N

N

On Term Rewriting Systems Having a Rational
Derivation
Antoine Meyer

» To cite this version:

Antoine Meyer. On Term Rewriting Systems Having a Rational Derivation. FoSSaCS 2004, Mar 2004,
Barcelona, Spain. pp.378-392, 10.1007/b95995 . hal-00149816

HAL Id: hal-00149816
https://hal.science/hal-00149816
Submitted on 28 May 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00149816
https://hal.archives-ouvertes.fr

hal-00149816, version 1 - 28 May 2007

On Term Rewriting Systems
Having a Rational Derivation

Antoine Meyer *

Ir1SA, campus de Beaulieu, Rennes
LiarA, Université de Paris 7
Antoine.Meyer@liafa. jussieu.fr

Abstract. Several types of term rewriting systems can be distinguished
by the way their rules overlap. In particular, we define the classes of
prefix, suffix, bottom-up and top-down systems, which generalize similar
classes on words. Our aim is to study the derivation relation of such sys-
tems (i.e. the reflexive and transitive closure of their rewriting relation)
and, if possible, to provide a finite mechanism characterizing it. Using a
notion of rational relations based on finite graph grammars, we show that
the derivation of any bottom-up, top-down or suffix systems is rational,
while it can be non recursive for prefix systems.

1 Introduction

Word rewriting systems are among the most general formalisms found in com-
puter science to model word transformations. They generalize grammars, can
represent the runs of finite automata, transducers, pushdown automata or even
Turing machines. They can thus be considered as a unifying framework to com-
pare all these heterogeneous formalisms. For instance, [ﬂ] proposes a homoge-
neous presentation of several well-known families of infinite graphs, using an
approach based on word rewriting systems proposed in [ﬂ], which is to consider
the ‘Cayley graph’ of a rewriting system. In another paper [E], a classification of
word rewriting systems according to the way their rules overlap is established.
It is proved that the derivation relations of four classes of systems are rational,
which means that they can be generated by finite transducers. These systems
called left, right, prefix and suffix, were later used in [ﬂ] Any other class is shown
to contain at least one system whose derivation is not rational.

The aim of this work is to extend these results from words to terms. To
summarize, we will be interested in term rewriting systems whose derivation
can be characterized by a finite mechanism. First of all, we have to specify
which definition of rationality for relations on terms we intend to use, as several
distinct notions already exist (see [LJ] for an overview). Unfortunately, none
of them is as widely adopted as the standard one for words, as each relies on
different characteristics of the word case, and serves a different purpose. In this

* This work has been supported in part by the European IST-FET project ADVANCE
(contract No. IST-1999-29082).



paper, we will adopt a notion introduced in [@, which makes use of hyperedge
replacement graph grammars. The reason for this choice is the close similarity
between the way these grammars work, and the asynchronous mechanism of a
word transducer. Then we extend the definitions of left, right, prefix and suffix
systems to terms, yielding what we will call bottom-up, top-down, prefix and
suffix systems, and investigate the rationality of their derivation relations. We
also mention recognizability preservation properties for bottom-up, top-down
and suffix systems.

Numerous works deal with term rewriting systems. Among the closest to our
approach, we can mention for instance [IE] and [IE], which specifically investi-
gate the recognizability preservation properties of term rewriting systems. Both
papers study classes of systems which properly include the class of top-down
systems, and prove that they preserve recognizability. However, the derivation
relations of these systems are not rational (more generally, no finite representa-
tion of these relations is given). On the contrary, Dauchet and Tison extensively
studied ground term rewriting systems, i.e. systems whose rules do not contain
variables [E] In particular, they proved that these systems have a decidable first
order theory with reachability [f]] by explicitely building their derivation relation.
From another point of view, [L4] and [ﬂ] investigated the geometric properties
of transition graphs of ground systems and compared this family of graphs with
respect to other well-known families. Note that by definition, ground systems are
a special kind of suffix systems. Finally, we can mention the theme of symbolic
model-checking, whose main idea is to represent regular sets of configurations by
finite word automata and system transitions by rewrite rules or transducers (see
for example [E]) This field is currently being extended to systems with richer
topologies, like trees [,. A central problem relevant to this method is to com-
pute the set of configurations reachable in any number of steps when starting
from a regular set of configurations (for instance a recognizable term language).

This paper is organized as follows: after recalling a few basic notions about
trees, terms and recognizable languages, we present the notion of rationality for
term relations introduced in [@] In Section E we introduce term rewriting sys-
tems, and detail the four subclasses we consider. The last two parts present our
results concerning the rationality of the derivations of top-down, bottom-up and
suffix systems, as well as remarks concerning their preservation of recognizability.

2 Terms and Trees

Let F = {J,,>o Fn be a finite ranked alphabet, each F;, being a set of function
symbols of arity n (elements of F are constants), and X be a finite set of variable
symbols. The set T'(F, X) of finite first-order terms on F' with variables in X is
the smallest set including X and satisfying f € F,, A t1,...,t, € T(F,X) =
fti...t, € T(F,X). The set T'(F, X)" of tuples of terms will be called the set of
term words. A term word t = (t1,...,t,) is usually noted ¢; ... t,, and ¢(7) is used
to denote t;. The dimension of ¢ is called its length and noted |¢| (here [t| = n).
Term words containing no variable are called ground. The set of ground terms is



noted T'(F, #) or simply T'(F). The set of variables actually occurring in a term or
term word t is Var(t), and ¢ is said linear if each of its variables occurs only once.
If moreover t has n variables, it is called a n-context. The variables of a n-context
are conventionally noted Oy, ...0,,. The set of n-contexts is denoted by C,, (F),
the set of all contexts by C'(F'). A common operation on terms is substitution. A
substitution is fully defined by a mapping from X to T'(F, X), and extended to
a morphism as follows: we note to the application of a substitution o to a term
word ¢, which is done by replacing every occurrence of each variable x occurring
in ¢ by the term o(z). The set of substitutions over F' and X is noted S(F, X).
For any term word s = s;1...s, and when ¢ is a n-context, we use t[s] as a
shorthand notation for the variable substitution t{0J; — s; | ¢ € [1,n]}. All these
notations are extended to sets of term words in the usual way. A term, term
word, context or substitution is said to be proper or non-trivial if it contains at
least one symbol in F.

Let N be the set of strictly positive integers, we call position any word in
the set N*. Every term ¢ in T'(F, X ) can be represented as a finite ordered tree
whose nodes are labeled by symbols in F' or variables in X, or equivalently as a
mapping from a prefix-closed set of positions Pos(t), called the domain of the
term, to the set F U X. Let t = f(t1,...,tn,...) be a term represented by an
ordered tree, position € denotes the root of ¢, and for n € N, p € N*, position np
denotes the node at position p in subtree t,. Seeing terms as trees, term words
can be seen as ordered forests. In the following, we will use the prefix partial
order on positions, noted >: let p and g be two positions, p > ¢ if there is some
q¢" € N* such that p = qq’. If furthermore ¢’ # &, we write p > q. We denote
by pos(x,t) the set of positions at which the variable € X occurs in term
teT(F,X).

The most common acceptors for languages of trees (and thus terms) are
finite tree automata. Among several variants, we will only consider top-down
tree automata, defined by a finite set @) of control states and a finite set R
of transition rules of the form ¢f — fqi...q, where f € F, (n can be 0)
and ¢,q1,...q, € Q. A configuration is an embedding of control states in the
input tree, i.e. a tree from T(F U @, X), where each ¢ € @ is considered a
unary function symbol. A rule ¢f — fq1...q, can be applied in configuration
c1 to reach configuration cg if ¢; = t[gft1...t,] and ca = t[fqity1 ... qntys] for
any context t and term word ¢; ...%¢,. A run of the automaton is a sequence of
applications of rules on a given input. A ground term ¢ € T'(F, X) is accepted or
recognized if there is a run from configuration got (where go is an initial control
state) to configuration ¢. The set of terms accepted by a tree automaton A is
called the language of A and noted L(A). The languages accepted by finite tree
automata are called recognizable.

3 Rational Tree Relations

Several authors have tried to define suitable notions of binary relations over
terms generalizing known families of relations over words, like for instance the



recognizable relations, or the more general rational relations (i.e. relations recog-
nized by finite transducers). As of now, no extension to terms is really considered
canonical, as each family of relations has its own merits and drawbacks. Several
distinct families can be encountered: recognizable relations as such, relations
defined as rational languages over some overlap coding of both projections of
the relation, relations induced by various types of tree transducers, or the more
specific class of ground tree transductions, to cite but a few (see [[[] for a survey).

In [@], a notion of rationality for tuples of trees according to the union,
substitution and iterated substitution operations is proposed. This notion can
also be seen as a definition for binary rational relations over tuples of trees, and
thus as a special case, binary relations over trees. Similarly to the word case,
this class is strictly more general than the class of recognizable relations. In his
paper, Raoult proves that the rational languages of tuples can be generated using
a special kind of hyperedge replacement grammars. This definition is justified by
its similarity to rational word relations on several aspects: first, as it should be,
it coincides with rational word relations when restricted to trees of degree one.
Second, it is closed under projection on any number of components, union and
intersection. Finally, its mechanism is indeed quite close to the way a transducer
works. However, this generality has a cost, and this class of relations is not closed
under composition.

First, we need to define the product operation we shall use to define rational
sets, which is an extension of the usual substitution operation. Let ¢ be a term
word, x a word of n variables having k > 0 instances x; ...z in ¢ (i.e. a total
of n* k variables), and M a set of n-tuples of terms. We define ¢ -, M as the set
of tuples of terms obtained by replacing each instance of x in t with a (possibly
different) element of M. Formally: ¢ -, M = {t{s;(j) — x;(j)|i € [1,k], J €
[1,n]}}. Tt is extended to sets in the usual way: L -, M = {t-, M |t € L}.
Furthermore, define L™+ := L -, L™ '» and L** := U0 L. We are now ready
to define the notion of rationality associated to this product:

Definition 3.1 ([[L4]). The set Rat,, of rational languages of n-tuples of trees is
the smallest set of languages containing the finite languages of tuples and closed
under the following operations:

1. L € Rat,, N\ M € Rat,, = LUM € Rat,
2. L€ Rat, N\ xe€X™ N M € Rat,, = L-, M € Rat,
3. L € Rat, N\ r€ X™ = L* € Rat,

The family Rat of rational languages over tuples of terms is the union of all
Rat,,, forn > 1.

One should note that this notion of rationality differs from the one defined
in [@], for example, as the concatenation (or ‘series’) product is not directly
taken into account, and substitution is done simultaneously on several vari-
ables. From this definition arises a straightforward notion of rational expres-
ston, which extends the usual notion on words. It should be noted that Rat;
does not coincide with the set of recognizable term languages. For example, on



X ={f® g0 aW ¢} the language fg"ag"a € Rat; is defined by the ratio-
nal expression f0;0s[g0;902]*[aal, but it is not a recognizable term language.

Let us now recall the hyperedge replacement grammars used in [@], which
generate the rational languages of tuples of terms. In this paper, we will call
grammar a hyperedge replacement grammar such that every production (A, «)
has the following properties:

— the terminal subgraph of «, say «y, obtained by removing all non-terminal
hyperedges from ¢, is an ordered forest with n connex components (a n-tuple
of trees), where n is the arity of A,

— the vertices of a belonging to a hyperedge are leaves of oy,

— no vertex of a belongs to more than one hyperedge.

These properties allow us to refer to the right-hand sides of this type of grammars
as ‘leaf-linked forests’. The definition of grammar derivation is the usual one for
hyperedge replacement. It will be useful to also recall the formal definition of a
grammar from the point of view of terms, as it is done in the original paper:

Definition 3.2 ([[L4]). Given a set X of variables, a production is a pair (4, «v),
where A € X™ (A = Ay... A, is called a non-terminal), a € T(F, X x N)"
(here X x N denotes the set of numbered instances of variables of X ), and both
A and « are linear. A grammar is a finite set of productions such that the
variables occurring in the right-hand sides can be grouped to form instances of
non-terminals. A step of derivation of a grammar is defined as t — t{A;- —
aj|j € [1,n]} where t is a term word, there is a production (A,«) in G and A*
is an instance of A in t. The language generated by a grammar G from aziom
A is the set of tuples of ground trees L(G, A) = {w € T(F)IAl | A =¥ w}.

Example 3.3. Let A = A1 As and B = B B3B3 be two non-terminals of respec-
tive arity 2 and 3. The grammar G; having rules

A —aa|gA gAs | fATAT fA3AS | fB1B2 Bs
B — Ay AT fA3A3 | gB1 B2 hBy

can be represented as a HR grammar in the following way:

g g f f f
A — a a [ 7 | | /N /N /O
NN S Y
A A A
f g g h

B o— OO /Ny

NN # A

A A B

Then a possible production sequence of G; would be:

! f
f /' \ h / \
(i (i

-
&H
>

A—>/\|:|?

N
Q-



As expected, these grammars generate the rational languages:

Theorem 3.4 ([[L4]). A language of tuples of terms is rational if and only if it
is the language generated by a grammar.

A rational language of n-tuples of terms can also be seen as a binary relation
in T(F)PxT(F)?, where p+q = n. In this case, given a non-terminal A, we define
the first and second projections 71 (A4) and m2(A) by the set of variables of A
referring to the first (resp. second) projection of the relation. A similar notation
is used for right-hand sides of grammar productions as well. For clarity, we write
a production (4, «) as (A4, m (a) x m2(«)). Without loss of generality, we always
consider that A = m(A)m(A4) and a = 71 (a)m2 (). For example, if the axiom
of a T(F)P x T(F)? relation is A = Ay ... A,, we can have m(4) = Ay ... 4,
and mo(A) = Api1 ... Aprg=n.

Ezxample 3.5. Grammar G from Ex. @ generates, from non-terminal A, a lan-
guage L(G1,A) € Rats, which can be seen as a T'(F) x T'(F) relation. In this
case, its rules can be written

A —a X a | gAl X gAl | fA%A% X fA%A% | fBlBQ X Bg
B — A} A} x fA3A3 | gB; gBy x hBs

4 Term Rewriting Systems

A (term) rewrite rule is a pair (I,7) € T(F, X)? such that Var(r) C Var(l). A
rewrite rule (I,7) is said to be linear if both | and r are. A rewrite system, or
more specifically term rewriting system is a set of rewrite rules R. A system R is
finite when | R| is finite, and recognizable when the potentially infinite number of
rules is given as a finite union of pairs U — V', where U and V are recognizable
term languages. Note that we only consider systems where the total number of
distinct variables is finite. A system is linear when all its rules are linear. We
denote by Dom(R) (resp. Ran(R)) the set of left-hand sides (resp. right-hand
sides) of R, up to a renaming of the variables. The rewriting according to a
system R is the relation

- = {(cllo],clro]) e T(F)xT(F) | (l,r) e RN ce C1(F) AN o € S(F,X)}.
In case we want to specify that a rule (I,7) is used at some position p (resp.
set of positions P), we use the notation 7 (resp. TP ). The reflexive

and transitive closure of — 5 by composition is called the derivation of R and
written —7.

Classification of Rewriting Systems. In the case of words, several natural classes
of rewriting systems can be distinguished by the way their rules are allowed to
overlap. In [ﬂ], the composition —, o —p of two rewritings is considered,
and all the different possibilities of overlapping between the right-hand side of



the first rewrite rule, and the left-hand side of the second one are examined.
By discarding systems where unwanted overlappings occur, one obtains four
general families of systems whose derivation is proven rational, the families of
left, right, prefix and suffix word rewriting systems. Moreover, any system which
does not belong to one of these families may have a non-rational derivation. As
a consequence, as terms generalize words, we only need to study the extension
of these four families of systems to terms: the classes of bottom-up and top-down
systems, which respectively correspond to left and right systems, and the families
of prefiz and suffiz systems. A term rewriting system R (resp. its inverse R~1)
is said:

— top-down (resp. bottom-up) if any overlapping between a right-hand side r
and a left-hand side [ of R (resp. R™1) is such that » = 7[o] and [ = o) for
some (possibly trivial) 1-context 7 and substitution A,

— prefix if any overlapping between a right-hand side r and a left-hand side [
of R is such that [ = r\ or r = [p for some possibly trivial substitutions A
and p,

— suffiz if any overlapping between a right-hand side r and a left-hand side [
of R is such that [ = I[r] or r = 7[I] for some possibly trivial 1-contexts 7
and [.

The following picture illustrates these four kinds of overlappings:

A AA A

top-down bottom-up prefix suffix

Prefix and suffix systems respectively generalize root and ground rewriting sys-
tems. Root rewriting systems are already known to be very powerful: indeed,
they can simulate the execution steps of Turing machines. This implies a direct
negative result concerning prefix systems.

Proposition 4.1. Some linear prefix tree rewriting systems have a non rational
derivation.

Proof. Let M be a Turing machine with a set of states @, a tape alphabet
P and a set of transition rules 7' C (Q x PU{#} — @ x P x {+,—-}) (#
denotes the ‘blank’ character). Let us build a prefix system Rj; on the alphabet
Q U P U {#}, with variables in {z,y}, where @ is considered binary, P unary
and # an overloaded symbol of arity either 0 or 1.

For all pA — q¢B+ € T, Ry has arule prAy — qBxy, plus arule px# — qBx#
if A= +.

For all pA — ¢B— € T and C € P, Ry has rules pCxAy — qxCBy and
pH# Ay — p#HF# By, plus rules p#H# — qH##BH# and pCa# — qeCB# if A = #.
This system has both overlappings of the kind [ = ro and of the kind r = lo, for



some left and right-hand sides [ and r and substitution o. It is thus prefix, and
neither top-down, bottom-up or suffix in general. It is quite clear that computing
the derivation of Rj; is equivalent to computing the reachability relation of
M, thus is undecidable. Hence —7% is non-recursive and can obviously not be
rational. ad

However, contrary to the case of words, where prefix and suffix systems are
dual and share the same properties, the situation is different in the case of terms.
The family of ground rewriting systems, which is a sub-family of suffix systems,
has already been studied by several authors. In particular, Dauchet and Tison
[ showed that the derivations of ground systems can be recognized by a certain
type of composite automata called ground tree transducers (GTT). Section ﬁ
will use similar arguments in order to prove that, more generally, any suffix
system has a rational derivation. The two remaining families of term rewriting
systems we consider, namely top-down and bottom-up systems, are dual. The
next section puts focus on top-down systems, but all the results extend to the
bottom-up case (see Corollary f.9).

5 Derivation of Bottom-Up and Top-Down Systems

This section focuses on the study of top-down term rewriting systems and their
derivations. For any finite linear top-down system, a grammar of tuples of terms
generating its derivation relation can be built, which implies that this relation
is rational. Furthermore, from the shape of the grammar, we observe that the
derivation of such a system preserves the recognizability of term languages. Dual
results can be obtained for bottom-up systems: the derivation of a linear bottom-
up system is rational, and the inverse image of a recognizable term language is
still recognizable.

Let us first observe that top-down systems enjoy a kind of monotonicity
feature. Any rewriting sequence of such systems is equivalent to a sequence
where the successive rewriting steps occur at non-decreasing positions in the
input term. We call this top-down rewriting. Let R be a term rewriting system,
we define its top-down rewriting <—7% by:

0
— = U — with
R R
>0 — = 0...0 —>
"= R Upl""’p” 'U«lq'Ulpl unyvnpn

such that the rewriting positions do not decrease along indexes (Vi,j, i < j =
—(p; < pi)), and if two successive positions are equal then the second rewriting
should not have a trivial left-hand side ((p; = pi—1) = (u; ¢ X)). This last
condition means that, for instance, the sequence

cllo] — clro] — c[r'{z — ro}]

L,r z,r



is not top-down, because the second rule produces its right-hand side ‘higher’
than the first one. The rewriting steps should be swapped to obtain the top-down
sequence

cllo] — clr’{z — lo}] —— pos(a,clr]) c[r’{x — ro}].

The next lemma expresses the fact that, given any rewriting sequence of a top-
down system, rewriting steps can always be ordered into an equivalent top-down
sequence.

Lemma 5.1. The relations of derivation and top-down derivation of any top-
down term rewriting system R coincide: —7F = —7T.

We are now ready to prove the rationality of the derivation of any top-down
rewriting system. Using this property of top-down systems, it is possible to build
a grammar which directly generates the derivation of any such system. This
grammar mimics the way a rational word transducer works, using its control
state to keep in memory a finite subterm already read or yet to produce.

Theorem 5.2. FEvery finite linear top-down term rewriting system R has a ra-
tional derivation.

Proof. Let R be a finite linear top-down system. We denote by O the set of all
overlappings between left and right parts of rules of R:

O={teCy(FX)|IseCi(F,X),
ueT(F,X)" s[t] € Ran(R) A t[u] € Dom(R) }. (1)

Remark that O belongs to O. We will now build a grammar G whose language is
exactly the derivation of R. Its finite set of non-terminals is {<x>} U @, where
Q={<t>=<t> ... <t>p41 |t €0 N C,(F)} and, for all <t>€ Q,
mo(<t>) is a single variable. The production rules of G are of four types.

Type (1):V f € F,,

<O> — f<O>]...<0>" x f<O0>3...<0>8
<k> o f<a>l <>

Type (2): ¥ t € O N Co(F), tu] € O N Co(F),
<t> = ufm(<tul>)] x mo(<tu]>)
Type (3): ¥ t{u] € O, t € O N Cy(F) (necessarily {us,...us} C O),
<tlul> — m(<ur>)...m(<ug>) x tima(<ur>) ... mo(<ue>)]
Type (4): ¥ (t[u], s[v]) € R, v =1 ...v; (necessarily {t,v1,...v,} C O),

<t> — uo X s[ma(<v>) ... ma(<ve>)]



Type (2) <A>~> A A x O 0O f f
I <O> =/ xSy
<A> NN S

Type (1) <O><0O>
Type (3) <A>—> o ....0O x A f

RN \M A
(A) - <A > X °

<Hx> x>
Type (4) <A>~> X WhereA A
<A\T)Z—/

Fig. 1. grammar associated to a top-down system.

where o is a variable renaming such that for any variable x of u, o(z) = <v;>;
if = is the j-th variable to appear in v; (from left to right), and o(z) = <*> if
x does not appear in any of the v;. Figure [l] illustrates the four types of rules.
Intuitively, the role of this substitution is to gather into the same non-
terminal or hyperedge all the variables of u belonging to the same v;, while
respecting the order in which these variables appear in v;. This way, a correct
instantiation of non-terminals of G is ensured. If a variable of u does not ap-
pear at all in v, then it means that a whole input subtree is ‘discarded’ by the
rewriting rule being applied. Thus the grammar should accept any subtree to be
generated at this position, which is the role of the unary non-terminal <*>.
For simplicity, we will only consider type (4) rules in which ¢, v1,...v, are
mazimal. The other cases can be simulated by suitable finite compositions of
rules of types (2), (3) and (4). O

Ezxample 5.3. Consider the linear top-down system R over the alphabet F' =
{f®, g AV aOY with a unique rule fgzgy — hfzy. The corresponding
grammar is the grammar of Ex. @ where each non-terminal stands for one of
the possible overlappings of rules of R: A stands for O and B for f0J;0s. Note
that type (4) rules with non-maximal overlappings have been discarded. This
example also illustrates the fact that the inverse image of a recognizable term
language by the derivation of a linear top-down system is not recognizable in
general: for instance, the image by Rél of h* faa is {h* fg"ag™a | n > 0}, which
is not recognizable.

We will now mention a property of top-down systems, which has been known
for the past few years for larger classes of systems.

Proposition 5.4. The image of any recognizable term language by the deriva-
tion relation of a finite linear top-down term rewriting system is recognizable.

Top-down systems form a strict subfamily of generalized semi-monadic term
rewriting systems [E], which is itself a strict subfamily of right-linear finite path



overlapping systems [@] Both classes have been proven to preserve recogniz-
ability. As a consequence, this is also the case for top-down systems. However,
it should be mentioned that neither of these classes has a rational derivation.
Indeed, it is quite easy to find a generalized semi-monadic system whose deriva-
tion cannot be recognized by any finite mechanism. For instance, the general-
ized semi-monadic system whose unique rule is gr — fgfx clearly has a non-
rational derivation: its intersection with the rational relation ga x f*gf*a is
ga X {f"gf™aln > 0}. By the usual pumping arguments (adapted to this new
setting), this relation is not rational.

Finally, please note that the inverse of a top-down system is, by definition,
bottom-up. For any top-down system we can build a grammar G recognizing
—7%,. Thus, the grammar 7 (G)m1 (G) obtained by swapping both projections of
G generates the derivation —7,_; of the bottom-up system R~ Inverse recog-
nizability preservation follows.

Corollary 5.5. Every finite linear bottom-up term rewriting system R has a
rational derivation —7%,, and the inverse image by —7 of any recognizable term
language s recognizable.

6 Derivation of Suffix Systems

This section presents a study of the derivation relations of suffix term rewriting
systems. After introducing a property related to the notion of suffix rewriting,
we show that the derivation of any recognizable linear suffix system is rational.
Finally, we prove that the image or inverse image of any recognizable term
language by the derivation of a recognizable linear suffix system is recognizable,
and that it is possible to build a tree automaton accepting it.

Definition 6.1. The suffix rewriting of a term rewriting system R is the relation

— = {(dio],clro]) e T(F, X)* | (L) € R A c€C(F)

A o€ S(0,X) bijective}
(a bijective substitution in S(, X) is a bijective variable renaming over X ).

Suffix systems have a specific behaviour with respect to suffix rewriting.
Indeed, the derivation of any input tree ¢ by a suffix system can always be
decomposed in two phases. First, a prefix ¢ of ¢ is read, and several steps of
suffix rewriting can be applied to it. Once this first sequence is over, ¢ has been
rewritten into a prefix s of s, never to be modified anymore. In a second time,
the rest of ¢ is derived in the same fashion, starting with suffix rewriting of a
prefix of the remaining input. As a consequence, the derivation of a suffix system
is equivalent to its ‘iterated’ suffix derivation.



Lemma 6.2. For any suffix term rewriting system R,

15teT(F,X), o,teS(F,X)s=350 AN t=1r

+
s — 1t <— 4+ *
R A5 — t A Va e Var(s) N Var(t), o(x) - 7(x).

Another interesting property is that, for any recognizable system, a suffix
rewriting sequence is always equivalent to a sequence in two parts, where the
first part only consumes suffix subterms of the input term, and the second part
only produces new suffix subterms in their place.

Lemma 6.3. For all recognizable linear term rewriting system R over F and
X, there exist a finite ranked alphabet QQ and three finite rewriting systems

- R_ - {pxﬁfplxlpnx,ﬁfeF, papla"'apneQa .’L’,J]l,...,l’neX*}
- R-C{pr—qy|pqeq, v,y X"}
-

_R-‘r {fp1$1pn$n—>p$|f€F, papla"'apneQa .T,l'l,...,l'neX*}
such that s — st <= s —4 o —o t.
R R{UR-  R_UR_

Lemma @ can be reformulated in the following way: a pair (s,t) of terms
belongs to the suffix derivation of a system R if and only if there is a context ¢
such that s = ¢[s1...s,], t = ¢[t1...t,] and for all ¢ € [1, n], there is a term ¢;x;
such that Si‘”EJrUR: giv; and q;x;—% (p_ti-

Theorem 6.4. Every recognizable linear suffix term rewriting system R has a
rational derivation.

Proof. Let R be a recognizable linear suffix system on T'(F, X ). Let Ry, R— and
R_ be the rewriting systems mentioned in Lemma @ Let N be a set of pairs
of the form wu|v where u and v are two linear term words over Ran(R4 U R-)*
and Dom(R_ U R-)* respectively. Note that Ran and Dom are defined up to
a renaming of the variables. We can thus impose that u and v share the same
set of variables (Var(u) = Var(v)), and there is no pair of strict subwords u’
and v" of v and v such that Var(u’') # Var(v') (i.e one should not be able to
split u|v in two correct non-terminals). This, together with the facts that F' is
finite and » and v are linear, implies that N is finite for some fixed, standard
variable renaming. Thus, given an axiom I, we can build a grammar G whose set
of non-terminals is N U {I,I'}, having the following finite sets of productions:

V feF,
I — fI...I" x fI;...Iy and I' — fI''...T'" (2)

V px € Dom(R- UR_)N Ran(Ry UR_),
I — pzlpr (3)



Vu' —ih_ u, v—ip v, o €Ran(Ry)*, v € Dom(R_)*,

ulp — W' (4)

v Uy = P11y ...P;iT4, U2 = Pj+1Lj41 -+ - Pnln,
V=Yt - QmYms,  fPit1Tiv1 - - pjxj Ry pr,
ur pruglv — pr ooy (Fllist - ) g1 - X V1. Vo (D)

VUu=pi&1...PnTn, V1 =qY1--- %Y,
V2 = Qi 41Yi+1 - - GmYms> QYR fqiv1Yiv1 - - a5,

ulvr quua — pi.. fln X ViV (fVig1 e V) Vi1 . U (6)

In rules ({) and (@), all the (1) keqi,n) and (Vk)ke[1,m) are variables belonging
to instances of non-terminals u’[v) € N where v/ and v" are built from terms
(Prr)ken,n) and (qryr)ke[1,m) respectively. Variables 1 to p, (resp. v1 to vy,)
appear only in the first (resp. second) projection of any non-terminal. Note that
this instantiation is unique, by construction of the set N. It is also always possible
since every rule of R is, by hypothesis, linear.

Call p the substitution which maps each non-terminal variable (u|v); to the
term (u); if ¢ € [1, Ju|] and to (v); if @ € [Ju| 4+ 1, |u| + |v]], and each non-terminal
variable (I;) jel1,2) to a variable ;. It is clear from the rules of Gy that:

IS sxt & sp —4 o — tp. (7)
Go RyUR-  R_UR_

We will not detail the proof of this observation. Notice that this grammar works
in a very similar way to a ground tree transducer, which is the formalism used
by [E] to recognize the derivation of a ground system. The only difference is that
we keep track of the variables appearing in the left and right projections of the
relation, so as to be able to resume the rewriting at relevant positions. Now add
to G the set of rules

V o € X such that xRpz, qrRz, pxlgxr — T (8)
IZIS (9)

and call this new grammar G. These last rules allow the derivation to go on
properly after a first sequence of suffix rewritings has taken place, by creating
new instances of the axiom between leaves where the same variable would appear.
By Lemma @, G generates —7,. O

Proposition 6.5. The image and inverse image of any recognizable term lan-
guage by the derivation of a finite linear suffix term rewriting system is recog-
nizable.

Proof sketch. Once a grammar generating the derivation of a suffix system R
is built, according to the previous proof, it is not difficult to synchronize the
left projection of this grammar with any finite top-down tree automaton A. We



thus obtain a new grammar, whose second projection yields a finite automaton
accepting the image of L(A) by —7,. This is symmetrical, hence the converse. 0O

We will illustrate the fact that suffix systems are strictly more general than
ground systems on the following simple example.

Ezample 6.6. Consider the finite suffix system R = {fzy — fyz, a — ga}
over the ranked alphabet { (), ¢V a9}, The first rule of R allows to swap at
any time both children of an f-node. This somehow expresses the commutativity
of f. The derivation of R (restricted for the sake of clarity to (fg*ag*a)?) is the
relation {(fg™ag"a, fg"ag™a)|m,n > 0} U {(fg™ag"a, fg" ag"a)|m,n >
0} U{(fg™mag"a, fg™ag™a) | m,n > 0}, which is not recognizable by a ground
tree transducer.

Furthermore, we claim that the transition graph of this rewriting system
is not isomorphic to the transition system of any (recognizable) ground term
rewriting system as defined in [[3ff]. Note: the transition graph of a rewriting
system is the graph whose vertices are the terms from the domain or range of
the system, and whose edges are all the pairs (s, t) such that s can be rewritten
to ¢ in one step.

7 Conclusion

This paper extends the left, right, prefix and suffix word rewriting systems de-
fined in [E] to bottom-up, top-down, suffix and prefix term rewriting systems. The
derivation relation of the three first types of systems can be generated by finite
graph grammars, while systems of the fourth type have a non recursive derivation
in general. We also stated some recognizability preservation properties of these
classes of systems, and provided effective constructions in each case. Although
[@] defines a class of recognizability-preserving rewriting systems strictly more
general than top-down systems, they do not aim to provide a construction for
the derivation relation itself, which is indeed not rational. As for suffix systems,
to our knowledge, no comparable class of recognizability-preserving systems has
been defined yet.

This study puts in practical use the notion of rationality defined in [Q],
which nicely extends the usual rational relations on words, even though some of
their key properties are missing, like the closure by composition or systematic
preservation of recognizability. However, this formalism is an interesting and
powerful work basis for the study of binary relations on terms, especially thanks
to the fact that it is general enough to extend asynchronous transducers (which
is not the case of most other formalisms). Still, depending on one’s objectives,
it might be necessary to devise a more restricted notion of rational relations
on terms, which would be closed under composition or preserve recognizability
(or both). Note that [[[4] contains the definition of such a subfamily of relations
(called rational transductions). However, it can be shown that the derivations of
some top-down systems do not belong to this class.

Finally, it could be interesting to look for extensions to some of the existing
works previously mentioned. First, one may try to elaborate actual verification



methods using our systems to model transitions, and recognizable term languages
for sets of configurations, along the ideas of regular model-checking [E] Indeed,
being able to effectively build the transitive closure of the system’s transition
relation and compute the image of regular sets of configurations could lead to
interesting results. Second, the definitions from [[J] and [fJ] about transition
graphs of ground systems, should extend smoothly to the case of suffix systems.
Thus, it would be meaningful to determine whether part or all of their results
extend to this new family, and in particular whether the transition graphs of
suffix systems have a decidable first order theory with reachability. Note that,
as illustrated in Ex. @, we suspect that the transition graphs of suffix systems
strictly include the former families of graphs.

References

1. P. Abdulla, B. Jonsson, P. Mahata, and J. D’Orso. Regular tree model checking.
In CAV 14th, volume 2404 of LNCS, pages 555—568, 2002.

2. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
CAV 12th, volume 1855 of LNCS, pages 403—418, 2000.

3. A. Bouajjani and T. Touili. Extrapolating tree transformations. In CAV 14th,
volume 2404 of LNCS, pages 539-554, 2002.

4. H. Calbrix and T. Knapik. A string-rewriting characterization of Muller and
Schupp’s context-free graphs. In FSTTCS 18th, volume 1530 of LNCS, pages
331-342, 1998.

5. D. Caucal. On word rewriting systems having a rational derivation. In FoSSaCS
3rd, volume 1784 of LNC'S, pages 48-62, 2000.

6. D. Caucal and T. Knapik. A Chomsky-like hierarchy of infinite graphs. In MFCS
27th, volume 2420 of LNCS, pages 177-187, 2002.

7. T. Colcombet. On families of graphs having a decidable first order theory with
reachability. In ICALP 29th, volume 2380 of LNCS, pages 98-109, 2002.

8. M. Dauchet and S. Tison. Decidability of the confluence of finite ground term
rewrite systems. In FCT 5th, volume 199 of LNCS, pages 80-89, 1985.

9. M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
LICS 90th, pages 242-248. IEEE, 1990.

10. P. Gyenizse and S. V4gvdlgyi. Linear generalized semi-monadic rewrite systems
effectively preserve recognizability. 7'C'S, 194(1-2):87-122, 1998.

11. K. Lodaya and P. Weil. Rationality in algebras with a series operation. Information
and Computation, 171(2):269-293, 2001.

12. C. Loding. Ground tree rewriting graphs of bounded tree width. In STACS 19th,
volume 2285 of LNCS, pages 559-570, 2002.

13. J.-C. Raoult. A survey of tree transductions. Technical Report 1410, Inria, April
1991.

14. J.-C. Raoult. Rational tree relations. Bulletin of the Belgian Mathematics Society,
4:149-176, 1997.

15. T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In RTA 11th, volume 1833 of LNCS,
pages 246-260, 2000.



A Appendix: Proof details

We will present here the missing proof to Lemma p.]|, a construction which can
be used as an alternative proof for Proposition , the proofs to Lemmas @
and .4 and a detailed construction for Proposition [6.3.

A.1 Derivation of Bottom-up and Top-down Systems

Lemma @ The relations of derivation and top-down derivation of any top-
down term rewriting system R coincide:

*
—_— = .
R R

Proof. By definition, —% C —%. It remains to prove the converse, by using the
same technique as in @ As =% = H}‘R’,—(XXX)’ we may assume that R N (X x
X) = (. Then, we can sort any derivation into a top-down derivation, as defined
above, by applying an alternative version of the bubble sort algorithm in which
removal and addition of elements are allowed. To do so, we use the following
inclusions:

—>p © 4/) p g */) p © ——ao>p (10)
u,v x,v €,V u,v

—sp 0 ——p T ——p 0 —z with u,u’ ¢ X (11)
u,v u’ v u',v u,v

—sp 0 —p, C — ) 0 —osp with v/,0" ¢ X (12)
u,v z,v’ x,v’ w,v

—sp 0 —p, C —, 0 ——9sp U ——, 00— (13)
u,v z,v’ x,v’ u,v u,v z,v’

where —, (resp. — ) denotes rewriting at any position greater than (resp.
greater or equal to) p, and —,., or —,., denotes multi-step rewriting at any
set of such positions. Let us now prove the first inclusion. Let
t
T

with p > ¢. One can find 1-contexts 7 and § and substitutions p and ¢ such
that r = 7lup], s = Flup] = §zo] and t = 3[v'o], with pos(0,7) = p and
pos(0d,5) = q. As p > q and by hypothesis on R, there is a substitution v such
that 7 = s[xy] and o = ~v[vp]. It is thus possible to swap the rewriting steps
between r and ¢:

r = (8[z7])[up] s (8[v"y])[up] P (8["y])[vp] = t,

where P C 277 is the set of positions at which the special variable O occurs in
5[v'y] (P = pos(0, 3[v'7])). Hence

r——yg4 © —9>q t

, )
T,V u,v



and inclusion (E) is proven. More generally, consider any two-steps rewriting

r T,v)p S ﬁ gt
with p > ¢. By definition there must exist 1-contexts 7 and s and substitutions p
and o such that r = 7lup|, s = Flvp] = s[uc] and t = §[v'o], with pos(T, 7) = {p}
and pos(0,5) = {¢}. The hypotheses we made on R imply certain restrictions
on the structure of configuration s. As R is descending, 5[u] < 7. So there must
be a substitution v such that 7 = 5[u’y] and o = y[vp]. Hence

r = (5[u'~])[up] o (5[0"~])[up] TP (3[0"])[vp] = t,

where P = pos(0J, 3[v'v]). Thus

rﬁqo*q:t.

T,V u,v

As P € 229 inclusion ([L1)) is proven. If v/ ¢ X or v/ = y € X Av(y) is

not trivial, then P € 279 so ([l2) and the first part of (@) are true. Finally, if

u € X, v € X and y(v') is trivial, then r = 7p, ¢t = 50, 7 = 5[], vp = o, hence
r=GluDp —q GbNp —— p ¢ 220 (5] =10

z,v

P

Proposition @ The image of any recognizable term language by the derivation
of a linear top-down term rewriting system is recognizable.

Proof. First note that the domain of the derivation of a descending system is
T(F), and its range is recognizable: the grammar constructed in the proof of
Theorem @ only has non-terminals whose second projection is reduced to a
single variable.

Let L be a recognizable term language accepted by some top-down tree au-
tomaton A with a set of control states . Let R be a linear descending system.
By the previous construction, we are able to build a rational grammar G recog-
nizing —7%. Let us now define a “product grammar” G 4 whose domain is L and
whose range is —7% (L). G’s non-terminals will be of the form

(Nlaq1)---(Nn;Qn)(Nn-i-laQI---Qn)a (14)
noted Ny, . 4, for short. For each production

Nl...NnJrl —>t1...tn8

of G, the product grammar G 4 will have all possible productions

N,

! ! /
quogn —— b1, S

n

where the m-contextual term word ¢; ..., is partially accepted by A (see Sect.
B) with initial control word (¢ . .. g,) and final control word (¢} . ..q.,). Further-
more, t} ...t is obtained from t; ...t, by pairing each of its m variables with



the associated component of the final control word, and s’ is obtained from s by
pairing each of its variables with a word on Q*, so as to complete every instance
of G 4’s non-terminals according to ([[4). The result of this is that a pair (s, )
belongs to L(G4) if and only if (s,t) € L(G) and s € L. In other words, the
second projection of G4 is exactly the set of terms who are the image of some
term in L by —%, so ma(L(Ga)) = —F (L). By forgetting the left projection
of every grammar production, one gets a grammar where all non-terminals have
an arity of 1. Such grammars are called regular tree grammars and generate rec-
ognizable term languages. In this case, we obtain a regular grammar generating
—h (L). O

A.2 Derivation of Suffix Systems
Lemma @ For any suffix term rewriting system R,
I5teT(F,X), o,7t€ S(F,X), k>0,

I
=

k s=50 Nt=trAN 5 —it
s?t,k>0 — R
<

AVz € Var(s) N Var(t) o(x) %]f/ 7(x).

Proof. First note that, since —ip, C —p, the inverse implication is trivial. It
only remains to prove the direct implication. We will reason by induction on k:

k=1: s —ptimplies that there is a context ¢ and a substitution o such that
s = c[lo] and t = ¢[ro]. Thus by definition of suffix rewriting ¢[l] —iclr],
and of course for all variable z, o(z) —% o(z).
k=k+1 let s =k o ' t with [Rr, s = 50 and s’ = s’¢’. Two cases:
NS
p € Pos(s'): if there exists a context ¢ such that s’ = c[l], then we have
5 —i% s —i 5 c[r] and the condition is verified with &’ = k and t = (c[r])o”.
If not, then there must exist a context ¢ and a non-trivial substitution
W’ such that s’ = (c[l])w’. As R is suffix and as, by induction hypothesis,
§—i5s', there must exist w such that § = (¢[l])w and for all variable x
common to [ and 7, w(z)—jw'(z). We can then write s as (c[l])wo, t as
(c[r])w’c’, and verify the condition is true with &’ = 1.

p ¢ Pos(s’): by induction hypothesis, one can find &’ > 0 such that for all
common to 5 and §', o(x) —%k_k o'(x). Furthermore, by applying rule
(I,7) to one of the o'(x), we get o'(z) —, . 7(x). We thus have t = s'7,
5k s and o(z) —>’f{k/+1 7(z) for all z in both 3 and s’, which verifies
the condition and concludes the proof. a

Lemma @ For all recognizable linear term rewriting system R over F' and X,
there exist a finite ranked alphabet Q and three finite rewriting systems

— Ry C {px — fprx1...pnxn | f € F, p,p1,...,0n € Q, z,x1,...,2, €
X*},



C {pr—qylpqeq, v,y € X*},
— R_ C {fpix1...pnxn — px | f € F, p,p1,...,0n € Q, T, x1,...,2, €

such that
* * *
s —it < s —3 o — T{.
R RyUR— R_UR—

Proof. Let R be a recognizable linear rewriting system over F and X. Let
(Ai, Bi)iep,y be I pairs of finite top-down automata, each accepting a set of
rules of R. The set of states of A; (resp. B;) will be referred to as P; (resp.
Q). Without losing generality, we will suppose that all P; and @; are pairwise
disjoint. We also define P as the union of all P; and @ as the union of all @Q;.
For all state p € PUQ, define v(p) as the set of all possible variable boundaries
in the language accepted with initial state p. The way we defined recognizable
linear systems, i.e. with a finite number of variables, we can consider without
losing generality that |v(p)| = 1 for all p.

In a first step, we define a new rewriting system R’ on FUPUQ and X. The
state alphabets P and @) are considered as ranked alphabets, where the arity of
any of their symbols is equal to the number of variables appearing in the terms
of its associated term language (which can be supposed unique without losing
generality). For instance, suppose that from some state p, automaton A accepts
the language ¢g* fry. Then, p will be considered as a binary symbol.

We give R’ the following set of rules. For all rule pf — p1...pm, in some A;
such that v(p) = v(p1)...v(pm) = x1 ... 2y, we have:

foiv(pr) ... pmv(pm) — pri...zn € R

Rules of this kind allow us to consume a left-hand side of a rule in the input
tree. For all rule ¢f — ¢1...¢m in some B; such that v(q) = v(q1)...v(gm) =
T1...Ty, we have:

qry ...ty — fav(q)...quvigm) € R

Rules of this kind allow us to produce a right-hand side of a rule whose left-hand
side has been previously consumed. Finally, for all pair (po, qo) of initial states
of some pair (A;, B;), with v(pg) = x1...2, and v(qo) = xk, . .. xE,, we have:

/
Pox1 ... Ty — QoTh, ---Tk, € R.

This simulates the application of a rewrite rule from L(A;) x L(B;) by initiating
a run of automaton B; when a successful ‘reverse run’ of A; has been achieved.
When restricted to T'(F)?, the derivation of R’ coincides with —%:

Vs, t € T(F), s%t = s?t (15)

The proof of this property is not difficult and will thus not be detailed here. In
the rest of the proof, p, ¢ and all variations thereof designate automata control



states in P U @, variable words in X* are denoted by u, v, u;,v;,..., and o is a
variable renaming.

In a second step, we define R_ as {fpiuy . ..pou, R pu} (‘consuming’ rules),
Ry as {qu R’ fqiv1...qnvy} (‘producing’ rules) and R— as the smallest binary
relation in T'(F, X)? closed by the following inference rules:

pu R qu
S S I U
pu R— pu pu R— qu
pu R— qu qu R— ¢v ¢v R- ¢z

(3) (4)

puoc R— quo qu R= q"z

pu R_ fprur...ppun  fqiur...quvn Ry qu o Vi, piu; R— qv;
pu R— qu

(5)

Since F, P, and X are finite, and each symbol p of P U @ has a definite arity,
then R_ is finite and effectively computable. Let us mention a simple property
of R_:

YV pu, t T(F, X ot 2 — puR_ qu. 16
pu,t,qu € T(F, ),puRﬂzz ron. 1 puR_ qu (16)

This can be proved by induction on the nesting depth k of term t:

k =0: no rule of R_ or Ry is applied, thus pu—}_qv. Then, by inference
rule (4), the property is true.
k= k4 1: let us decompose the derivation sequence between s and ¢:

pu Pj Plul E” fpiur ... ppuy,

— o —of V1. QU — ¢V —iqu.
R_UR- RyUR_ Farvr - gnon Ry v 7

By induction hypothesis, we know that fpiur ... ppun—t5_fqiv1...¢uvn, so
by inference rule (5), p'u’ R— ¢'v’. Finally, by inference rule (4), pu R— qv.

It remains to prove that R, R— and R_ verify the lemma. By (E), it suffices
to show that —i% o —% p_ = —t%. Proving the direct inclusion is
equivalent to proving R— C —7%,, which can be seen easily by observing the
inference rules given above. To prove the converse we will establish, by induction
on k, the following property:

vk, s ?’H t = JceCi(F), (qui)icp € T(F,X),

* *
s —i qur...quuy] —it .
RLUR_ R_UR—

k=0: s=t=c,n=0, so trivially s _”?%+UR: c—ix up b



This concludes the proof of lemma @

k=k+1 let s =k, ¢ —i; .t with [R'r. By induction hypothesis,

s H*}KLFUR: C[qlul ce Qnun] Hﬁ%fUR: t= C[tl . tn]

There are three possible cases:

— 3¢, t =[t1...t,1]: in this case s can be written ¢/[s1 ..., (], so the
following derivation sequence is valid:

*

S Rﬂ{: C’[‘]1U1 «. - qplUnp l] HM Cl[qlul .. gnlUn qlu]

= dqrug - . . gnun g-v] (because | R 1)

—+t dqur . grun7] Rﬁﬂz: Aty tor] =t

— i, t; = £;[1]: the only way to produce t; from g;u; is along the steps
Giui—r_ur_tilaul—R_ &

Thus the following derivation is valid:

* *

s Rj%: clarug ... gy RG»%: clau . Liqu] . . . gnuy]

- claus - . Lilgev] - .. quun) = t.

— E'C/, ] > 7 > 1, t = Cl[tl . --tilthrl .. .tn], with [ = l[ti+1 . t]] The
derivation sequence between s and ¢’ can then be written

* *
R t1...t
s Rm: C[qlul Qnun] Rj%: C[ 1 n]

*

! ! !’
. clty - tiqip iy - qiultipr .ty
+

— Cl[tl...tiqlutj+1...tn] — Cl[tl...tiqTUtj+1...tn]
Ry R

R—H Cl[tl...ﬁith+1---tn] =t

Notice that for all k € [i + 1, j], qeuk—i (r_te—'R, ur_dkw),- Thus, by
[L6). grur R— gjuj, hence

* *

/
s — Clqiul ... qplU — Clqur ..t Ui Ui ... Qul
RiUR_ [qrus .- gnun] R, UR- [q1u1 i QLU Qi1 U1 - - - G U]
S ettty =
R_UR_ 1..-0g ]Jrl"- n .

O

Proposition @ The image and inverse image of any recognizable term lan-

guage by the derivation of a recognizable linear suffiz term rewriting system is
recognizable.



Proof. Let Ry be a recognizable linear suffix term rewriting system on T'(F), R
an equivalent normalized system on T'(F U F”), with F’ a set of new function
symbols. Let G be the grammar recognizing its derivation, built as in the proof
to Theorem .4, N U {I,I'} its set of non-terminals. Let A be a finite non-
deterministic top-down tree automaton accepting a recognizable language L.
Suppose @ 4 is the set of control states of A, disjoint from F and X, q¢p € Q4
its unique initial state. Let Q' be a disjoint copy of @ 4, we define the following
grammar G 4 having non-terminals in Q 4UQ’,U(Q 4 X Ran(R+UR'))*| Dom(R_U
R’)* and the following set of production rules:

For all rule rf — 4 fri...7y:

T *)f(rl)l---(rn>1 X f(Tl)Q...(Tn>2 (17)

r— fri.oor (18)

For all r € Qa, pr € Dom(R) N Ran(R):
r — (r,pr)lpz, (19)

For all rule p1ay ... ppan|lv — phay...phal v of type (f)) in G and state
word 71 ...7, € Q%:

(r1,p121) - - - (P, o) [0 — (re,pial) ... (rn, pha;,) |0 (20)

For all rule uy pzus|v — s1(fphit1 ... pj)s2 X t of type (E) of G and states
word ri ... 7T T4 ... Ty € QY

(r1,p1) -« (Tpypn)Jv — 8" x t/ (21)

where rf — 4 friy1...7; and s’ and ¢’ are obtained from s and ¢ by replacing
each occurrence of py in a non-terminal variable by (7, pg).
For all rule py1 ... pna|v — s x t of type ([) of G and word ry ..., € Q7%:

(r1,p1) - (Tpypn)Jv — 8" x t/ (22)

where s’ and ¢’ are obtained from s and ¢ by replacing each occurrence of p;
in a non-terminal variable by (7, p;).
Finally, for all xRpzx, qxRx, x € X and r € Q 4:

(r,pz)lgz —r (23)
(rpx)]  — 1 (24)

One can see that, starting from non-terminal ¢y, grammar G4 only accepts pairs
(s,t) such that s —7%, t and s € L. Thus the set of all ¢ such that (s, ) is generated
by G4 from qq is exactly the image of L by the derivation of R:

L(Gao) = —(L)



An automaton recognizing this set of terms can be built by taking the right
projection of G 4, and by treating each non-terminal variable as a unary non-
terminal. The rules of this automaton are given by the rules of G4 broken into
several rules over these non-terminals of length 1.

Note that this proof is totally symmetrical, and that the synchronization of
G by a finite automaton A could be done on the second projection instead of
the first. Thus the converse result. a



