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Abstract. One discontinuous Galerkin method for the numerical approximation for the
time-dependant Maxwell’s equations in “stable medium” with supraconductive boundary, is
introduced and analysed. its hp−analysis is carried out and error estimates that are optimal
in the meshsize h and slightly suboptimal in the approximation degree p are obtained.

1 Introduction

The problem considered for the most of this Note is the initial-boundary value problem
derived from Maxwell’s equations in “stable medium” with supraconductive boundary

∂2u

∂t2
+ c2∇× (∇× u) = f, ∇ · u = 0 in Ω × I; (1)

n × u(x, t) = 0 on ∂Ω × I, u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) on Ω. (2)

Here Ω is a convex polyhedron included in IR3, I = [0, t∗] ⊂ IR, u0 and u1 are in H0(∇×, Ω)∩
H(∇ · 0, Ω) and f is defined on Ω × I. Physically, u is the electric field, f is related to a
current density. µ0ε0c

2 = 1 where µ0 ≈ 4π10−7 H.m−1 and ε0 ≈ (36π109)−1F.m−1 are the
magnetic permeability and the electric permittivity in vacuum, respectively. If we assume
that the domain Ω is “stable medium” with supraconductive boundary and if u is the exact
solution of Maxwell problem then u and ∇ × u belong to H1(Ω)3. For the notations, if I
is an interval, X is one function space and φ is a function on Ω × I then ‖φ‖Lp(I,X) denote
the norm in Lp(I) of the function t → ‖φ(·, t)‖X . Lp(X) is short for Lp(I, X). Let Πh be a
partition into tetrahedra for Ω and consider the same spaces and notations in [2].
Finite element spaces: Let p = (pK)K∈Πh

be a degree vector that assigns to each element
K ∈ Πh a polynomial approximation order pK ≥ 1. The generic hp−finite element space
of piecewise polynomials is given by Sp(Πh) := {u ∈ L2(Ω) : u|K ∈ SpK (K) ∀K ∈ Πh}
where SpK (K) is the space of real polynomials of degree at most pK in K. We also set
Σh := Sp(Πh)3.
Now, fix a face e ⊂ Fh and define the local parameters h, p by h := min(hK , hK′), p =
max(pK , pK′) in the case of interior faces and h := hK , p = pK in the case of boundary
faces [1].
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2 Formulation for the Maxwell problem

In order to derive a weak formulation of (1)-(2), we note that formulas (1)-(2) in [2] implies
for any u with ∇× u ∈ H(∇×, Ω)

c2(∇× (∇× u), v) = c2(∇× u,∇× v) + a(u, v)

where we have denoted by

a(u, v) = c2 < n × (∇× u), v > −c2
∑

e⊂F I
h

< [v]T , {∇× u} >e .

Now, we introduce the penalty term via the form

J0(u, v) = J(u, v) + Jσ(u, v) − a(v, u) with J(u, v) = (∇ · u,∇ · v)

and

Jσ(u, v) =
∑

e⊂F I
h

< σ[u]N , [v]N >e +
∑

e⊂Fh

< σ[u]T , [v]T >e u, v ∈ H1(∇×, Πh)3

where σ := κp2/h is a stabilization parameter and κ is a constant supposed ≥ 1. We also
define
A(u, v) = c2(∇× u,∇× v) + a(v, u) − a(u, v) + J(u, v) and B(u, v) = A(u, v) + Jσ(u, v).

2.1 Properties of the bilinear form

2.1.1 Mesh-dependant norm

We now, introduce norm associated with the bilinear form B and set for u ∈ H1(∇×, Πh)

‖u‖2
h = ‖u‖2 + ‖∇× u‖2+ ‖∇ · u‖2 + ‖ 1√

σ
< ∇× u > ‖2

0,Fh

+ ‖√σ[u]N‖2
0,F I

h

+ ‖√σ[u]T ‖2
0,Fh

.

We start by studying the continuity of the bilinear forms introduced above. We have :

Proposition 2.1 ∀v, u ∈ H1(∇×, Πh) there exists a constant C independent of h and p
such that

|A(u, v)| ≤ C‖u‖h‖v‖h and |Jσ(u, v)| ≤ C‖u‖h‖v‖h.

Proof: The proof is easly deduced from the definition of A, Jσ, ‖ · ‖h and the Cauchy-
Schwarz inequality.
In order to study the coercivity of the bilinear form B, we start by introducing the following
inequality of Poincarré-Friedrichs type valid for u ∈ H1(Πh)3.

Lemma 2.1 Let u ∈ H1(Πh)3. Then there exists C independent of h and p such that

‖u‖2 ≤ C(‖∇× u‖2 + ‖∇ · u‖2 +
∑

e⊂Fh

‖
√

σ[u]T‖2
0,e +

∑

e⊂F I
h

‖
√

σ[u]N‖2
0,e)

Proof : The proof follows immediately from Lemma 3.1 in [2] since κp2 ≥ 1.
Now, the following coercivity result holds.
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Proposition 2.2 There exists two constants α > 0 and C̃ > 0 independent of h and p such
that

B(v, v) ≥ α‖v‖2
h + C̃Jσ(v, v) ∀v ∈ Σh.

Proof : The proof is easly deduced from the Poincaré inequality given in the previous
Lemma. Indeed, ∀v ∈ Σh and ∀α > 0 we have

B(v, v) − α‖v‖2
h = (1 − α)A(v, v) + (1 − α)Jσ(v, v) − α‖v‖2

≥ (1 − α)A(v, v) + (1 − α)Jσ(v, v) − αCA(v, v) − αCJσ(v, v)
≥ (1 − α − αC)(A(v, v) + Jσ(v, v)).

Now, the following hp−approximation result to interpolate scalar function holds (see [1]).

Proposition 2.3 Let K ∈ Πh and suppose that u ∈ HtK (K), tK ≥ 1. Then there exists a
sequence of polynomials πhK

pK
(u) ∈ SpK (K), pK = 1, 2... satisfying, ∀0 ≤ q ≤ tK

‖u−πhK

pK
(u)‖q,K ≤ C

h
min(pK+1,tK)−q
K

ptK−q
K

‖u‖tK,K and ‖u−πhK

pK
(u)‖0,∂K ≤ C

h
min(pK+1,tK)− 1

2

K

p
tK− 1

2

K

‖u‖tK,K .

The constant C is independent of u, hK and pK , but depends on the shape regularity of the
mesh.

In order to interpolate vector function, we define

Definition 2.1 For u = (u1, u2, u3) we define
Πh

p : Ht(∇×, Πh) −→ Σh by Πh
p(u) = (πh

p (u1), π
h
p (u2), π

h
p (u3) with πh

p is defined by

πh
p (u)|K = πhK

pK
(u|K) where πhK

pK
is given by the previous Proposition.

2.2 Model problem

The interior penalty finite element approximation to u is to find U : I −→ Σh such that

(Utt, v) + B(U, v) = (f, v) ∀v ∈ Σh, U(0) = Πh
p(u0), Ut(0) = Πh

p(u1). (3)

Upon choice of a basis for Σh and the data f , (3) determines U as the only solution to an
initial value problem for a linear system of ordinary differential equations. Note that, if u is
the exact solution of (1)-(2), then u satisfies the first equation in (3) and thus the problem
is consistent.
We now analyse the proposed procedure by the method of energy estimates.

2.2.1 A priori error estimate

In this Section, u denotes the exact solution of (1)-(2) and U the discrete solution of (3).
C is generic constant independent of h and p which takes different values at the different
places and depends on α, C̃ the coercivity constants of the form B, t∗ and Ω.
Let ζ = U − u, then ζ satisfies

(ζtt, v) + B(ζ, v) = 0 ∀v ∈ Σh.

Decompose ζ as µ - ν where µ = Πh
p(u) − u and ν = Πh

p(u) − U . Thus

(νtt, v) + B(ν, v) = (µtt, v) + B(µ, v) ∀v ∈ Σh.

3



Since νt(t) ∈ Σh, we can set v = νt(t), obtaining

1
2

d
dt
‖νt(t)‖2 + 1

2
d
dt

B(ν(t), ν(t)) = (µtt(t), νt(t)) + B(µ(t), νt(t))
≤ 1

2‖µtt(t)‖2 + 1
2‖νt(t)‖2 + B(µ(t), νt(t)).

So
d

dt
‖νt(t)‖2 +

d

dt
B(ν(t), ν(t)) ≤ ‖µtt(t)‖2 + ‖νt(t)‖2 + 2B(µ(t), νt(t)).

Since νt(0) = ν(0) = 0, integration over [0, t] ⊂ I, yields

‖νt(t)‖2 + B(ν(t), ν(t)) ≤ ‖µtt‖2
L2(L2) +

∫ t

0

‖νt(t)‖2dt + 2

∫ t

0

B(µ(t), νt(t))dt.

The final term may be integrated by parts in time. Hence,

2

∫ t

0

B(µ(t), νt(t))dt ≤ 2|B(µ(t), ν(t))| + 2

∫ t

0

|B(µt(t), ν(t))|dt.

Therefore, we can apply the coercivity and continuity of B to get

‖νt(t)‖2 + α‖ν(t)‖2
h + C̃Jσ(ν(t), ν(t))

≤ ‖µtt‖2
L2(L2) +

∫ t

0

‖νt(t)‖2dt + C‖ν(t)‖h‖µ(t)‖h + 2

∫ t

0

|B(µt(t), ν(t))|dt

≤ ‖µtt‖2
L2(L2) +

∫ t

0

‖νt(t)‖2dt + C‖µ(t)‖2
h +

α

2
‖ν(t)‖2

h + C

∫ t

0

(

‖µt(t)‖2
h + ‖ν(t)‖2

h

)

dt

≤ C

(

‖µtt‖2
L2(L2) + sup

t∈I

‖µ(t)‖2
h +

∫ t∗

0

‖µt(t)‖2
hdt

)

+
α

2
‖ν(t)‖2

h + C

∫ t

0

(

‖νt(t)‖2 + ‖ν(t)‖2
h

)

dt.

In particular,

‖νt(t)‖2 +‖ν(t)‖2
h

≤ C

(

‖µtt‖2
L2(L2) + sup

t∈I

‖µ(t)‖2
h +

∫ t∗

0

‖µt(t)‖2
hdt

)

+ C

∫ t

0

(

‖νt(t)‖2 + ‖ν(t)‖2
h)dt

)

.

As this holds for all t ∈ I, Gronwall’s Lemma implies that

‖νt(t)‖2 + ‖ν(t)‖2
h ≤ C

(

‖µtt‖2
L2(L2) + sup

t∈I

‖µ(t)‖2
h +

∫ t∗

0

‖µt(t)‖2
hdt

)

.

Since ζ = µ − ν,

‖ζt(t)‖2 + ‖ζ(t)‖2
h ≤ C

(

‖µtt‖2
L2(L2) + sup

t∈I

‖µ(t)‖2
h +

∫ t∗

0

‖µt(t)‖2
hdt + ‖µt‖2

L∞(L2)

)

.

Thus, error bounds for the finite element approximation to the true solution reduce to
the error bounds for the piecewise polynomial interpolant. Thus, we start by estimating
‖u − Πh

p(u)‖h where Πh
p is defined after Proposition 2.4. By using Proposition 2.4 and the

definition of ‖ · ‖h, we obtain the following estimates

‖u−Πh
p(u)‖2

h ≤ C
∑

K∈Πh

h2µK−2
K

p2tK−3
K

‖u‖2
tK,K and ‖u−πhK

pK
(u)‖q,K ≤ C

hµK−q
K

ptK−q
K

‖u‖tK,K ∀0 ≤ q ≤ tK .

By using the previous estimates, we can get the following result
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Proposition 2.4 Let µK = min(pK +1, tK) and u be the exact solution of (1)-(2). Suppose
that u|K ∈ C2(I, HtK (K)3) , ∀K ∈ Πh with tK ≥ 2. Let U the discrete solution of (3). Then,
the error ζ = U − u satisfies

‖ζt(t)‖2 + ‖ζ(t)‖2
h

≤ C
∑

K∈Πh

h2µK−2
K

p2tK−3
K

(

‖utt‖2
L2(HtK (K)3) + ‖u‖2

L∞(HtK (K)3) + ‖ut‖2
L2(HtK (K)3) + ‖ut‖2

L∞(HtK (K)3)

)

.
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