yield a rotation, and be modified because of
it. Other rules may then have to be modified to reflect the change in one of their left hand side
states, e.g. the change of ¢; to ¢4 in the h-rule in Figure 4, or to reflect the change in the balance
that may result from the rotation, i.e. a change in the difference of the sizes of the subtrees of
some node. We discuss later what changes in the balance can appear after a rotation, and Lemma
4 proves that the set D of the possible changes in the balance in the described trees is finite. The
automaton A’ can thus be constructed from A as follows:

1. @ =QUR,U(R, x D)U(Q x D) where we add new states for the rotated parts and to
reflect the changes in the balance.

2. A'=AUA, UBAUA,) where:

e A, corresponds to the rotated rules is the smallest set such that for all (ry, ) €
R, where 1 : f(q1,q2) ¥s, g3 and ry : g(q4,q3) s, g5, A, contains the rules

! /
@ @
9(q, 1) o, g5 and f(q5, q2) 3, g5 where ¢ = (rq,72) and ¢ = (7"1,7"2)d"1”'2-

Here, we use (ry,r)%12 as a shorthand for ((ry,73),d,, ,). The value d,,,, € Z
represents the change in the balance caused by the rotation based on rq, r,. We
describe the computation of %, ¢f, and d,., ., below.

6 In fact, it can be implemented by temporarily swapping the child nodes in the involved rules, doing a left
rotation, and then swapping the child nodes again.
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e A, is the set of rules that could be applied just above the position where a rotation
takes place. For each (r1,72) € R,, we take all rules from A that have ¢5 within the
left hand side and add them to A, with (71, r5) substituted for g¢s.

e (3 (described in detail in Section 4.4) is the function that implements the necessary
changes in the guards and input/output states (adding the d-component) of the rules
due to the changes in the balance.

3. F' = (F x D) U F,. Here, F, captures the case where ¢; becomes accepting, i.e. the right
child of the node previously labeled by ¢; becomes the root of the entire tree.

Suppose that @3 is |t;| = |t2| + a1 and let us denote the sizes of the sub-trees read at ¢
and ¢, before the rotation by s; and s,, respectivelly. Let the size function associated with
fbe |f(ti,ta)] = max(|t1], |t2]) + b1, and let s3 denote the size of the subtree labeled by g5
before the rotation. Also, suppose that o5 is |t1| = |t2| + a2 and let us denote the size of the
sub-tree read at ¢, before the rotation as s,. Finally, let the size function associated with g be
lg(t1,t2)| = max(|t1|, |t2]) + bo, and let s; denote the size of the subtree labeled by g5 before the
rotation. We denote s. and s the sizes obtained at ¢; and ¢; after the rotation.

The key observation that allows us to compute ¢}, ¢r, and d,, ., is that due to the chosen form
of guards and sizes, we can always compute any two of the sizes s, s2, s4 from the remaining
one. Indeed,

e fora; > 0, we have s3 = s; + b; = s9 + a; + by = s4 — a9, Whereas
° fora1<O,WehaV653252+bl:51—a1+61:s4—a2.

Computing ¢}, ¢r, and d,., ., is then just a complex exercise in case splitting. Notice that all the
cases can be distinguished statically according to the mutual relations of the constants a1, by, as,
and b,. In the case of ¢, we obtain the following:

1. Fora; > 0, we have s, = s; + by + ao, and so ¢} relating a subtree of size s, and s, (cf.
Figure 4) is [t1| = |ta] + b1 + ao.

2. Fora; <0, we have s, = s; — aj + by + ag, and so % IS |t1| = [ta| — a1 + by + ao.

The guard ¢ is a bit more complex. We distinguish two cases: ®4>1 : s4 > s; and $y; :
s, < s1. Now we rewrite the conditions s; > s; and s, < s; using the relation between s, and
s; described above for a; > 0 and a; < 0:

1. @421 184 > 8 (a1 20/\b1+(12 > 0)\/(&1 < 0/\—&1+b1+&2 > 0) |f(I)421
holds then s; = s4 + b,. Further, we distinguish between the following cases:

(@ fora; > 0Aby +ay > 0, wegetsi = s, +b +as+ by (@ a > 0),ie s =
st — by — as — by. Taking into account that s; = sy + a1, we obtain ¢} : |t1] =
|[ta] + a1 + by + ag + ba.

(b) fora; < OA —ay + by +ay > 0, we have s, = s; —ay + by + ax + by (8S a1 < 0),
i.e. sp = st +a; — by —ax — be. Using that s; = sy + a1, we obtain ¢f : |t;| =
|ta] + b1 + as + bs.
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2. (I>4<1284<81 < (a1 20/\b1+&2 <O)\/(CL1 <O/\—CL1+b1—|—(12 <0) |f(I)4<1
holds, we have s, = s; + by, and so ¢} : |t1| = |t2| + a1 + ba.

The computation of the change in the balance d,, ., is similar to the above. The first case to
be considered is ®,>3 : 54 > s3 <= ay > 0. Here, s5 = s, + by. To compute the change in the
sizes reached at ¢; and ¢4, which is to be compensated in the transitions to come after ¢; instead
of ¢, we need to compute s as a function of s, (then, in the difference, s, will be eliminated).
We can write the following:

( ifq>4212
if$4—|—62282184+b2—|—bl
{ ifS4+b2<52282+b1
if ®y
if$1—|—62282181+b2—|—bl
L {if81+bg<82232+b1

Let us first consider the subcase when ®,~;. It has two further subcases s4 + b2 > s2 and
s,y + by < so, Which we can again rewrite by using the known relations between s, and s, for
a; > 0(sg+a; +b; =84 —az)and a; <0 (s + by = s4 — az). We get:

1. 544+ by > 59 < (a120 N a1+bl+a2+6220) V (CL1<O N b1+a2+6220).
In this case, we have s = s4 + by + by, and s0 d,., ., = by.

2. 84+ by < 89 < (CLl >0 A a;+b+az+ by <O> V (CLl <0 A by +ay+by <O>
Here, s = so + by, and we distinguish the following subcases:

(a) for a; > 0Aar+bi+as+by <0, 5/3 = S9+b =s4—a1—b;—as+b; = s4—a; —as,
andso d,, ,, = —a; — as — by.

(b) fora1<0 AN b1+a2+bz<O,Sg=82+b1284—b1—&2—|—61284—&2,and50
dm,rg = —Aa3 —bg.

The remaining cases of the d,, ,, computation are similar to the above.

4.4 Propagating Changes in the Balance through rTASC

As said, tree updates such as recoloring or rotations may introduce changes in the balance at

certain points. These changes may affect the balance at all positions above the considered node.

The role of the 3 function is to propagate a change in balance d upwards in the trees recognized

by the rTASC. The way (3 changes a set of rules is illustrated in Figure 5. For every d € D,
/

"

every input rule f(qi, ) ®, qs is changed to two rules f(q¢, ¢2) 2, ¢ and f(q1,qd) £, &

corresponding to the cases when the change in the balance originates from the left or the right.
Since we consider just one rotation in every tree (at a given node pointed to by the pointer variable
x), the change can never come from both sides. The new guards are ¢’ : |¢t;| = |t2] + a + d and
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S3=(s,>=5,)?2 (s, +b): (s, +b)

[¢’:s’1:sz+a+d]

[¢131:52+a]
S2
f

@ — s
f

Figure 5: Propagation of changes in the balance in an rTASC

©" ¢ |t1] = |ta| + a — d. Let us further analyse the changes in the balance propagated upwards
after d comes from the bottom.

Suppose the change in balance is coming from the left as in Figure 5 (a). We distinguish the
cases of a > 0 and a < 0. (1) For a > 0, the original size at ¢3 is s3 = s; + b where s, is the
original size at ¢;. After the change d happens at ¢, i.e. s} —s; = d, we have the following
subcases: (1.1) Fora+d > 0, we have s, = s} + b, i.e. d = d, and so we have the same change
inthe size at g as at ¢;. (1.2) For a+d < 0, we have s, = so+b = sy —a+b, and hence d’' = —a.
(2) Fora < 0, s3 = so+0. Inthiscase, (2.1) fora+d > 0, s§ = s|+b = s1+d+b = sy+a+d+1D,
andsod =a +d,and (2.2) fora +d < 0, s§ = sy + b, and thus d’ = 0.

Similarly, when the change is coming from the right, as in Figure 5 (b), we have the following
cases: (1) For a > 0, the original size at ¢3 is s3 = s; + b, and we have the following subcases
for the new size: (1.1) Fora —d > 0, s, = s; + b, andso d” = 0. (1.2) Fora — d < 0,
sh=sh+b=sy+d+b=s —a+d+b andthusd” = —a +d. (2) Fora < 0, s3 = so + b.
Further, (2.1) fora —d > 0, s = s; +b = sy +a+b,ie. d = qa,and (2.2) fora — d < 0,
sy = sh+b=sy+d+ b, and hence d”’ = d.

When a change d in the size happens at a child node, at its parent, the change is either
eliminated, d’ or d” is 0, stays the same, d’' or d” equals d, becomes —|a| (note that « > 0 for
d = —a,anda < 0, for d” = a), or finally, becomes —|a|+d. We can now close our construction
by showing that the set D of possible changes in the sizes is finite.

Lemma 4 For an rTASC A over a set of variables V and a variable = € V, the set D of the
possible changes in the balance generated by a left tree rotation at z is finite.

Proof: For D to be infinite, there would have to be a possibility to start with some initial change
(either some —|a| or some d,, ,,), and then keep modifying it infinitely many times. This can
happen only when we use infinitely many times the last case (i.e. —|a| + d) from the previous
paragraph. Then, we can only start with some d,, ., as for this case to be applied, we need the
change in the size at a child node to be positive (¢ > 0 A a — d < 0 for the right case, and
a <0 A a+d > 0for the left case). Note that every time the considered case of propagating the
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change in the size is applied, we have d’ < d or d” < d meaning that the change in the size either
does not change or decreases. However, this means that we cannot get an unbounded number of
different changes because sooner or later we reach zero and stop generating further changes.O

Note that when we allow the use of two different constants b} and bff in the size function
for binary nodes, the resulting class of automata will not be closed with respect to left or right
rotations. It may happen that the changes in the balance could diverge, thus we would need an
infinite number of compensating constants to be used for the different heights of the possible
trees.

4.5 Other Operations on Sets of Trees Described by rTASC

Let us now briefly show that in addition to the tree rotations, rTASC are closed with respect to all
other operations that we commonly need when dealing with balanced binary trees too. We have
listed these operations in Section 1.1. Due to space constraints, we are only giving an informal
description of these operations here.

We first consider the operation of testing whether two pointer expressions refer to the same
node of a tree. Examples of such tests are expressions X == r oot or x- >par ent - >| ef t
== X. Ingeneral, we consider any test of the form e, ==e,, where e, , are of the form v- >n;- >ny- >..n,,
withv € V, m € N,and ny, ...,n,, € {left, right, parent}. Suppose we are given an rTASC
A recognizing a set S of trees and a pointer equality test c¢. The rTASC describing the subset S’
of .S of the trees that meet c is the intersection of A and a TASC A. encoding c.

A formal description of this construction can be found in the full version of the paper. Here,
let us present an example of A. for the condition x- >parent - >l eft == x that should
clearly illustrate the construction. We will have rules f — ¢; and g — ¢, for every f, g € X such
thatx € ¢\ f. We recall that > = P(VUD). Then, we have rules f(q1,¢1) — ¢1, 9(¢1, 1) — ¢z,
f(@2,q1) — a3, f(g3,q1) — g3, and f(q1,q3) — ¢ for g3 being the only accepting state. Here,
the pointer referencing pattern gets simply captured in the rule f(q2, 1) — gs.

Second, pointer assignments of the form v' = v- >n,- > n,- >...n,, can be handled by our
method, using a simple transformation of the input rTASC which removes v’ from the node
where it is in the input tree and adds it to the node referenced by v- >n- >ny- >...n,,. Note
that we do not treat assignments of the form v- >n;- >ny- >..n,, = v'- >n)->ni->..n/ ,, ie.
destructive updates. We hide these assignments by encoding the effect of the entire procedures
in which they appear, i.e. rotations and physical insertion or deletion of nodes. These operations
temporarily break the tree shape of the structures being handled, by introducing pointer sharing
and even cycles. We suppose the correctness of these operations to be checked independently.
A generalisation of our method to be able to handle even the internal implementation of these
procedures is an interesting subject for further research.

Testing and changing the data contents of the nodes pointed to by some pinter expression
of the form v- >n4- >ny- >...n,, IS an analogy of the pointer reference checking and pointer
assignments. However, by changing the data contents of some node (e.g., we recolour some
node in a red-black tree), we can change the size of the appropriate subtree. In this case, we have
to use the function g from Section 4.4 to reflect the change in the balance in the guards of all the
rules that can be fired above the node that changed.
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Next, when thinking of the physical insertion of a new leaf node, note that we suppose the
null successors of such memory nodes to be explicitly represented by nul | -labelled nodes in our
model. Compared to the real content of the memory, we thus add one layer of nodes. Inserting
a new leaf memory node then amounts to replacing one of the null sons of some node by a
new, non-null node with two null sons. We abstract here the sortedness property and we just
pick randomly the place to insert the new leaf. To encode the operation, we modify the input
I'TASC by first non-deterministically marking some null node with a pointer variable, i.e. we
change its label from {null} to {null, z}. Then, we replace all rules {null, z} — ¢, by rules
{null} — Guu1, {d, 2} (Guu11, Gour1) M g Where d models the initial data content. The
addition of the new symbol may change the size of the subtrees above ¢, (as, e.g., adding a black
node in a red-black tree), and so we have to use the function g from Section 4.4 to adjust the
guards of the influenced rules.

Finally, the deletion of a frontier node pointed to by some pointer variable y is modeled by

removing the rules {d, ¥} (¢, ¢au1) ®, q,- (Note that a frontier node has at least one null son.) In

the remaining rules, we simply replace all the appearances of ¢, by all the ¢ states that appeared
in the deleted rules. Subsequently, we use again the function g from Section 4.4 to handle the
changes in the balance resulting from a deletion of a node.

5 Case Study: Red-Black Tree Insertion

To illustrate our methodology, we show how to prove an invariant for the main loop in procedure
RB-Insert. (Note that all the steps are normally to be done fully automatically.) This invariant
is needed to prove the correctness of the insertion procedure given in Section 1.1 that is, given
a valid red-black tree as input to the procedure, the output is also a valid red-black tree. The
invariant is the conjunction of the following facts:

1. z is pointing to a non-null node in the tree.

2. If anode is red, then (i) its left son is either black or pointed to by x, and (ii) its right son
is either black or pointed to by z. This condition is needed as during the re-balancing of
the tree, a red node can temporarily become a son of another red node.

3. The root is either black or z is pointing to the root.

4. If z is not pointing to the the root and points to a node whose father is red, then = points to
a red node.

5. Each maximal path from the root to a leaf contains the same number of black nodes. This
is the last condition from the definition of red-black trees from Section 1.1.

For presentation purposes, if no guard is specified on a binary rule, we assume it to be |1| =
|2|. Also, we denote singleton sets by their unique element, e.g. {red} by red, and d,, stands for
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{d,z}, where d € {red,black,nil}. Let R = {nil — qv,red(q, @) — ¢, black(qs/r, @p)r) —
¢} The loop invariant is given by the following rTASC A;.

Ay F ={Grz, Qoo G}, A =RU {blacke(qors Gojr) = @bz (1), black(qug jras Gojr) — Qe (2),

black(dy, > Go/r) = b black(ao/r, Gy jry) = Qo (3)5 Olack(ay e Gy ) = s
redy(qy, @) — Gras red(q),, @b) = Qg red(qp, @hy) = Qros
Ted(Qrw» Qb) - qg"m (4)7 red(‘]ba QMc) - qg«m (5)}

Intuitively, g, labels black nodes and ¢, red nodes which do not have a node pointed to by =
below them. ¢, and ¢,, mean the same except that they label a node which is pointed to by .
Primed versions of ¢, and ¢, are used for nodes which have a subnode pointed to by z. In the
following, this intuitive meaning of states will be changed by the program steps. We refer to the
pseudo-code of Section 1.1.

If the loop entrance condition x! = root && x->parent->col or == red is true,
we obtain a new automaton A,. It is given by modifying A, as follows: F' = {¢;,} and the rules
(1), (2) and (3) are removed.

If the condition x- >par ent == x->parent - >parent - >| eft is true, we take A,,
change rule (4) to red(gr+, @) — qr. rule (5) tored(qs, ¢,.) — 4, and add arule black(q,,, g)r) —
q;, (6) to obtain As. Now, ¢/ accepts the father of the node pointed by x and ¢/, its grandfather.

If the condition x- >par ent - >par ent - >ri ght - >col or == red holds, we obtain
the automaton A, that is like A3 except for rule (6) changed into black(q!,, ¢.) — 4},

The recoloring step x- >par ent - >col or = bl ack changes some guards on rules and
leads to a propagation of the change through the automaton. The result is As:
As: F={¢,},A=R U
1 =12[+1

{black(qy, vy Go/r) ——— Q4 T€d2(q0: @) = Gras
1] +1 =2 1] =[2[+1
black(qy/rs Gy jry) — Qpa red(qyy, @p) —————— Qrps
1] =12]+1 1] +1 =12
black(qyy, @r) ————— Gy, (7), red(qb: Ghy) ——— Qra
black(qra, @v) — @y black(qy, @ra) — 4y

After the recoloring step x- >par ent - >par ent - >ri ght - >col or = bl ack, we get
Ag which is A5 where we change rule (7) to black(q),, q) — q;,. Note that no propagation is

needed in this case.
After the recoloring step x- >par ent - >par ent - >col or = r ed, which introduces changes
on guards, and the propagation of these changes, we obtain:
A7 F={¢,},A=R U
{black(@, /e o) = Gy Vlack(@ysr, Gy pry) = Ghr DlaCk(Gra, @) — 7
black(qy, qre) — s redy (b, @) — @ra (8), red(Qhys B) = Qs
red(q)y, 4r) = dhy (9), red(qp, @) = Gt
After x = x->parent - >par ent, we get Ag derived from A; by changing rule (8) to
red(qp, @) — Gro and rule (9) to red. (¢, @) — G-
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This takes care of case 1 and one can then check that £(Ag) C L(A4,).
For case 2, we have to go back to automaton A3 and apply the fact that the conditional

X->par ent - >parent - >ri ght - >col or == redisfalse, i.e.
X->par ent - >par ent - >ri ght - >col or == bl ack must be true. The result is:
Ag: F=A{q,},A=R U {black(qy, ), db/r) = Gy black(qy/rs Gy r) = Qoo
black(q)y, @) = Gy redz (qy, qp) — ¢re (11), red(qy,, @) = Gra
red(qb; @) = Gras red(qp, ¢ra) — qry (12), red(qrz, @) — ¢y (10)}
After the conditionx == Xx- >par ent - >ri ght, Ag is changed into A,y by removing rule

(10). After x = x->parent, Ay, is changed into A;; by changing rule (11) to red(q, ) —

¢r. and rule (12) to red,(qv, Gre) — G2y
Now the operation Lef t - Rot at e( T, x) introduces new states and transitions and we get
the TASC A;,. Notice that no rebalancing is necessary.
Ayt F={g),},A=R U {black(g}y ), qor) = Qs Dlack(as)r, )y r0) = Gho
black(qrot2; @) — Qg reds (b, @) — Qrot1; red(Qhys B) = Qs
red(qp, le,z) = Qs red(qrot1, @b) — Grot2}
After x- >par ent - >col or = bl ack and a propagation of the changes in the balance,
we obtain:
Az F={q,},A=R U{

1] =12]+1
black (G, jp.ps Qojr) ————— Qhgr 7€ (@, ) = Grot,
1]+ 1= 2| 1] =2[+1
blad{;(qz)/r’ql/)m/rx) ql/)w Ted(qém%) - q7/“:c7
1] =1[2]+1 1 +1=2|
black(qrot2, @p) —————— @y T€A(Q1s Ghp) ———— Qry»  black(qrot1, @p) — Grot2}

After x- >par ent - >par ent - >col or = r ed, we obtain:
Ay F={q,},A=R U{

black(dy, /> Go/r) = b redy(qb, @v) — Qrot1;
black(qy)r, ql/)m/rx) — G} red(qy,, @) — Qs
1] =2|+1
red(qrot2, @) —————— Q> T€d(qb, Q) = Gpr Olack(grot1, @) — Grot2}

Finally, after Ri ght - Rot at e( T, x- >par ent - >par ent ) , we get:
As o F={gp,},A=R U { black(aqy, > db/r) = Qo> black(@y/rs Q) = Gho

blaCk(Qb/m QTot4) - nga blaCk(QTot4a Qb/r) - ngv blaCk(QTotla QT0t3) — (Qrot4,
redy(qb, @b) — Grot1, red(Qys @) — G red(qy; Ghy) — Qs
Ted(qToan qb) - q;‘x7 T‘Bd(Qb, qb) — (Qrot3, Ted(Qb) qrot4) - q;*x}

Then, it can be checked that £(A;5) € L£(A;). Case 3 of the insertion procedure is very
similar to Case 2 and is omitted.

23



6 Conclusions

We have presented a method for semi-algorithmic verification of programs that manipulate bal-
anced trees. The approach is based on specifying program pre-conditions, post-conditions, and
invariants as sets of trees recognized by a novel class of extended tree automata called TASC.
TASC come with interesting closure properties and a decidable emptiness problem. Moreover,
the semantics of tree-updating programs can be effectively represented as modifications on the
internal structures of TASC. The framework has been validated on a case study consisting of the
node insertion procedure in a red-black tree. Precisely, we verify that given a balanced red-black
tree on the input to the insertion procedure, the output is again a balanced red-black tree.

In the future, we plan to implement the method to be able to perform more case studies. An
interesting subject for further research is then extending the method to a fully automatic one.
For this, a suitable acceleration method for the reachability computation on TASC is needed.
Also, it is interesting to try to generalize the method to handle even the internals of low-level
manipulations that temporarily break the tree shape of the considered structures (e.g., by lifting
the technique to work over tree automata extended with routing expressions describing additional
pointers over the tree backbone).

Acknowledgment. We would like to thank Eugene Asarin, Ahmed Bouajjani, Yassine Lakhnech,
and Tayssir Touili for their valuable comments.
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