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An hp-DISCONTINUOUS GALERKIN METHOD FOR THE TIME-DEPENDENT MAXWELL'S EQUATIONS

One discontinuous Galerkin method for the numerical approximation for the time-dependant Maxwell's equations in "stable medium" with supraconductive boundary, is introduced and analysed. its hp-analysis is carried out and error estimates that are optimal in the meshsize h and slightly suboptimal in the approximation degree p are obtained.

Introduction

The problem considered for the most of this Note is the initial-boundary value problem derived from Maxwell's equations in "stable medium" with supraconductive boundary

∂ 2 u ∂t 2 + c 2 ∇ × (∇ × u) = f, ∇ • u = 0 in Ω × I; (1) 
n × u(x, t) = 0 on ∂Ω × I, u(x, 0) = u 0 (x), ∂u ∂t (x, 0) = u 1 (x) on Ω. [START_REF] Zaghdani | Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell's equations[END_REF] Here Ω is a convex polyhedron included in IR 3 , I = [0, t * ] ⊂ IR, u 0 and u 1 are in H 0 (∇×, Ω)∩ H(∇ • 0, Ω) and f is defined on Ω × I. Physically, u is the electric field, f is related to a current density. µ 0 ε 0 c 2 = 1 where µ 0 ≈ 4π10 -7 H.m -1 and ε 0 ≈ (36π10 9 ) -1 F.m -1 are the magnetic permeability and the electric permittivity in vacuum, respectively. If we assume that the domain Ω is "stable medium" with supraconductive boundary and if u is the exact solution of Maxwell problem then u and ∇ × u belong to H 1 (Ω) 3 . For the notations, if I is an interval, X is one function space and φ is a function on Ω × I then φ L p (I,X) denote the norm in L p (I) of the function t → φ(•, t) X . L p (X) is short for L p (I, X). Let Π h be a partition into tetrahedra for Ω and consider the same spaces and notations in [START_REF] Zaghdani | Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell's equations[END_REF]. Finite element spaces: Let p = (p K ) K∈Π h be a degree vector that assigns to each element K ∈ Π h a polynomial approximation order p K ≥ 1. The generic hp-finite element space of piecewise polynomials is given by

S p (Π h ) := {u ∈ L 2 (Ω) : u |K ∈ S pK (K) ∀K ∈ Π h }
where S pK (K) is the space of real polynomials of degree at most p K in K. We also set Σ h := S p (Π h ) 3 . Now, fix a face e ⊂ F h and define the local parameters h, p by h := min(h K , h K ′ ), p = max(p K , p K ′ ) in the case of interior faces and h := h K , p = p K in the case of boundary faces [START_REF] Perugia | The hp-Local Discontinuous Galerkin method for the Low-Frequency Time-Harmonic Maxwell's Equations[END_REF].

1
2 Formulation for the Maxwell problem

In order to derive a weak formulation of (1)-( 2), we note that formulas (1)-( 2) in [START_REF] Zaghdani | Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell's equations[END_REF] implies for any u with ∇ × u ∈ H(∇×, Ω)

c 2 (∇ × (∇ × u), v) = c 2 (∇ × u, ∇ × v) + a(u, v)
where we have denoted by

a(u, v) = c 2 < n × (∇ × u), v > -c 2 e⊂F I h < [v] T , {∇ × u} > e .
Now, we introduce the penalty term via the form

J 0 (u, v) = J(u, v) + J σ (u, v) -a(v, u) with J(u, v) = (∇ • u, ∇ • v)
and

J σ (u, v) = e⊂F I h < σ[u] N , [v] N > e + e⊂F h < σ[u] T , [v] T > e u, v ∈ H 1 (∇×, Π h ) 3
where σ := κp 2 /h is a stabilization parameter and κ is a constant supposed ≥ 1. We also define

A(u, v) = c 2 (∇ × u, ∇ × v) + a(v, u) -a(u, v) + J(u, v) and B(u, v) = A(u, v) + J σ (u, v).

Properties of the bilinear form

Mesh-dependant norm

We now, introduce norm associated with the bilinear form B and set for u ∈ H 1 (∇×, Π h )

u 2 h = u 2 + ∇ × u 2 + ∇ • u 2 + 1 √ σ < ∇ × u > 2 0,F h + √ σ[u] N 2 0,F I h + √ σ[u] T 2 0,F h .
We start by studying the continuity of the bilinear forms introduced above. We have :

Proposition 2.1 ∀v, u ∈ H 1 (∇×, Π h ) there exists a constant C independent of h and p such that |A(u, v)| ≤ C u h v h and |J σ (u, v)| ≤ C u h v h .
Proof: The proof is easly deduced from the definition of A, J σ , • h and the Cauchy-Schwarz inequality.

In order to study the coercivity of the bilinear form B, we start by introducing the following inequality of Poincarré-Friedrichs type valid for

u ∈ H 1 (Π h ) 3 . Lemma 2.1 Let u ∈ H 1 (Π h ) 3 .
Then there exists C independent of h and p such that

u 2 ≤ C( ∇ × u 2 + ∇ • u 2 + e⊂F h √ σ[u] T 2 0,e + e⊂F I h √ σ[u] N 2 0,e )
Proof : The proof follows immediately from Lemma 3.1 in [START_REF] Zaghdani | Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell's equations[END_REF] since κp 2 ≥ 1. Now, the following coercivity result holds.

Proposition 2.2 There exists two constants α > 0 and C > 0 independent of h and p such that

B(v, v) ≥ α v 2 h + CJ σ (v, v) ∀v ∈ Σ h . Proof :
The proof is easly deduced from the Poincaré inequality given in the previous Lemma. Indeed, ∀v ∈ Σ h and ∀α > 0 we have

B(v, v) -α v 2 h = (1 -α)A(v, v) + (1 -α)J σ (v, v) -α v 2 ≥ (1 -α)A(v, v) + (1 -α)J σ (v, v) -αCA(v, v) -αCJ σ (v, v) ≥ (1 -α -αC)(A(v, v) + J σ (v, v)).
Now, the following hp-approximation result to interpolate scalar function holds (see [START_REF] Perugia | The hp-Local Discontinuous Galerkin method for the Low-Frequency Time-Harmonic Maxwell's Equations[END_REF]).

Proposition 2.3 Let K ∈ Π h and suppose that u ∈ H tK (K), t K ≥ 1.
Then there exists a sequence of polynomials

π hK pK (u) ∈ S pK (K), p K = 1, 2... satisfying, ∀0 ≤ q ≤ t K u-π hK pK (u) q,K ≤ C h min(pK +1,tK )-q K p tK -q K u tK,K and u-π hK pK (u) 0,∂K ≤ C h min(pK +1,tK )-1 2 K p tK -1 2 K u tK,K .
The constant C is independent of u, h K and p K , but depends on the shape regularity of the mesh.

In order to interpolate vector function, we define

Definition 2.1 For u = (u 1 , u 2 , u 3 ) we define Π h p : H t (∇×, Π h ) -→ Σ h by Π h p (u) = (π h p (u 1 ), π h p (u 2 ), π h p (u 3 ) with π h p is defined by π h p (u) |K = π hK pK (u |K )
where π hK pK is given by the previous Proposition.

Model problem

The interior penalty finite element approximation to u is to find U :

I -→ Σ h such that (U tt , v) + B(U, v) = (f, v) ∀v ∈ Σ h , U (0) = Π h p (u 0 ), U t (0) = Π h p (u 1 ).
(3) Upon choice of a basis for Σ h and the data f , (3) determines U as the only solution to an initial value problem for a linear system of ordinary differential equations. Note that, if u is the exact solution of ( 1)-( 2), then u satisfies the first equation in (3) and thus the problem is consistent. We now analyse the proposed procedure by the method of energy estimates.

A priori error estimate

In this Section, u denotes the exact solution of ( 1)-( 2) and U the discrete solution of (3).

C is generic constant independent of h and p which takes different values at the different places and depends on α, C the coercivity constants of the form B, t * and Ω.

Let ζ = U -u, then ζ satisfies (ζ tt , v) + B(ζ, v) = 0 ∀v ∈ Σ h . Decompose ζ as µ -ν where µ = Π h p (u) -u and ν = Π h p (u) -U . Thus (ν tt , v) + B(ν, v) = (µ tt , v) + B(µ, v) ∀v ∈ Σ h . Since ν t (t) ∈ Σ h , we can set v = ν t (t), obtaining 1 2 d dt ν t (t) 2 + 1 2 d dt B(ν(t), ν(t)) = (µ tt (t), ν t (t)) + B(µ(t), ν t (t)) ≤ 1 2 µ tt (t) 2 + 1 2 ν t (t) 2 + B(µ(t), ν t (t)). So d dt ν t (t) 2 + d dt B(ν(t), ν(t)) ≤ µ tt (t) 2 + ν t (t) 2 + 2B(µ(t), ν t (t)). Since ν t (0) = ν(0) = 0, integration over [0, t] ⊂ I, yields ν t (t) 2 + B(ν(t), ν(t)) ≤ µ tt 2 L 2 (L 2 ) + t 0 ν t (t) 2 dt + 2 t 0 B(µ(t), ν t (t))dt.
The final term may be integrated by parts in time. Hence,

2 t 0 B(µ(t), ν t (t))dt ≤ 2|B(µ(t), ν(t))| + 2 t 0 |B(µ t (t), ν(t))|dt.
Therefore, we can apply the coercivity and continuity of B to get

ν t (t) 2 + α ν(t) 2 h + CJ σ (ν(t), ν(t)) ≤ µ tt 2 L 2 (L 2 ) + t 0 ν t (t) 2 dt + C ν(t) h µ(t) h + 2 t 0 |B(µ t (t), ν(t))|dt ≤ µ tt 2 L 2 (L 2 ) + t 0 ν t (t) 2 dt + C µ(t) 2 h + α 2 ν(t) 2 h + C t 0 µ t (t) 2 h + ν(t) 2 h dt ≤ C µ tt 2 L 2 (L 2 ) + sup t∈I µ(t) 2 h + t * 0 µ t (t) 2 h dt + α 2 ν(t) 2 h + C t 0 ν t (t) 2 + ν(t) 2 h dt.
In particular,

ν t (t) 2 + ν(t) 2 h ≤ C µ tt 2 L 2 (L 2 ) + sup t∈I µ(t) 2 h + t * 0 µ t (t) 2 h dt + C t 0 ν t (t) 2 + ν(t) 2 h )dt .
As this holds for all t ∈ I, Gronwall's Lemma implies that

ν t (t) 2 + ν(t) 2 h ≤ C µ tt 2 L 2 (L 2 ) + sup t∈I µ(t) 2 h + t * 0 µ t (t) 2 h dt . Since ζ = µ -ν, ζ t (t) 2 + ζ(t) 2 h ≤ C µ tt 2 L 2 (L 2 ) + sup t∈I µ(t) 2 h + t * 0 µ t (t) 2 h dt + µ t 2 L ∞ (L 2 ) .
Thus, error bounds for the finite element approximation to the true solution reduce to the error bounds for the piecewise polynomial interpolant. Thus, we start by estimating u -Π h p (u) h where Π h p is defined after Proposition 2.4. By using Proposition 2.4 and the definition of • h , we obtain the following estimates

u-Π h p (u) 2 h ≤ C K∈Π h h 2µK -2 K p 2tK -3 K u 2
tK,K and u-π hK pK (u) q,K ≤ C h µK -q K p tK -q K u tK,K ∀0 ≤ q ≤ t K .

By using the previous estimates, we can get the following result Proposition 2.4 Let µ K = min(p K +1, t K ) and u be the exact solution of (1)- [START_REF] Zaghdani | Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell's equations[END_REF]. Suppose that u |K ∈ C 2 (I, H tK (K) 3 ) , ∀K ∈ Π h with t K ≥ 2. Let U the discrete solution of (3). Then, the error ζ = U -u satisfies

ζ t (t) 2 + ζ(t) 2 h ≤ C K∈Π h h 2µK -2 K p 2tK -3 K u tt 2 L 2 (H t K (K) 3 ) + u 2 L ∞ (H t K (K) 3 ) + u t 2 L 2 (H t K (K) 3 ) + u t 2 L ∞ (H t K (K) 3 ) .