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I. INTRODUCTION

Subspace based identification methods (SIM) have received an increasing attention in the last fifteen years [START_REF] Van Overschee | Subspace identification for linear systems[END_REF], [START_REF] Katayama | Subspace methods for system identification[END_REF]. These techniques have indeed the property to supply a linear state space model of the system from input output (I/O) data without non linear optimization generally required by the prediction methods [START_REF] Ljung | System identification. Theory for the user[END_REF] with the help of computational tools such as the RQ factorization and the singular value decomposition (SVD). Most of these methods have been developed for discrete-time (DT) models [START_REF] Viberg | Subspace based methods for the identification of linear time invariant systems[END_REF], [START_REF] Bauer | Asymptotic properties of subspace estimators[END_REF]. However, in many applications (modelling, diagnosis, control), it is interesting to deal with a continuous-time (CT) model in order to have access to the physical parameters of the system. To reach this goal, a first indirect approach consists in firstly determining a DT model via conventional identification algorithms [START_REF] Ljung | System identification. Theory for the user[END_REF], then converting this representation in a CT model. The statistical properties in this framework are indeed well known and explain the affinity with this point of view. Unfortunately, this indirect approach suffers from many limitations, as [START_REF] Unbehauen | Continuous time approaches to system identification: a survey[END_REF] All these restrictions can be alleviated with the direct approach which consists in directly estimating a CT model from sampled I/O data [START_REF] Unbehauen | Continuous time approaches to system identification: a survey[END_REF] [START_REF] Garnier | Identification of continuous-time models from sampled data[END_REF]. The main problem of these techniques is the computation of the successive I/O time derivatives. The solution often rests on the use of linear filters, integral methods or modulating functions [START_REF] Garnier | Continuous-time model identification from sampled data: implementation issues and performance evaluation[END_REF]. In this paper, the reinitialised partial moments [START_REF] Djamai | Continuous time model identification using reinitialized partial moments. Application to power amplifier modeling[END_REF] and the Poisson moment functionals [START_REF] Saha | Identification of continuous dynamical systems -The Poisson Moment Functionals (PMF) approach[END_REF] are more particularly considered. Despite a development in a different framework, these techniques can be rewritten as an I/O filtering approach and supply a solution to the time derivative calculation which is relatively straightforward.

The direct CT estimation methods have essentially been developed for SISO systems. The MIMO framework is comparatively not so developed [START_REF] Haverkamp | Identification of continuous time MIMO state space models from sampled data in the presence of process and measurement noise[END_REF], [START_REF] Johansson | Stochastic theory of continuous time state space identification[END_REF], [START_REF] Haverkamp | State identification: theory and practice[END_REF], [START_REF] Bastogne | A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process[END_REF], [START_REF] Ohsumi | Subspace identification for continuous time stochastic systems via distribution based approach[END_REF], [START_REF] Li | Subspace identification of continuous time models for process fault detection and isolation[END_REF]. In this article, this problem is considered by associating respectively the reinitialised partial moments and the Poisson moment functionals to a particular class of SIM: the MOESP algorithms [START_REF] Verhaegen | Subspace model identification part 1: output error state space model identification class of algorithms[END_REF], [START_REF]Subspace model identification part 2: analysis of the elementary output error state space model identification algorithm[END_REF], [START_REF] Verhaegen | Subspace model identification part 3: analysis of the ordinary output error state space model identification algorithm[END_REF], [START_REF]Identification of the deterministic part of MIMO state space models given in innovations form from input output data[END_REF]. These subspace techniques, mainly based on the observability subspace estimation, use orthogonal projections which increases the global numerical robustness. The disturbances problem is treated by introducing a particular instrumental variable for the estimation of the system observability matrix basis.

The paper is organized as follows. Section II introduces the identification problem. Section III briefly presents both techniques used to circumvent the time derivative problem and gives the filtered data equation used in CT subspace identification. Then, the development of two new estimation algorithms is considered in Section IV. The problem of the instrumental variable construction for consistently modelling the system from noisy I/O data is more particularly analyzed. Some practical conditions for the choice of the user parameters are also given. In Section V, the performances of these new techniques are illustrated from numerical simulations.

II. PROBLEM FORMULATION AND NOTATIONS

Consider a linear time invariant CT system described by the following state space equations

ẋ(t) = Ax(t) + Bu(t) + w(t) (1a) y(t) = Cx(t) + Du(t) + v(t) (1b) 
where u ∈ R nu and y ∈ R ny are respectively the input and output signal, x ∈ R nx the state vector and w and v the zero mean process and output measurement stochastic disturbances. Following the same reasoning as in [START_REF] Johansson | Identification of continuous time models[END_REF], it is supposed that the process and the measurement noise are constant between sampling instances: w(t) = w(kT s ) and v(t) = v(kT s ) for kT s ≤ t < (k + 1)T s , where T s denotes the sampling period. These disturbances are furthermore assumed to be DT white noise sequences with the following correlation

E v(kT s ) w(kT s ) v T (lT s ) w T (lT s ) = R v R vw R T vw R w δ(k, l) (2) 
where δ(k, l) is the Kronecker delta function and E {•} the mathematical expectation. The justification for assuming such noise models for v(t) and w(t) are given in [START_REF] Johansson | Identification of continuous time models[END_REF], [START_REF] Haverkamp | Identification of continuous time MIMO state space models from sampled data in the presence of process and measurement noise[END_REF]. The goal of CT subspace identification is to estimate the state space matrices {A, B, C, D}, up to a similarity transformation, from DT I/O data {u(t k ), y(t k )} N k=1 with t k = kT s .

In order to introduce the CT subspace identification problem and the link with the DT approach, assume firstly that

• the disturbances v and w are equal to zero,

• the signals u and y are differentiable at least to the (i -1)th time derivative with i > n x . Then, the following yields [START_REF] Bastogne | A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process[END_REF] 

y i (t k ) = Γ i x(t k ) + H i u i (t k ) (3) 
where

y i (t k ) (resp. u i (t k ), w i (t k ) and v i (t k )) is a stacked vector composed by i -1 time derivatives of y (resp. u, w and v) at t = t k y i (t k ) = y T (t k ) y (1)T (t k ) • • • y (i-1) T (t k ) T , (4) 
Γ i is the extended observability matrix

Γ i = C T (CA) T • • • CA i-1 T T (5)
and H i is the block Toeplitz matrices of the impulse response from u to y. For N -k + 1 samples, (3) becomes

Y i = Γ i X + H i U i (6) 
with1 

Y i = y i (t k ) y i (t k+1 ) • • • y i (t N ) (7) 
and

X = x(t k ) x(t k+1 ) • • • x(t N ) . (8) 
Equation ( 6) has the particularity to be structurally equivalent to the so called data equation used in DT subspace identification [START_REF] Viberg | Subspace based methods for the identification of linear time invariant systems[END_REF]. Thus, it seems possible to apply the classical following steps to estimate the system state space matrices [START_REF]Identification of the deterministic part of MIMO state space models given in innovations form from input output data[END_REF] • a compression of the I/O data via an RQ factorization,

• the estimation of a basis of the extended observability matrix from specific submatrices of the resulting lower triangular factor in a consistent way via singular value decomposition (SVD),

• the extraction of the A and C matrices via the Ainvariance of Γ i and the estimation of B and D from a linear regression optimization. However, this algorithmic procedure is based on an unavoidable assumption: the successive time derivatives of the data have to be measured to obtain equation [START_REF] Unbehauen | Continuous time approaches to system identification: a survey[END_REF]. Unfortunately, in practice, the direct computation of the time derivatives of the I/O is seldom feasible, particularly in a noisy framework. It is therefore essential to resort to particular techniques which are able to evaluate these time derivatives from measured sampled data. Many algorithms have been developed to reach this goal during the last three decades (see [START_REF] Garnier | Continuous-time model identification from sampled data: implementation issues and performance evaluation[END_REF] for an overview). A comparative study based on Monte Carlo simulations has shown that six CT methods present the best performances. Two2 of them are considered in the following: the Poisson moment functional (pmf ) approach [START_REF] Young | Parameter estimation for continuous time models: a survey[END_REF] and the reinitialised partial moments (rpm) method [START_REF] Jemni | A comparative study of the deterministic accuracy of two identification methods for continuous time systems[END_REF].

III. APPROXIMATION OF THE I/O TIME DERIVATIVE DATA

A. The reinitialised partial moments (rpm)

The reinitialised partial moments method [START_REF] Djamai | Continuous time model identification using reinitialized partial moments. Application to power amplifier modeling[END_REF] can be firstly considered as an integration method, i.e. a technique which avoids the differentiation of the data by performing a sufficient order integration. Let s(t) be a function defined on [0, ∞[. Then, the nth reinitialised partial moment is defined as3 

M n {s(t)} = T 0 τ n n! s(t -T + τ )dτ. (9) 
This integration function is an extension of the classical moment ∞ 0 τ n s(τ )dτ . The main characteristics of the rpm are to perform a time weighing of the I/O signals and a time shifting before integrating them. Concerning the later, the prediction error estimation variance is minimal for an optimal value of T = T . In order to take advantage of this property, the integration is reinitialised at each sampling time. Although the determination of T is essential, experiences show that the rpm method is not too sensitive to this user parameter. In practice, it can be chosen about twice as the main time constant for an aperiodic system or twice as the rising time for an underdamped system.

Secondly, the rpm method can be introduced from a filtering point of view. Indeed, the integration can be expressed as a time convolution product

Mn {s(t)} = T 0 ( T -τ ) n τ n-1 T n (n -1)! s(t -τ )dτ = [h n ⋆ s](t) (10) 
where

h n (t) = ( T -t) n t n-1 T n (n -1)! for t ∈ [0, T ] (11a) 
h n (t) = 0 elsewhere. (11b)

Thus, since the integration window is a time shifting window, the use of the rpm in the considered identification framework amounts to apply a finite impulse response filter to the I/O data. This property results in making the initial conditions vanish. Furhermore, for the same reason, the first T samples must be removed.

B. The Poisson moment functionals (pmf)

An alternative solution to handle the time derivative problem is to use the Poisson moment functionals approach which can also be written in terms of filtering. The nth order pmf transform of the signal s(t) over [0, t] is indeed given by the following convolution product [START_REF] Saha | Identification of continuous dynamical systems -The Poisson Moment Functionals (PMF) approach[END_REF] 

M n {s(t)} = t 0 g n (τ )s(t -τ )dτ = [g n ⋆ s](t), (12) 
where 

• g n (t) = β n+1 t n n! e -
L(g n (t)) = β p + λ n+1 ( 13 
)
where p is the Laplace variable. The nth order Poisson moment functional of s(t) can be considered as the output of a cascaded low-pass filter chain of n + 1 identical stages, each with a transfer function given by β/(p + λ). The user parameter is the cut-off frequency of the filter. It should be chosen in order to emphasise the frequency band of interest and it is advised in general to choose it a little bit larger than the bandwidth of the system to be identified. Moreover, it has been shown that the initial conditions can be neglected after a short period of time [START_REF] Garnier | Continuous-time model identification from sampled data: implementation issues and performance evaluation[END_REF].

C. Filtered data equation

The description of these two transformations via a time convolution product allows us to formulate their use for our identification problem in a global way. More precisely, if the impulse response m n (t) respectively stands for

m n (t) = h n (t) for the rpm g n (t) for the pmf , (14) 
for all vector z i (t) ∈ R nzi defined as

z i (t) = z T (t) z (1) T (t) • • • z (i-1) T (t) T , (15) 
it is straightforward to check that

[z i ⋆ m n ](t) =      [z ⋆ m n ](t) [z (1) ⋆ m n ](t) . . . [z (i-1) ⋆ m n ](t)      =      [z ⋆ m n ](t) [z ⋆ m (1) 
n ](t) . . .

[z ⋆ m (i-1) n ](t)      :=      M n 0 {z(t)} M n 1 {z(t)} . . . M n i-1 {z(t)}      (16) 
with n ≥ i + 1 by assuming that4 

m (k-1) n holds for k ∈ [1, i] (17) 
m (k-1) n (t = 0) = 0 for k ∈ [1, i] (18) 
m (k-1) n (t = θ) = 0 for k ∈ [1, i] (19) 
where θ = T for the rpm and θ = t for the pmf. This transformation, which is linked to the properties of the convolution product, allows to transfer the derivative operation on the function m n which is differentiable at order n by construction. The I/O measurement time derivative problem is also circumvented. Thus, equation ( 6) becomes (in a noisy framework)

M {Y i } = Γ i M {X} + H i M {U i } + G i M {W i } + M {V i } (20) 
where M {•} denotes the transform applied to sampled data to approximate the I/O data time derivative

M {Y i } =      M n 0 {y(t k )} • • • M n 0 {y(t N )} M n 1 {y(t k )} • • • M n 1 {y(t N )} . . . . . . M n i-1 {y(t k )} • • • M n i-1 {y(t N )}      , (21) where 
M {X} = M n 0 {x(t k )} • • • M n 0 {x(t N )} (22) 
and where G i is the block Toeplitz matrices of the impulse response from w to y.

IV. SUBSPACE IDENTIFICATION ALGORITHM

Consider from now the equation of the filtered data [START_REF] Verhaegen | Subspace model identification part 3: analysis of the ordinary output error state space model identification algorithm[END_REF]. Then, assuming that the input is sufficiently exciting (see [START_REF] Jansson | On consistency of subspace methods for system identification[END_REF] for conditions), that the initial condition are zero and that the transformation does not remove any state variable, (i.e. rank {M {X}} = n x ), it is possible to apply the DT identification algorithms to the CT problem. The MOESP schemes [START_REF] Verhaegen | Subspace model identification part 1: output error state space model identification class of algorithms[END_REF], [START_REF]Subspace model identification part 2: analysis of the elementary output error state space model identification algorithm[END_REF], [START_REF] Verhaegen | Subspace model identification part 3: analysis of the ordinary output error state space model identification algorithm[END_REF], [START_REF]Identification of the deterministic part of MIMO state space models given in innovations form from input output data[END_REF] are more precisely considered in the following. The algorithms gathered under this acronym have indeed some interesting numerical advantages due to the use of orthogonal projections (see [START_REF] Goethals | Subspace identification for linear, Hammerstein and Hammerstein Wiener systems[END_REF]Chapter 5] for an interesting study).

A. Identification in a noisy framework

In a noisy general case 5 , i.e. when both v and w are non zero, the DT MOESP algorithms (PI MOESP and PO MOESP [START_REF] Verhaegen | Subspace model identification part 3: analysis of the ordinary output error state space model identification algorithm[END_REF], [START_REF]Identification of the deterministic part of MIMO state space models given in innovations form from input output data[END_REF]) are based on a particular RQ factorization where an instrumental variable is introduced to remove the effects of the noise term. In the CT framework considered in this paper, we suggest to use the following RQ factorization

  M {U i } Ξ M {Y i }   =   R 11 0 0 R 21 R 22 0 R 31 R 32 R 33     Q 1 Q 2 Q 3   ( 23 
)
where 6 Ξ is made of instruments chosen such that the disturbances effects are asymptotically cancelled without modifying the informative part of the signal terms, i.e.

lim N →∞ 1 N M {V i } Ξ T = lim N →∞ 1 N M {W i } Ξ T = 0 (24a) rank lim N →∞ 1 N M {X} Ξ T = n x . (24b) 
Indeed, since this RQ factorization gives access to the following relation [START_REF] Viberg | Subspace based methods for the identification of linear time invariant systems[END_REF] 

R 32 Q 2 = M {Y i } Π M{Ui} ⊥ Ξ T P d ( 25 
)
where P d is a particular weighting matrix depending on M {U i } and Ξ. Then, it is relatively straightforward to show that (see Appendix)

lim N →∞ 1 N R 32 Q 2 = lim N →∞ 1 N Γ i M {X} Π M{Ui} ⊥ Ξ T P d (26)
under the assumptions that the noise terms are uncorrelated with the input signal and the instruments. Hence, equation [START_REF] Jansson | On consistency of subspace methods for system identification[END_REF] proves that it is possible to estimate a basis of the observability matrix from R 32 when

rank M {X} Π M{Ui} ⊥ Ξ T P d = n x . ( 27 
)
This basis is obtained by applying a SVD to this block matrix. At the same time, the order estimation can be realised by analyzing the singular values which follow from this decomposition. Some estimation techniques, based on particular information criteria, are available in the literature [START_REF] Bauer | Order estimation for subspace methods[END_REF], [START_REF] Bauer | Asymptotic properties of subspace estimators[END_REF].

B. Choice of the instrumental variable

The algorithm developed in the previous subsection is based on an essential assumption: the instrumental variable has to be chosen such as equation ( 24) is fulfilled. In general, in a CT framework, the instruments are built up by increasing the time derivative order i and, by extension, the number of rows of the matrices composing the filtered data equation [START_REF] Verhaegen | Subspace model identification part 3: analysis of the ordinary output error state space model identification algorithm[END_REF] [START_REF] Johansson | Stochastic theory of continuous time state space identification[END_REF], [START_REF] Haverkamp | State identification: theory and practice[END_REF], [START_REF] Ohsumi | Subspace identification for continuous time stochastic systems via distribution based approach[END_REF]. For example, R. Johansson et al recommend to choose i ≥ n u + n y + n x . The main drawback of this approach is that time derivative of high order have to be computed. Moreover, it is well known that using many approximations of time derivative practically leads to numerical performances corruption. Two solutions are therefore presented is the following to overcome this drawback.

1) Use of past inputs as IV:

It is firstly suggested to use in a first time shifted version of the sampled input data and build up a particular Hankel matrix

Ξ = U p =    u((k -p)T s ) u((k + 1 -p)T s ) • • • u((N -p)T s ) . . . . . . . . . u((k -1)T s ) u(kT s ) • • • u((N -1)T s )    (28) 
as considered in the DT case [START_REF] Verhaegen | Subspace model identification part 3: analysis of the ordinary output error state space model identification algorithm[END_REF]. A straightforward way to study the efficiency and properties of this instrumental variable consists in analyzing the following limits

lim N →∞ 1 N M {V i } U T p (29a) lim N →∞ 1 N M {W i } U T p . (29b) 
Since v and w have the same characteristics, only equation (29a) is used. Let us consider the following qth block row and rth block column entry of

1 N M {V i } U T p 1 N M {V i } U T p qr = 1 N N j=1
M n q {v(t j )} u T ((j + r -p)T s ). [START_REF] Gilson | Instumental variable methods for closed loop system identification[END_REF] This leads to

1 N M {V i } U T p qr = θ 0 m (q) n (τ )   1 N N j=k v(jT s -τ )u T ((j + r -p)T s )   dτ (31)
where m

(q)
n is defined as in ( 14) according to the chosen filtering method and θ = T for the rpm (32a) θ = t for the pmf .

(32b)

By assuming that

• the input and noise signals are ergodic processes,

• the system operates in open loop, it holds that

lim N →∞ 1 N N j=k v(jT s -τ )u T ((j + r -p)T s ) = 0. (33) Hence, since each component of lim N →∞ 1 N M {V i } U T p tends to 0 when N → ∞, equation (24a) is satisfied.
Concerning the value of the user parameter p, it has been shown in the DT framework [START_REF] Viberg | Subspace based methods for the identification of linear time invariant systems[END_REF], [START_REF] Jansson | On consistency of subspace methods for system identification[END_REF] 

that choosing p ≥ nx nu guarantees that lim N →∞ 1 N X f Π U ⊥ f U T
p exists and has full rank n x , (34)

with U f the Hankel matrix of "future" sampled inputs and X f composed by "future" state vectors. Although the CT problem considers filtered versions of the input and the state signals, the condition p ≥ nx nu is a necessary requirement to have the number of rows of U p at least equal to n x . Thus, since the instrumental variable is made up with the same reasoning as in the DT case, this condition on p can be used in our CT identification problem. An easy way to choose p consists, for example, in using p = i since i > n x .

2) Use of past outputs as IV:

In the DT framework, it is often suggested to introduce past output data among the instruments in order to get more accurate estimates [START_REF]Identification of the deterministic part of MIMO state space models given in innovations form from input output data[END_REF]. Thus, it is interesting to analyse the effect of the use of Y p as instrumental variable. First of all, consider the following relation

Y p = Γ p X p + H p U p + G p V p + W p ( 35 
)
where Γ p , H p and G p are defined as previously with i = p, where Y p , V p and V p are built up as U p and where

X p = x((k -p)T s ) • • • x((N -p)T s ) . (36) 
Then, we have 7

1 N M {V i } Y T p = 1 N M {V i } X T p Γ T p + M {V i } U T p H T p +M {V i } V T p G T p + M {V i } W T p . ( 37 
)
By assuming that the input and noise signals are uncorrelated, the second term of the right-and-side (rhs) of (37) vanishes as N tends to infinity. The third and fourth elements of the rhs of (37) can be studied in the same way. Consider e.g.

1 N M {V i } V T p .
Then, following the same approach as used previously, its qth block row and rth block column entry is

1 N M {V i } V T p qr = θ 0 m (q) n (τ )   1 N N j=k v(jT s -τ )v T ((j + r -p)T s )   dτ (38)
Under the assumption of ergodicity, it is straightforward to show that (see (2)) 7 The same approach is applied for M {W i }.

lim N →∞ 1 N N j=k v(jT s -τ )v T ((j + r -p)T s ) = R v δ(τ, (p -r)T s ). (39)
Thus

lim N →∞ 1 N M {V i } V T p qr = R v θ 0 m (q) n (τ )δ(τ, (p -r)T s )dτ. (40)
The problem of relation ( 40) is that the components of M {V i } V T p can be bounded asymptotically. However, since τ belongs to [0, θ], requiring (p -r)T s > θ guarantees that, for all p, δ(τ, (p -r)T s ) equals zero and, by extension,

lim N →∞ 1 N M {V i } V T p = 0.
The condition (p-r)T s > θ is unfortunately very conservative in practice. Thus, in general, reasonable values of p in the past output scheme will lead to estimates of the system matrices with a bounded bias. A good way to circumvent this difficulty is to consider a classical bootstrapping approach, i.e. using noise free output data as instruments constructed from the simulation of a (biased) model estimated beforehand. This type of iterative scheme can be used to introduce optimal instrumental variable [START_REF] Stoica | Optimal instrumental variable methods for identification of multivariable linear systems[END_REF], [START_REF] Gilson | Instumental variable methods for closed loop system identification[END_REF], [START_REF] Gilson | Subspace based optimal IV method for closed loop system identification[END_REF].

V. SIMULATION EXAMPLE

Consider the following 3rd order state space system

ẋ(t) =   0 1 0 -3 -2 -1 -1 -2 -1   x(t) +   1 1 2 1 1 2   u(t) (41a) 
y(t) = 1 0 0 0 0 1 x(t) + v(t). (41b) 
coming from one of the demonstration program available in the CONTSID Toolbox. The input signal is made up with two independent pseudo random binary sequences of size N = 1000. The sampling period is chosen equal to 0.1s. A white Gaussian noise is added on both outputs such that 8 the SNR=20dB. The initial state vector is equal to zero. Monte Carlo simulation (MCS) analysis is used to evaluate the performance of the proposed estimation schemes (named RPM+MOESP and PMF+MOESP) which will be firstly compared to two other CT identification methods

• the PMF+GSVD algorithm [START_REF] Bastogne | A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process[END_REF] which combines the Poisson moment functionals and a subspace based method using a generalized singular value decomposition, • the DT PI MOESP algorithm [START_REF]Subspace model identification part 2: analysis of the elementary output error state space model identification algorithm[END_REF] leading to a discrete state space model converted into the CT domain with the d2c function of Matlab. For this first MCS of 100 runs, the instrumental variable is built up from past inputs (see [START_REF] Bauer | Order estimation for subspace methods[END_REF]) with p = 4. The user parameters of RPM+MOESP and PMF+MOESP are respectively fixed as T = 25 and λ = β = 3. The same value of λ is used for PMF+GSVD. The filter order is chosen as i = n x = 3. good estimates of the complex poles but meet more difficulties to find accurately the real pole. It is however interesting to notice that the estimated real values are unbiased (centred around the expected one). On the contrary, the PMF+GSVD algorithm leads to biased values. Concerning the combination PI MOESP+d2c, the results are poor since the estimated poles are mistaken. Concerning PI MOESP+d2c, it is well known that the DT subspace algorithms need I/O Hankel matrices of relatively large size to guarantee good numerical properties. The requirement i ≥ n x is also not sufficient. Simulations show that increasing i improves the accuracy of the estimates. However, even in this case, the variance of the PI MOESP+d2c estimated poles is quite significant. This first analysis shows that using CT subspace identification algorithms (with good user parameters values) can be considered as a good approach for the CT MIMO system identification.

The aim of the second MCS analysis is the study of the instruments choice influence on the poles estimation consistency. In addition to the instrumental variable proposed in this paper (see [START_REF] Bauer | Order estimation for subspace methods[END_REF]), two other instrumental variable methods are considered • a time derivative approximation input matrix M {U i } with i = n u +n y +n x +1 used in the subspace algorithm proposed by R. Johansson et al as a correlation matrix (see [START_REF] Johansson | Stochastic theory of continuous time state space identification[END_REF] for details).

Figure 2 (in complement with figure 1) shows that, as expected, the use of relatively large number of time derivative inputs as instruments leads to poor numerical efficiency and produces less accurate estimates than considering time shifted inputs (see case 2 in fig. 2). Notice finally that the use of a time shifted version of M {U i } as instruments yields to estimated real poles with a bit larger variance than with Ξ = U p .

VI. CONCLUSION

In this paper, the identification of CT MIMO state space models is considered. The proposed approach consists more precisely in introducing the reinitialised partial moments or the Poisson moment functionals to build a particular sampled I/O algebraic relationship from which a MOESP like algorithm can be applied. A specific attention has been concerned with the construction of the instrumental variable. This study, illustrated with a simulation example, has shown that choosing past sampled inputs as instruments leads to good performances, particularly in comparison with classical approaches using high order time derivatives.

APPENDIX

Consider the rhs of [START_REF] Jemni | A comparative study of the deterministic accuracy of two identification methods for continuous time systems[END_REF]. Then, from (20), we asymptotically get

lim N →∞ 1 N M {Y i } Π M{Ui} ⊥ Ξ T P d = lim N →∞ 1 N Γ i M {X} Π M{Ui} ⊥ Ξ T + H i M {U i } Π M{Ui} ⊥ Ξ T + [G i M {W i } + M {V i }] Π M{Ui} ⊥ Ξ T P d . ( 42 
)
By definition of the orthogonal projection

Π M ⊥ = I -M T MM T -1 M, (43) 
the second term of the left-hand-side of the (42) vanishes as N tends to infinity. Likewise, we have 9

M {V i } Π ⊥ M{Ui} Ξ T = M {V i } Ξ T -M {V i } M T {U i } M {U i } M T {U i } -1 M {U i } Ξ T . ( 44 
)
Since the instruments are chosen such as lim N →∞ 1 N M {V i } Ξ T = 0, the first term of the rhs of the previous equation is asymptotically cancelled. The last problem concerns the second term of the rhs of (44) and more precisely 1 N M {V i } M T {U i }. In order to prove that this matrix product vanishes as N tends to infinity, consider its qth block row an rth block column entry n and m (r)

n are defined as in equation ( 14) according to the chosen filtering method and θ = T for the rpm (47a) θ = t j for the pmf .

(47b)

Now, by ergodicity and since the disturbances are asymptotically independent of the input, lim N →∞ 1 N N j=1 v(t j -τ )u T (t j -µ) = 0 and, by extension lim N →∞ 1 N M {V i } M T {U i } = 0. All these steps prove the relation [START_REF] Jansson | On consistency of subspace methods for system identification[END_REF]. 9 The same approach is applied for M {W i }. 

  Figure 1 plots the estimated poles obtained via the considered algorithms. It clearly appears that the RPM+MOESP and PMF+MOESP techniques give relatively 8 SNR=10 log " Py d Pv " where y d is the deterministic part of y.

•

  a time shifted version of M {U i } with a time delay ℓT s = 10T s and i = 3 developed [12],

1 N

 1 M {V i } M T {U i } qr = 1 N N j=1 M n q {v(t j )} M n r T {u(t j )} . (45)By introducing the convolution products linked with the filters M n q {•} and M n r {•}, we get1 N M {V i } M T {U i } qr = j -τ )u T (t j -µ)

Fig. 1 .

 1 Fig. 1. Estimated poles obtained with RPM+MOESP, PMF+MOESP, PMF+GSVD and PI MOESP+d2c for i = 3. The system poles are symbolized with grey crosses.

Fig. 2 .

 2 Fig.2. Estimated poles obtained with RPM+MOESP and PMF+MOESP when the instrumental variable is built up from a time shifted version (i = 3 and ℓ = 10) of M {U i }[START_REF] Haverkamp | Identification of continuous time MIMO state space models from sampled data in the presence of process and measurement noise[END_REF] (case 1) and from a filtered version of the inputs with i = nu + ny + nx + 1[START_REF] Johansson | Stochastic theory of continuous time state space identification[END_REF] (case 2).

U i is built up in a similar way as Y i .

Both transformations are available in the Matlab toolbox CONTSID[START_REF] Garnier | Latest developments for the Matlab CONTSID toolbox[END_REF] (see http://www.cran.uhp-nancy.fr/contsid/).

Mn {s(t)} is defined for t ≥ T .

By definition, these properties are verified by the rpm. Furthermore, gn(0) = 0 by construction. gn(θ) can be considered as equal to zero if θ = t is sufficiently big.

The noise free case is not introduced in this article due to the lack of space. This situation can however be considered as a special case of the algorithm developed in the noisy framework.

The problem of the instrumental variable construction is studied in subsection IV-B.