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Abstract

This paper deals with parameter selection and estimation of large and complex sim-

ulation models. This estimation problem is addressed in the case of passive observa-

tion, i.e. when no controlled experiment is possible. Given the lack of information

in the data, an appropriate methodology is proposed to select and estimate some

physical parameters of the model. Its implementation is based on a new software:

Diffedge c© which makes it possible to symbolically determine model output sensitiv-

ity functions of block diagrams. An application to a winding prototype is developed
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to illustrate the effectiveness of such an approach in practice. 1

1 Control Engineering Practice, doi:10.1016/j.conengprac.2006.12.006
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1 Introduction

There are three kinds of mathematical models of dynamic processes: (i) white-

box models based on first principles of physics, and sufficiently detailed to

contain the representations of individual components (Maciejowski, 1997), (ii)

black-box models based on generic model structures, e.g. linear, for the design

of feedback controllers (Ljung, 1987) and (iii) grey-box models, a sort of com-

promise between the two boxes previously mentioned, i.e. a black-box model

in which a part of the underlying physics is available and taken into account

in the identification procedure (Bohlin, 1991). This article deals with the pa-

rameter estimation of white-box models. The term ’calibration’ is also widely

used to express the determination of a parameter set, usually from observed

data, and thus provide the ’best’ representation of the system being modelled.

It is generally a misused term. Indeed, calibration means the adjustment in

comparison to a standard, i.e. a noise free reference. In practice, data are

noisy and the calibration process corresponds in fact to parameter estimation.

Herein, the estimation problem is addressed in the case of passive observation,

i.e. when no input design can be applied to the process because of economic

or safety reasons (Thomassin et al., 2003). For an engineer with extensive ex-
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perience with a specific model, manual calibration of a white-box model could

probably be sufficient to some applications. However, manual adjustment of

such complex models is usually time-consuming, and its results are not often

reproducible. For these reasons a great effort has been devoted to the devel-

opment of automatic methods in parameter estimation. Approaches like those

proposed by Isaksson et al. in (Isaksson et al., 2003) for the estimation of

physical parameters are not appropriate to passive data since they require to

carry out three dedicated experiments. Calibration tools of grey-box models

like MoCaVa (Bohlin, 2003) cannot be applied either. Its principle consists in

recursively fitting and testing a series of model structures. Sub-models which

do not contribute to significantly reduce the overall loss are eliminated from

consideration, while those which do contribute are candidates for further re-

finements. In the case of a white-box model, its resolution, i.e. the number of

physical parameters, is fixed. Its internal structure is imposed and no model

reduction is possible. In such a case, the estimation problem is twofold:

• checking the uniqueness of the solution given the passive data, i.e. assessing

the practical identifiability (Dochain and Vanrolleghem, 2001);

• given the number of identifiable parameters, selecting those which can be

estimated using the passive data.

Using a general approach, Vanrolleghem et al. have proposed in (Vanrolleghem

et al., 1995; Weijers and Vanrolleghem, 1997; Dochain and Vanrolleghem,

2001) have suggested to both assess the practical identifiability and select the

most identifiable parameters. This article presents three types of contribution:

• the relationship between the practical identifiability(Dochain et al., 1995;

Dochain and Vanrolleghem, 2001) and the output distinguishability(Grewal
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and Glover, 1976) is firstly emphasized;

• a new selection mode of the most identifiable parameters is proposed;

• and a new implementation solution is applied to this approach, based on a

new software: Diffedge c© which makes it possible to symbolically determine

model output sensitivity functions of block diagrams.

This paper is composed of three major sections. The identification problem is

stated in Section 2. The identification procedure is presented in Section 3 and

an application study to a winding process is developed in Section 4, in order

to illustrate the effectiveness of the proposed approach.

2 Problem statement

Consider a dynamical system described by an implicit differential-algebraic

model structure M(Θ, x0) defined by































f(ẋ(t, Θ), x(t, Θ), u(t), Θ, t) = 0

ym(t, Θ, x0, u) = h(x(t, Θ), u(t), Θ, t)

(1)

where

f : R
n × R

n × U × P × T → R
n

h : R
n × U × R

+ × P → R
l,

(2)

x(t, Θ) ∈ R
n, y(t, Θ) ∈ R

l, Θ ∈ P and u(t) ∈ U. P and U are two open

sets in R
p and R

q respectively. T is a set of time instants defined by T = {tj},

j = 0, · · · , N−1. N is the number of data points, p is the number of parameters

and q, l, n are the numbers of input, output and state variables respectively.
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x, u, y and Θ represent the state, the input, the output and the parameters of

the model respectively. x0 = x(t0, Θ) is the fixed known initial state. M(Θ, x0)

and Θ are supposed to be structurally distinguishable and structurally identi-

fiable respectively (Walter and Pronzato, 1997). Now suppose that a data set

{u(t), y(t)}, with t ∈ T, resulting from one experiment, is available. The clas-

sical parameter identification problem consists in determining Θ by extracting

information from observed data (u and y). Contrary to this standard problem,

it is assumed herein that the nominal values of Θ and their uncertainty are

available. However, by answering the investigated question, remains to know

if whether or not the available data {u, y} may be used to re-estimate some

physical parameters of the model. The associated underlying problem is the

selection of parameters to estimate. An identification procedure is developed

in the sequel in order to answer these last two questions.

3 Identification methodology

Table 1 sums up some notations used in the sequel. The identification proce-

dure, described in figure 1, is composed of six steps. The prior analysis starts

by determining the nominal values of the model parameters. The latter are

either directly measured or empirically estimated by experts as initial val-

ues. Secondly, the prior uncertainty of the parameters is evaluated. This task

is crucial but much more laborious. Therefore, it is often subject to expert

knowledge and modeling experience. To keep the cost of this step reasonably

low, Brun et al. in (Brun et al., 2002) have suggested to introduce two dif-

ferent classes of relative uncertainty: accurately known parameters (class 1)

and vaguely known parameters (class 2). Consequently Θ is split up into two
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Notation Content

Θ∗ complete list of system parameters

Θ complete list of model parameters

Θi ith parameter of Θ

Θ∗
i ’true’ value of Θi

Θ well known parameters

Θ poorly known parameters

θ set of identifiable parameters

θ set of non identifiable parameters

p most identifiable parameters

p less identifiable parameters

p̂ estimated parameters

Table 1

Parameters notation

parts: Θ = [Θ, Θ] corresponding to the two different classes of parameters:

accuretaly and vaguely known (parameters) respectively. The third step is de-

voted to the implementation of the model into a simulation environment. In

this approach, the simulation model is represented by a block-diagram imple-

mented into Simulink c©. The 4th step deals with the practical identifiability of

the model structure, using the collected data {u, y}. Knowing the number of

identifiable parameters, gathered in θ, a subvector p is selected in the 5th step.

p contains the most identifiable and less correlated parameters given {u, y}. p
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is finally used in the 6th step to initialize the parameter estimation step. The

estimation criterion is defined as follows

p̂ = arg min
p

J(Θ, x0, u) p ⊂ Θ (3)

J(Θ, x0, u) =
N−1
∑

j=0

e(tj , Θ, x0, u)TQ e(tj , Θ, x0, u)

where e(tj , Θ, x0, u) = ys(tj , Θ
∗, x0, u)− ym(tj , Θ, x0, u) denotes the output er-

ror between the system output ys and the model ym. Q is a weighting diagonal

matrix. Θ∗ is the vector of system parameters. To facilitate reading, x0 and u

have been omitted thereafter.

Practical Identifiability

Parameter Selection

Parameter Estimation

Characterization of the
Model Structure

Prior Analysis

Model implementation
and Simulation

Simulink

Diffedge

Matlab

Optimization Toolbox

NUMERICAL
IMPLEMENTATION1

6

5

4

3

2

M(Θ, x0)

Θ = [Θ, Θ]

{u(t)y(t)}

ym(t, Θ, u)

Θ = [θ, θ]

θ = [p, p]

p̂

Figure 1. Parameter identification procedure

3.1 Practical identifiability

Structural identifiability (Walter and Pronzato, 1997) deals with the possibil-

ity to give a unique value to each parameter of a mathematical model struc-

ture. The uniqueness of this solution is assessed in an idealized or theoretical
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+u(t)

M(Θ∗, x0)

M(Θ, x0)

ys(t, Θ
∗, x0, u)

identical
structures

ym(t, Θ, x0, u)

e(t, Θ, x0, u) = 0 ⇒ Θ = Θ∗

Figure 2. Structural identifiability condition

framework where the process and the model have identical structures, the data

are noise-free, and where the input signals and the measurement times can be

chosen at will, c.f. figure 2. Given these conditions, a parameter Θi of Θ is

globally identifiable for almost any Θ∗ ∈ P if

BM(Θ) ≡ BM(Θ∗) ⇔ Θi = Θ∗
i ∀i ∈ {1, · · · , p} (4)

The behavioral set BM(Θ) of the model structure M corresponds to the set

of the admissible time trajectories of the model variables (Willems, 1991).

BM(Θ) is defined by

BM(Θ) =
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However, BM(Θ) is not convenient enough to be used as such. For this reason,

it is generally substituted by a simpler function of parameters, called summary.

In practice, a non exhaustive summary based on the output time trajectories

is often used. The question of the structural identifiability can then be ap-

proached by the notion of output distinguishability defined in (Grewal and

Glover, 1976) by :

y(t, Θ, E) = y(t, Θ∗, E) ⇒ Θi = Θ∗
i , (5)
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for an infinite collection of experiments E = {(x0, u(·)), u(·)) ∈ U} within

which an experiment is defined as a pair (x0, u(·)). U denotes a set of piecewise

continuous functions R
+ → U.

However, in practice, experimental conditions are often subjected to econom-

ical and/or security constraints. These industrial constraints can sometimes

prevent input design from being applied to the process. In such a case, the

estimation datasets are collected from passive observations, e.g. under normal

operating conditions (Thomassin et al., 2003). Even if a parameter is globally

or locally structurally identifiable, it may not be so in practice, due to a lack

of information in the passive data. For that reason, D. Dochain and P. Van-

rolleghem, in (Vanrolleghem et al., 1995; Dochain and Vanrolleghem, 2001),

have introduced the notion of practical identifiability. The practical identifia-

bility includes the quality of the data. The main question of the structural and

practical identifiability analysis can then be formulated as follows (Dochain et

al., 1995): ’Assume that a certain number of state variables are available for

measurements; on the basis of the model structure (theoretical identifiability)

or on the basis of the type and quality of available data (practical identifiabil-

ity), can we expect to obtain unique values for the model parameters? ’

In fact, the practical identifiability is a particular case of the output distin-

guishability (Grewal and Glover, 1976) where the experiment E = (x0, u(·))

is given. Then, a sufficient condition for the practical identifiability can be

stated as follows: given a parametric model structure M with a given input

u(t) and the initial conditions x0 (one experiment),

y(t, Θ, x0, u(t)) = y(t, Θ∗, x0, u(t)) ⇒ Θi = Θ∗
i , (6)

∀i ∈ {1, · · · , p}, t ∈ T, Θ ∈ V (Θ∗) ⊂ P and y(t, Θ, x0, u) = M(t, Θ, x0, u).
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If dΘ ∈ V (Θ∗) with Θ = Θ∗ + dΘ, then a first-order Taylor expansion of

y(t, Θ∗ + dΘ, x0, u) is given by

y(t, Θ∗ + dΘ, x0, u) ≈ y(t, Θ∗, x0, u) +
p

∑

i=1

∂y

∂Θi

∣

∣

∣

∣

∣

Θ∗

i

dΘi. (7)

V (Θ∗) denotes a parameter neighbourhood. A local approximation of the prac-

tical identifiability condition defined in (6) is then given by

p
∑

i=1

∂y

∂Θi

∣

∣

∣

∣

∣

Θ∗

i

dΘi = 0 ⇒ dΘ = 0, (8)

or

p
∑

i=1

dΘi · Sy(t, Θ
∗
i , x0, u) = 0 ⇒ dΘ = 0, (9)

where Sy(t, Θ
∗
i , x0, u) = ∂y/∂Θi|Θ∗

i

denotes the sensitivity function of the

model output y related to the parameter Θi. Equation (9) expresses the linear

independence of the vectors Sy(t, Θ
∗
i ) ∈ R

m. In other terms, given the input u

and the initial condition x0, the parameters are locally practically identifiable

if the mapping Sy(t, Θ
∗
i , x0, u), from the parameter space to outputs, is one to

one (Grewal and Glover, 1976).

Let Sy(Θ) be the matrix of sensitivity functions, defined by

Sy(Θ) = (Sy(Θ1), . . . ,Sy(Θp)) (10)

Sy(Θi)
T = (Sy(t1, Θi), . . . , Sy(tN , Θi)), (11)

where Sy(Θi) ∈ R
1×mN and Sy(Θ) ∈ R

p×mN . The practical identifiability

can be numerically implemented as a null-rank test of the matrix Sy(Θ). If

the rank of Sy(Θ) is estimated as significantly null then the model is not

locally practically identifiable. The rank of Sy(Θ) can be viewed as a practical

identifiability degree of a model structure for a given experiment.
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3.2 Sensivity analysis of block diagrams by computer algebra

Equation (9) also emphasizes the crucial role of sensitivity analysis in the local

assessment of the practical identifiability. In (Masse and Cambois, 2003), a new

symbolic approach which eliminates the drawbacks of the finite-difference ap-

proximations and the complexity of the automatic differentiation is proposed

and implemented into a software: Diffedge c© (http://www.appedge.com/).

It combines a computer algebra system and block diagrams to compute the

derivatives of a Simulink model with respect to its independent parameters.

The derivative model is also represented by a block diagram and can be used

like any Simulink model.

3.3 Parameter selection

Knowing the number of identifiable parameters, it is rarely judicious to es-

timate a vector of µ identifiable parameters directly from the available data

set. Indeed, some of these parameters can have just an insignificant and corre-

lated influence on J(Θ). Hence, two classification procedures are proposed to

select the most significant and the less correlated parameters before starting

the estimation step.

3.3.1 J-sensitivity classification of parameters

The first classification step consists in sorting out the parameters according to

their influence on J(Θ). The comparison criterion proposed herein is defined
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as follows

L(Θi) = |SJ(Θi)| =

∣

∣

∣

∣

∣

∂J(Θ)

∂Θi

∣

∣

∣

∣

∣

, (12)

where SJ(Θi) denotes the sensitivity function of J(Θ) with respect to the

model parameter Θi. Finally, the J-sensitivity classification consists in sorting

out the parameters into a descending order of L.

3.3.2 Correlation classification of parameters

In the second step, parameters are ranked according to the cross-correlation of

their sensitivity functions. This correlation classification of the parameters is

implemented by sorting out the vectors SJ(Θi) ∈ R
N in an increasing order of

collinearity. The latter is estimated by the smallest singular value of a matrix

Σ ∈ R
N×µ where µ is the number of identifiable parameters. Σ is iteratively

built up from its first column Σ1 = SJ(ΘLmax) such that

ΘLmax = arg max
Θi

L(Θi) i ∈ {1, · · · , µ}. (13)

In other words, Σ is initialized by the sensitivity fonction of the most influent

parameter on J , i.e. SJ(γ3) in this case. The other columns of Σ are chosen

among the remaining sensitivity functions and are arranged in such an order

that

Σj = SJ(Θ̌i) with: (14)

Θ̌i = arg max
Θi

σmin(Σ1,j(Θi)) ∀Θi 6= ΘLmax (15)

and j ∈ {2, · · · , µ}. Σj denotes the jth column of Σ and Σ1,j(Θi) = [Σ1, · · · , Σj−1, SJ(Θi)].

Hence, Σj is selected among a given number of sensitivity functions in order

to maximize the smallest singular value of Σ1,j . The final arrangement of the
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sensitivity functions is described by a spectrum of the smallest singular values

of Σ1,j with respect to j. The correlation classification of the parameters is

finally obtained by the x-axis of this spectrum.

Do note that these two classification procedures are valid around a nominal

value of Θ. That implies repeating them each time the parameters are modi-

fied. To avoid weighing down the procedure, it is proposed to check the final

classification at the end of the estimation step with the new values of Θ.

3.4 Parameter estimation

In this section, a bottom-up estimation procedure is proposed. It starts by

a small subset of regressors noted p0 resulting from the previous selection

step. The estimation step is then repeated by adding parameters according

to their rank in the J-sensitivity classification. The final estimates are chosen

according to a compromise between complexity (number of parameters) and

performance (estimation cost J).

4 Application to a winding process

Winding systems are in general continuous, multivariable and non-linear pro-

cesses. They are encountered in a wide variety of industrial plants such as

rolling mills in the steel industry (Parant et al., 1992; Walker and Wyatt-

Mair, 1995), plants involving web conveyance (Sievers et al., 1988; Ebler

et al., 1993; Braatz et al., 1996; Laroche and Knittel, 2005; Benlatreche et

al., 2006) including coating, papermaking and polymer film extrusion pro-

cesses. A laboratory winding process is described in figure 3. The mechanical
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part of this prototype is composed of a plastic web and three reels, respec-

tively called unwinding, pacer and rewinding reels. Each reel is coupled with

a DC-motor via gear reduction. The angular speed of each reel (Ω1, Ω2, Ω3)

and both tensions between the reels (T1, T3) are measured by tachometers and

tension meters. At a second level, each motor is connected to a local controller

composed of one or two proportional-integral (PI) controllers. The first con-

trol loop adjusts the motor current (I1, I2, I3) while the second loop controls

the angular speed. The setpoints of those controllers (I∗
1/Ω∗

1, Ω∗
2, I∗

3/Ω∗
3) are

computed by a programmable logic controller (PLC) in order to control both

tensions and the linear velocity of the strip.

I1
*

T1

T3

I3
*

I1 
*

rewinding reel

unwinding reel

pacer roll

DC motors +
local controllers

tension meters

reel

plastic web

tachometers

Système tour

U1

I2 U2

I3 U3







PI local
controllers

Supervisory
controller

r1

r3

Ω1

Ω3

Ω2

Ω2

Figure 3. Mechatronic system: winding prototype

In this application, the estimation dataset has been collected at a nominal

operating point, where the setpoints of the tension and speed controllers are

kept constant. The measurements of the tensions are shown in figure 10.
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4.1 White-box model

Physical modeling of winding systems has already been developed in (Bastogne

et al., 1998), (Koç et al., 2002). It generally leads to a non linear and continuous-

time model structure M(Θ) in which Θ, defined in table 2, is a vector com-

posed of 31 physical parameters. The indices 1, 3 denote two parameters: one

for the unwinder and the other one for the rewinder. State, output and input

variables are noted respectively: x, y and u, and are defined as follows:

ym(t, Θ, x0, u) = M(t, Θ, x0, u) (16)

with

x(t) =





ε1(t) ε2(t) ε3(t) r1(t) r3(t) T1(t) · · ·

· · · T3(t) Ω1(t) Ω3(t) Ω2(t) J1Ω1(t) J3Ω3(t)





y(t) =





T1(t) T3(t)





u(t) =





I∗
1 (t) Ω∗

2(t) I∗
3 (t)



 (17)

The outputs are the upstream and downstream tensions of the strip and the

inputs are the current and speed setpoints of the DC-motors. The state vector

is composed of the error variables of the controllers, the radii of the winders,

the tensions, the angular speeds and the angular momentums.

4.2 Prior analysis

The results of the prior analysis are gathered in table 3. Columns 2 and 3 show

the nominal values of the model obtained from measurement and empirical
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Θi parameters

E Young’s modulus

ǫ thickness of the strip

λ width of the strip

ρ density of the strip

l distance between the reels axes

rp radius of the pacer roll

rs radius of the driving shaft

R resistance of the armature circuit

Kφ constant of the DC-motor

T i1,3 integral time constant of the current conroller

T i2 integral time constant of the speed conroller

η speed reduction coefficient

RS shunt resistance

γ1,3 gain of tension meters

Jp moment of inertia of the pacer roll

Js moment of inertia of the driving shaft

kW1,3 calibration gain of the controllers

G1,3 gain of the power stages

Tfs1,3 dry friction torque

cv1,3 viscous friction coefficient

BP1,3 proportional band of the current controllers

BP2 proportional band of the speed controller

β1,3 gain of the dynamometers

Table 2

List of physical parameters: Θ

estimation respectively. The prior uncertainty of the parameters is indicated

in columns 5 and 6 by their uncertainty interval and uncertainty class (1

for accurately known parameters and 2 for vaguely known parameters). The

class-2 group, i.e. the group of vaguely known parameters noted Θ, is a priori

17



Θi Nominal value Unit Uncertainty

Meas. Emp. Interval cl.

E 3e7 N/m2 ±1 · 109 1

ǫ 2e-4 m ±5% 1

λ 5e-2 m ±10−3 1

ρ 1350 Kg/m3 ±50 1

l 650e-3 m ±1e − 2 1

rp 3.5e-2 m ±2e − 3 1

rs 1.5e-2 m ±2e − 3 1

R 5 Ω ±1% 1

Kφ 0,75 V s ±0.1 1

T i1,3 40e-3 s Small 1

T i2 200e-3 s Small 1

η 10.4 Small 1

RS 0.1 Ω Small 1

γ1,3 0.1 V/N Large 1

Jp 2e-3 Kgm2 Large 2

Js 2e-3 Kgm2 Large 2

kW1,3 0.1 %/V Large 2

G1,3 2 V/% Large 2

Tfs1,3 0.5 Nm Large 2

cv1,3 1e-2 Nms Large 2

BP1,3 100 % Large 2

BP2 100 % Large 2

β1,3 0.1 V s/rad Large 2

Table 3

Values of physical parameters

composed of 17 elements. However, according to experts, BP2 does not have

any significative influence on T1 and T3 and has, consequently, been removed

18



from Θ. Now the remaining and investigated question is, whether or not, some

parameters of Θ can be estimated from the available dataset.

4.3 Model implementation

The component-based model of the winding process is described by a block

diagram shown in figure 4 and implemented into Simulink c©. Its simulation

has been carried out by an ordinary differential equations solver proposed

by (Shampine and Reichelt, 1997). The initial values of the states have been

measured.
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Figure 4. Simulink model of the winding system
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4.4 Practical identifiability

Figure 5 shows the sensitivity functions of the tension T3 with respect to the 16

parameters gathered in Θ. These sensitivity functions have been estimated by

Diffedge. In each subfigure, two sensitivity functions are represented: the sym-

bolic derivatives in solid lines and the numeric (finite differences) derivatives

in dotted lines. These two functions are generally similar and this similarity

corroborates their validity. The differences appearing between the symbolic

and numeric sensitivity functions for ST3
(Jp), ST3

(BP1) and ST3
(BP3) are due

to a wrongly chosen step in the computation of the finite differences. The nu-
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Figure 5. Sensitivity fonctions of T3 (numeric estimates in dotted lines and symbolic

estimates in solid lines), the units on the x-axis correspond to the time (s)

merical rank of Sy(Θ) is equal to 14. The 14 practically identifiable parameters

are:

θ = (γ1, γ3, Jp, Js, kW1, kW3, G1, G3, Tfs1, Tfs3, cv1, cv3, BP1.BP3) (18)
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β1 and β3 are not identifiable due to their null sensitivity functions for T1 and

T3. Indeed, β1 and β3 are the gains of the dynamometers, and consequently

have no relationship with the tensions.

4.5 Parameter selection

4.5.1 J-sensitivity selection

1
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T1(t)
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e2
T3(t)

J(θ)

Figure 6. Implementation of the estimation cost function

The implementation of the J-sensitivity classfication procedure requires the

determination of the sensitivity functions SJ(Θi). The estimation cost function

J(Θ) has been implemented into a bloc diagram with Simulink, c.f. figure 6,

and its sensitivity functions have been computed with Diffedge. Results are

presented in figure 7. It is shown that γ3 is the most significant parameter,

whereas Jp is the less significant parameter, in the sense of the maximization

of L.

4.5.2 J-sensitivity selection

Figure 8 shows the spectrum of the smallest singular values of Σ1,j with respect

to j. The correlation classification of the parameters is given by the x-axis of

this spectrum. It is shown that the first four parameters of the J-sensitivity
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classification are also the same ones as the first four parameters of the cor-

relation classification. Consequently, the subset (γ3, γ1, cv3, cv1) is proposed to

initialize the estimation process.
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Figure 8. Smallest singular value spectrum of Σ1,j
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4.6 Parameter estimation

An initial set of regressors noted p0 = (γ3, γ1, cv3, cv1) has been obtained in the

previous selection step. The optimization algorithm used to solve J(θ) is based

on a reflective Newton method devoted to the minimization of a quadratic

function subject to bounds on the variables (Coleman and Li, 1996). Diffedge

has also been used at this level to determine the symbolic gradient of J(θ)

and given as an input data of the optimization algorithm.

4.7 Results analysis

Figure 9 shows the evolution of the estimation cost function with respect to

the parameters. The x-axis denotes the parameters included in p starting from

γ3. The best result is obtained with: pT = (γ3, γ1, cv3, cv1) and corroborates

the proposition stated at the end of the previous section. Beyond cv1 the

cost function is quasi-constant. In other terms, the other parameters do not

significantly contribute to reducing the estimation error. The estimates of

γ3, γ1, cv3, cv1 are presented in table 4 and the estimated outputs are shown

in figure 10. The uncertainty on each estimate is not developed herein but

a few techniques are proposed in (Walter and Pronzato, 1997; Dochain and

Vanrolleghem, 2001).

pi γ3 γ1 cv3 cv1

p̂i 3.98e-3 3.19e-3 7.66e-3 9.36e-3

Table 4

Estimation results
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5 Conclusion

This article deals with parameter selection and estimation of large and com-

plex simulation models in the case of passive observation, i.e. when no con-
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trolled experiment is possible. The estimation problem is twofold: checking the

uniqueness of the solution given the passive data, i.e. examining the practical

identifiability and selecting the most identifiable parameters to initialize the

estimation step. Three types of contribution are presented: (i) the relation-

ship between practical identifiability and output distinguishability is firstly

emphasized; (ii) a new selection mode of the most identifiable parameters is

proposed; and (iii) a new tool, Diffedge c©, is applied to the problem of sen-

sitivity analysis. This software makes it possible to symbolically determine

the model output sensitivity functions of block diagrams. An application to a

winding process is developed in the second part of the paper to illustrate the

applicability of such an approach in practice.
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