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Subspace based methods for continuous-time model identification of

MIMO systems from filtered sampled data

Guillaume Mercère, Régis Ouvrard, Marion Gilson and Hugues Garnier

Abstract— This article introduces a new identification method
for continuous-time MIMO state space models from sampled
input output data. The proposed approach consists more
precisely in combining filtering techniques with a specific sub-
space algorithm. Two filtering methods (the reinitialised partial
moments and the Poisson moment functionals) are considered to
circumvent the time derivative problem inherent in continuous-
time modelling. The developed subspace algorithm belongs to
the MOESP method family. A particular attention is payed to
the construction of the instrumental variable used to supply
consistent and accurate estimates in a noisy framework. The
benefits of the proposed algorithms in comparison with existing
methods are illustrated with a simulation study.

I. INTRODUCTION

Subspace based identification methods (SIM) have re-

ceived an increasing attention in the last fifteen years [1], [2].

These techniques have indeed the property to supply a linear

state space model of the system from input output (I/O) data

without non linear optimization generally required by the

prediction methods [3] with the help of computational tools

such as the RQ factorization and the singular value decompo-

sition (SVD). Most of these methods have been developed

for discrete-time (DT) models [4], [5]. However, in many

applications (modelling, diagnosis, control), it is interesting

to deal with a continuous-time (CT) model in order to have

access to the physical parameters of the system. To reach this

goal, a first indirect approach consists in firstly determining a

DT model via conventional identification algorithms [3], then

converting this representation in a CT model. The statistical

properties in this framework are indeed well known and

explain the affinity with this point of view. Unfortunately,

this indirect approach suffers from many limitations, as [6]

• the difficult choice of the sampling period,

• the use of the matrix logarithm which may produce

complex arithmetic when the matrices have negative

eigenvalues,

• the tricky translation of zeros in the CT domain [7].
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All these restrictions can be alleviated with the direct ap-

proach which consists in directly estimating a CT model

from sampled I/O data [6] [8]. The main problem of these

techniques is the computation of the successive I/O time

derivatives. The solution often rests on the use of linear

filters, integral methods or modulating functions [9]. In this

paper, the reinitialised partial moments [10] and the Poisson

moment functionals [11] are more particularly considered.

Despite a development in a different framework, these tech-

niques can be rewritten as an I/O filtering approach and

supply a solution to the time derivative calculation which

is relatively straightforward.

The direct CT estimation methods have essentially been

developed for SISO systems. The MIMO framework is

comparatively not so developed [12], [13], [14], [15], [16],

[17]. In this article, this problem is considered by associating

respectively the reinitialised partial moments and the Poisson

moment functionals to a particular class of SIM: the MOESP

algorithms [18], [19], [20], [21]. These subspace techniques,

mainly based on the observability subspace estimation, use

orthogonal projections which increases the global numerical

robustness. The disturbances problem is treated by introduc-

ing a particular instrumental variable for the estimation of

the system observability matrix basis.

The paper is organized as follows. Section II introduces

the identification problem. Section III briefly presents both

techniques used to circumvent the time derivative problem

and gives the filtered data equation used in CT subspace

identification. Then, the development of two new estimation

algorithms is considered in Section IV. The problem of the

instrumental variable construction for consistently modelling

the system from noisy I/O data is more particularly analyzed.

Some practical conditions for the choice of the user param-

eters are also given. In Section V, the performances of these

new techniques are illustrated from numerical simulations.

II. PROBLEM FORMULATION AND NOTATIONS

Consider a linear time invariant CT system described by

the following state space equations

ẋ(t) = Ax(t) + Bu(t) + w(t) (1a)

y(t) = Cx(t) + Du(t) + v(t) (1b)

where u ∈ R
nu and y ∈ R

ny are respectively the input

and output signal, x ∈ R
nx the state vector and w and v

the zero mean process and output measurement stochastic

disturbances. Following the same reasoning as in [22], it is

supposed that the process and the measurement noise are

constant between sampling instances: w(t) = w(kTs) and



v(t) = v(kTs) for kTs ≤ t < (k + 1)Ts, where Ts denotes

the sampling period. These disturbances are furthermore

assumed to be DT white noise sequences with the following

correlation

E

{[

v(kTs)
w(kTs)

]

[

vT (lTs) wT (lTs)
]

}

=

[

Rv Rvw

RT
vw

Rw

]

δ(k, l) (2)

where δ(k, l) is the Kronecker delta function and E {•}
the mathematical expectation. The justification for assuming

such noise models for v(t) and w(t) are given in [22], [12].

The goal of CT subspace identification is to estimate

the state space matrices {A,B,C,D}, up to a similarity

transformation, from DT I/O data {u(tk),y(tk)}
N

k=1 with

tk = kTs.

In order to introduce the CT subspace identification prob-

lem and the link with the DT approach, assume firstly that

• the disturbances v and w are equal to zero,

• the signals u and y are differentiable at least to the

(i − 1)th time derivative with i > nx.

Then, the following yields [15]

yi(tk) = Γix(tk) + Hiui(tk) (3)

where yi(tk) (resp. ui(tk), wi(tk) and vi(tk)) is a stacked

vector composed by i − 1 time derivatives of y (resp. u, w

and v) at t = tk

yi(tk) =
[

yT (tk) y(1)T (tk) · · · y(i−1)T
(tk)

]T

, (4)

Γi is the extended observability matrix

Γi =
[

CT (CA)
T

· · ·
(

CAi−1
)T

]T

(5)

and Hi is the block Toeplitz matrices of the impulse response

from u to y. For N − k + 1 samples, (3) becomes

Yi = ΓiX + HiUi (6)

with1

Yi =
[

yi(tk) yi(tk+1) · · · yi(tN )
]

(7)

and

X =
[

x(tk) x(tk+1) · · · x(tN )
]

. (8)

Equation (6) has the particularity to be structurally equivalent

to the so called data equation used in DT subspace identi-

fication [4]. Thus, it seems possible to apply the classical

following steps to estimate the system state space matrices

[21]

• a compression of the I/O data via an RQ factorization,

• the estimation of a basis of the extended observability

matrix from specific submatrices of the resulting lower

triangular factor in a consistent way via singular value

decomposition (SVD),

1
Ui is built up in a similar way as Yi.

• the extraction of the A and C matrices via the A-

invariance of Γi and the estimation of B and D from

a linear regression optimization.

However, this algorithmic procedure is based on an unavoid-

able assumption: the successive time derivatives of the data

have to be measured to obtain equation (6). Unfortunately, in

practice, the direct computation of the time derivatives of the

I/O is seldom feasible, particularly in a noisy framework. It

is therefore essential to resort to particular techniques which

are able to evaluate these time derivatives from measured

sampled data. Many algorithms have been developed to

reach this goal during the last three decades (see [9] for

an overview). A comparative study based on Monte Carlo

simulations has shown that six CT methods present the best

performances. Two2 of them are considered in the following:

the Poisson moment functional (pmf ) approach [24] and the

reinitialised partial moments (rpm) method [25].

III. APPROXIMATION OF THE I/O TIME

DERIVATIVE DATA

A. The reinitialised partial moments (rpm)

The reinitialised partial moments method [10] can be

firstly considered as an integration method, i.e. a technique

which avoids the differentiation of the data by performing a

sufficient order integration. Let s(t) be a function defined on

[0,∞[. Then, the nth reinitialised partial moment is defined

as3

Mn {s(t)} =

∫ T

0

τn

n!
s(t − T + τ)dτ. (9)

This integration function is an extension of the classical

moment
∫ ∞

0
τns(τ)dτ . The main characteristics of the rpm

are to perform a time weighing of the I/O signals and a

time shifting before integrating them. Concerning the later,

the prediction error estimation variance is minimal for an

optimal value of T = T̂ . In order to take advantage of

this property, the integration is reinitialised at each sampling

time. Although the determination of T̂ is essential, experi-

ences show that the rpm method is not too sensitive to this

user parameter. In practice, it can be chosen about twice as

the main time constant for an aperiodic system or twice as

the rising time for an underdamped system.

Secondly, the rpm method can be introduced from a filter-

ing point of view. Indeed, the integration can be expressed

as a time convolution product

M̄n {s(t)} =

∫ T̂

0

(T̂ − τ)nτn−1

T̂n(n − 1)!
s(t − τ)dτ = [hn ⋆ s](t)

(10)

where

hn(t) =
(T̂ − t)ntn−1

T̂n(n − 1)!
for t ∈ [0, T̂ ] (11a)

hn(t) = 0 elsewhere. (11b)

2Both transformations are available in the Matlab toolbox CONTSID [23]
(see http://www.cran.uhp-nancy.fr/contsid/).

3Mn {s(t)} is defined for t ≥ T̂ .



Thus, since the integration window is a time shifting window,

the use of the rpm in the considered identification framework

amounts to apply a finite impulse response filter to the I/O

data. This property results in making the initial conditions

vanish. Furhermore, for the same reason, the first T̂ samples

must be removed.

B. The Poisson moment functionals (pmf)

An alternative solution to handle the time derivative prob-

lem is to use the Poisson moment functionals approach which

can also be written in terms of filtering. The nth order pmf

transform of the signal s(t) over [0, t] is indeed given by the

following convolution product [11]

Mn{s(t)} =

∫ t

0

gn(τ)s(t − τ)dτ = [gn ⋆ s](t), (12)

where

• gn(t) = βn+1 tn

n! e
−λt is the nth Poisson pulse function,

• λ ∈ R
+ and β ∈ R

+∗ are the Poisson filter constant

and gain respectively (most of the time, β = λ is set).

This linear transform consists then in filtering the signal

s(t) by the filter gn(t), whose transfer function is given as

(Laplace transform of the Poisson impulse function)

L(gn(t)) =

(

β

p + λ

)n+1

(13)

where p is the Laplace variable. The nth order Poisson

moment functional of s(t) can be considered as the output

of a cascaded low-pass filter chain of n + 1 identical stages,

each with a transfer function given by β/(p + λ). The user

parameter is the cut-off frequency of the filter. It should be

chosen in order to emphasise the frequency band of interest

and it is advised in general to choose it a little bit larger

than the bandwidth of the system to be identified. Moreover,

it has been shown that the initial conditions can be neglected

after a short period of time [9].

C. Filtered data equation

The description of these two transformations via a time

convolution product allows us to formulate their use for our

identification problem in a global way. More precisely, if the

impulse response mn(t) respectively stands for

mn(t) =

{

hn(t) for the rpm

gn(t) for the pmf ,
(14)

for all vector zi(t) ∈ R
nzi defined as

zi(t) =
[

zT (t) z(1)T
(t) · · · z(i−1)T

(t)
]T

, (15)

it is straightforward to check that

[zi ⋆ mn](t) =











[z ⋆ mn](t)
[z(1) ⋆ mn](t)

...

[z(i−1) ⋆ mn](t)











=











[z ⋆ mn](t)

[z ⋆ m
(1)
n ](t)
...

[z ⋆ m
(i−1)
n ](t)











:=











Mn
0 {z(t)}

Mn
1 {z(t)}

...

Mn
i−1 {z(t)}











(16)

with n ≥ i + 1 by assuming that4

m(k−1)
n holds for k ∈ [1, i] (17)

m(k−1)
n (t = 0) = 0 for k ∈ [1, i] (18)

m(k−1)
n (t = θ) = 0 for k ∈ [1, i] (19)

where θ = T̂ for the rpm and θ = t for the pmf. This

transformation, which is linked to the properties of the con-

volution product, allows to transfer the derivative operation

on the function mn which is differentiable at order n by

construction. The I/O measurement time derivative problem

is also circumvented. Thus, equation (6) becomes (in a noisy

framework)

M{Yi} = ΓiM{X} + HiM{Ui}

+ GiM{Wi} + M{Vi} (20)

where M{•} denotes the transform applied to sampled data

to approximate the I/O data time derivative

M{Yi} =











Mn
0 {y(tk)} · · · Mn

0 {y(tN )}
Mn

1 {y(tk)} · · · Mn
1 {y(tN )}

...
...

Mn
i−1 {y(tk)} · · · Mn

i−1 {y(tN )}











,

(21)

where

M{X} =
[

Mn
0 {x(tk)} · · · Mn

0 {x(tN )}
]

(22)

and where Gi is the block Toeplitz matrices of the impulse

response from w to y.

IV. SUBSPACE IDENTIFICATION ALGORITHM

Consider from now the equation of the filtered data (20).

Then, assuming that the input is sufficiently exciting (see

[26] for conditions), that the initial condition are zero and

that the transformation does not remove any state variable,

(i.e. rank {M{X}} = nx), it is possible to apply the DT

identification algorithms to the CT problem. The MOESP

schemes [18], [19], [20], [21] are more precisely considered

in the following. The algorithms gathered under this acronym

have indeed some interesting numerical advantages due to

the use of orthogonal projections (see [27, Chapter 5] for an

interesting study).

4By definition, these properties are verified by the rpm. Furthermore,
gn(0) = 0 by construction. gn(θ) can be considered as equal to zero if
θ = t is sufficiently big.



A. Identification in a noisy framework

In a noisy general case5, i.e. when both v and w are

non zero, the DT MOESP algorithms (PI MOESP and PO

MOESP [20], [21]) are based on a particular RQ factorization

where an instrumental variable is introduced to remove the

effects of the noise term. In the CT framework considered in

this paper, we suggest to use the following RQ factorization




M{Ui}
Ξ

M{Yi}



 =





R11 0 0

R21 R22 0

R31 R32 R33









Q1

Q2

Q3



 (23)

where6 Ξ is made of instruments chosen such that the

disturbances effects are asymptotically cancelled without

modifying the informative part of the signal terms, i.e.

lim
N→∞

1

N
M{Vi}ΞT = lim

N→∞

1

N
M{Wi}ΞT = 0 (24a)

rank

{

lim
N→∞

1

N
M{X}ΞT

}

= nx. (24b)

Indeed, since this RQ factorization gives access to the

following relation [4]

R32Q2 = M{Yi}ΠM{Ui}
⊥ΞT Pd (25)

where Pd is a particular weighting matrix depending on

M{Ui} and Ξ. Then, it is relatively straightforward to show

that (see Appendix)

lim
N→∞

1

N
R32Q2 =

lim
N→∞

1

N
ΓiM{X}ΠM{Ui}

⊥ΞT Pd (26)

under the assumptions that the noise terms are uncorrelated

with the input signal and the instruments. Hence, equation

(26) proves that it is possible to estimate a basis of the

observability matrix from R32 when

rank
{

M{X}ΠM{Ui}
⊥ΞT Pd

}

= nx. (27)

This basis is obtained by applying a SVD to this block

matrix. At the same time, the order estimation can be

realised by analyzing the singular values which follow from

this decomposition. Some estimation techniques, based on

particular information criteria, are available in the literature

[28], [5].

B. Choice of the instrumental variable

The algorithm developed in the previous subsection is

based on an essential assumption: the instrumental variable

has to be chosen such as equation (24) is fulfilled. In

general, in a CT framework, the instruments are built up by

increasing the time derivative order i and, by extension, the

number of rows of the matrices composing the filtered data

equation (20) [13], [14], [16]. For example, R. Johansson

5The noise free case is not introduced in this article due to the lack of
space. This situation can however be considered as a special case of the
algorithm developed in the noisy framework.

6The problem of the instrumental variable construction is studied in
subsection IV-B.

et al recommend to choose i ≥ nu + ny + nx. The main

drawback of this approach is that time derivative of high

order have to be computed. Moreover, it is well known that

using many approximations of time derivative practically

leads to numerical performances corruption. Two solutions

are therefore presented is the following to overcome this

drawback.

1) Use of past inputs as IV: It is firstly suggested to use

in a first time shifted version of the sampled input data and

build up a particular Hankel matrix

Ξ = Up =






u((k − p)Ts) u((k + 1 − p)Ts) · · · u((N − p)Ts)
...

...
...

u((k − 1)Ts) u(kTs) · · · u((N − 1)Ts)







(28)

as considered in the DT case [20]. A straightforward way

to study the efficiency and properties of this instrumental

variable consists in analyzing the following limits

lim
N→∞

1

N
M{Vi}U

T
p (29a)

lim
N→∞

1

N
M{Wi}U

T
p . (29b)

Since v and w have the same characteristics, only equation

(29a) is used. Let us consider the following qth block row

and rth block column entry of 1
N
M{Vi}U

T
p

1

N

(

M{Vi}U
T
p

)

qr
=

1

N

N
∑

j=1

Mn
q {v(tj)}uT ((j + r − p)Ts). (30)

This leads to

1

N

(

M{Vi}U
T
p

)

qr
=

∫ θ

0

m(q)
n (τ)





1

N

N
∑

j=k

v(jTs − τ)uT ((j + r − p)Ts)



 dτ (31)

where m
(q)
n is defined as in (14) according to the chosen

filtering method and

θ = T̂ for the rpm (32a)

θ = t for the pmf . (32b)

By assuming that

• the input and noise signals are ergodic processes,

• the system operates in open loop,

it holds that

lim
N→∞

1

N

N
∑

j=k

v(jTs − τ)uT ((j + r − p)Ts) = 0. (33)

Hence, since each component of limN→∞
1
N
M{Vi}U

T
p

tends to 0 when N → ∞, equation (24a) is satisfied.



Concerning the value of the user parameter p, it has been

shown in the DT framework [4], [26] that choosing p ≥ nx

nu

guarantees that

lim
N→∞

1

N
X fΠU⊥

f
U

T
p exists and has full rank nx, (34)

with Uf the Hankel matrix of "future" sampled inputs and

X f composed by "future" state vectors. Although the CT

problem considers filtered versions of the input and the state

signals, the condition p ≥ nx

nu
is a necessary requirement to

have the number of rows of Up at least equal to nx. Thus,

since the instrumental variable is made up with the same

reasoning as in the DT case, this condition on p can be used

in our CT identification problem. An easy way to choose p
consists, for example, in using p = i since i > nx.

2) Use of past outputs as IV: In the DT framework, it

is often suggested to introduce past output data among the

instruments in order to get more accurate estimates [21].

Thus, it is interesting to analyse the effect of the use of Yp

as instrumental variable. First of all, consider the following

relation

Yp = ΓpX p + HpUp + GpVp + Wp (35)

where Γp, Hp and Gp are defined as previously with i = p,

where Yp, Vp and Vp are built up as Up and where

X p =
[

x((k − p)Ts) · · · x((N − p)Ts)
]

. (36)

Then, we have7

1

N
M{Vi}Y

T
p =

1

N

(

M{Vi}X
T
p ΓT

p + M{Vi}U
T
p HT

p

+M{Vi}V
T
p GT

p + M{Vi}W
T
p

)

. (37)

By assuming that the input and noise signals are uncorre-

lated, the second term of the right-and-side (rhs) of (37)

vanishes as N tends to infinity. The third and fourth elements

of the rhs of (37) can be studied in the same way. Consider

e.g. 1
N
M{Vi}V

T
p . Then, following the same approach as

used previously, its qth block row and rth block column entry

is

1

N

(

M{Vi}V
T
p

)

qr
=

∫ θ

0

m(q)
n (τ)





1

N

N
∑

j=k

v(jTs − τ)vT ((j + r − p)Ts)



 dτ (38)

Under the assumption of ergodicity, it is straightforward to

show that (see (2))

lim
N→∞

1

N

N
∑

j=k

v(jTs − τ)vT ((j + r − p)Ts) =

Rvδ(τ, (p − r)Ts). (39)

7The same approach is applied for M{Wi}.

Thus

lim
N→∞

1

N

(

M{Vi}V
T
p

)

qr
=

Rv

∫ θ

0

m(q)
n (τ)δ(τ, (p − r)Ts)dτ. (40)

The problem of relation (40) is that the components of

M{Vi}V
T
p can be bounded asymptotically. However, since

τ belongs to [0, θ], requiring (p − r)Ts > θ guarantees that,

for all p, δ(τ, (p − r)Ts) equals zero and, by extension,

limN→∞
1
N
M{Vi}V

T
p = 0. The condition (p−r)Ts > θ is

unfortunately very conservative in practice. Thus, in general,

reasonable values of p in the past output scheme will lead to

estimates of the system matrices with a bounded bias. A good

way to circumvent this difficulty is to consider a classical

bootstrapping approach, i.e. using noise free output data as

instruments constructed from the simulation of a (biased)

model estimated beforehand. This type of iterative scheme

can be used to introduce optimal instrumental variable [29],

[30], [31].

V. SIMULATION EXAMPLE

Consider the following 3rd order state space system

ẋ(t) =





0 1 0
−3 −2 −1
−1 −2 −1



x(t) +





1 1
2 1
1 2



u(t) (41a)

y(t) =

[

1 0 0
0 0 1

]

x(t) + v(t). (41b)

coming from one of the demonstration program available

in the CONTSID Toolbox. The input signal is made up

with two independent pseudo random binary sequences of

size N = 1000. The sampling period is chosen equal to

0.1s. A white Gaussian noise is added on both outputs such

that8 the SNR=20dB. The initial state vector is equal to

zero. Monte Carlo simulation (MCS) analysis is used to

evaluate the performance of the proposed estimation schemes

(named RPM+MOESP and PMF+MOESP) which will be

firstly compared to two other CT identification methods

• the PMF+GSVD algorithm [15] which combines the

Poisson moment functionals and a subspace based

method using a generalized singular value decomposi-

tion,

• the DT PI MOESP algorithm [19] leading to a discrete

state space model converted into the CT domain with

the d2c function of Matlab.

For this first MCS of 100 runs, the instrumental variable

is built up from past inputs (see (28)) with p = 4. The

user parameters of RPM+MOESP and PMF+MOESP are

respectively fixed as T̂ = 25 and λ = β = 3. The same value

of λ is used for PMF+GSVD. The filter order is chosen as

i = nx = 3. Figure 1 plots the estimated poles obtained

via the considered algorithms. It clearly appears that the

RPM+MOESP and PMF+MOESP techniques give relatively

8SNR=10 log
“

Pyd
Pv

”

where yd is the deterministic part of y.



good estimates of the complex poles but meet more difficul-

ties to find accurately the real pole. It is however interesting

to notice that the estimated real values are unbiased (centred

around the expected one). On the contrary, the PMF+GSVD

algorithm leads to biased values. Concerning the combination

PI MOESP+d2c, the results are poor since the estimated

poles are mistaken. Concerning PI MOESP+d2c, it is well

known that the DT subspace algorithms need I/O Hankel

matrices of relatively large size to guarantee good numerical

properties. The requirement i ≥ nx is also not sufficient.

Simulations show that increasing i improves the accuracy

of the estimates. However, even in this case, the variance

of the PI MOESP+d2c estimated poles is quite significant.

This first analysis shows that using CT subspace identifica-

tion algorithms (with good user parameters values) can be

considered as a good approach for the CT MIMO system

identification.

The aim of the second MCS analysis is the study of

the instruments choice influence on the poles estimation

consistency. In addition to the instrumental variable proposed

in this paper (see (28)), two other instrumental variable

methods are considered

• a time shifted version of M{Ui} with a time delay

ℓTs = 10Ts and i = 3 developed [12],

• a time derivative approximation input matrix M{Ui}
with i = nu+ny+nx+1 used in the subspace algorithm

proposed by R. Johansson et al as a correlation matrix

(see [13] for details).

Figure 2 (in complement with figure 1) shows that, as

expected, the use of relatively large number of time derivative

inputs as instruments leads to poor numerical efficiency

and produces less accurate estimates than considering time

shifted inputs (see case 2 in fig. 2). Notice finally that the use

of a time shifted version of M{Ui} as instruments yields

to estimated real poles with a bit larger variance than with

Ξ = Up.

VI. CONCLUSION

In this paper, the identification of CT MIMO state space

models is considered. The proposed approach consists more

precisely in introducing the reinitialised partial moments

or the Poisson moment functionals to build a particular

sampled I/O algebraic relationship from which a MOESP

like algorithm can be applied. A specific attention has been

concerned with the construction of the instrumental variable.

This study, illustrated with a simulation example, has shown

that choosing past sampled inputs as instruments leads to

good performances, particularly in comparison with classical

approaches using high order time derivatives.

APPENDIX

Consider the rhs of (25). Then, from (20), we asymptoti-

cally get

lim
N→∞

1

N
M{Yi}ΠM{Ui}

⊥ΞT Pd =

lim
N→∞

1

N

(

ΓiM{X}ΠM{Ui}
⊥ΞT

+ HiM{Ui}ΠM{Ui}
⊥ΞT

+ [GiM{Wi} + M{Vi}]ΠM{Ui}
⊥ΞT

)

Pd. (42)

By definition of the orthogonal projection

ΠM⊥ = I − MT
(

MMT
)−1

M, (43)

the second term of the left-hand-side of the (42) vanishes as

N tends to infinity. Likewise, we have9

M{Vi}Π⊥
M{Ui}

ΞT = M{Vi}ΞT −M{Vi}

MT {Ui}
(

M{Ui}M
T {Ui}

)−1
M{Ui}ΞT . (44)

Since the instruments are chosen such as

limN→∞
1
N
M{Vi}ΞT = 0, the first term of the rhs

of the previous equation is asymptotically cancelled. The

last problem concerns the second term of the rhs of (44)

and more precisely 1
N
M{Vi}M

T {Ui}. In order to prove

that this matrix product vanishes as N tends to infinity,

consider its qth block row an rth block column entry

1

N

(

M{Vi}M
T {Ui}

)

qr
=

1

N

N
∑

j=1

Mn
q {v(tj)}Mn

r
T {u(tj)} . (45)

By introducing the convolution products linked with the

filters Mn
q {•} and Mn

r {•}, we get

1

N

(

M{Vi}M
T {Ui}

)

qr
=

∫ θ

0

∫ θ

0

m(q)
n (τ)





1

N

N
∑

j=1

v(tj − τ)uT (tj − µ)



 m(r) T
n (µ)dτdµ (46)

where m
(q)
n and m

(r)
n are defined as in equation (14) accord-

ing to the chosen filtering method and

θ = T̂ for the rpm (47a)

θ = tj for the pmf . (47b)

Now, by ergodicity and since the disturbances

are asymptotically independent of the input,

limN→∞
1
N

∑N

j=1 v(tj − τ)uT (tj − µ) = 0 and, by

extension limN→∞
1
N
M{Vi}M

T {Ui} = 0. All these

steps prove the relation (26).

9The same approach is applied for M{Wi}.
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Fig. 1. Estimated poles obtained with RPM+MOESP, PMF+MOESP, PMF+GSVD and PI MOESP+d2c for i = 3. The system poles are symbolized
with grey crosses.

!3.5 !3 !2.5 !2 !1.5 !1 !0.5 0
!1.5

!1

!0.5

0

0.5

1

1.5

Poles estimated with RPM+MOESP (Case 1)

!3.5 !3 !2.5 !2 !1.5 !1 !0.5 0
!1.5

!1

!0.5

0

0.5

1

1.5

Poles estimated with PMF+MOESP (Case 1)

!3.5 !3 !2.5 !2 !1.5 !1 !0.5 0
!1.5

!1

!0.5

0

0.5

1

1.5

Poles estimated with RPM+MOESP (Case 2)

!3.5 !3 !2.5 !2 !1.5 !1 !0.5 0
!1.5

!1

!0.5

0

0.5

1

1.5

Poles estimated with PMF+MOESP (Case 2)

Fig. 2. Estimated poles obtained with RPM+MOESP and PMF+MOESP when the instrumental variable is built up from a time shifted version (i = 3
and ℓ = 10) of M{Ui} [12] (case 1) and from a filtered version of the inputs with i = nu + ny + nx + 1 [13] (case 2).
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