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We study the critical behavior of magnetic thin films as a function of the film thickness. We use the ferromagnetic Ising model with the high-resolution multiple histogram Monte Carlo (MC) simulation. We show that though the 2D behavior remains dominant at small thicknesses, there is a systematic continuous deviation of the critical exponents from their 2D values. We observe that in the same range of varying thickness the deviation of the exponent ν is rather small, while exponent β suffers a larger deviation. We explain these deviations using the concept of "effective" exponents suggested by Capehart and Fisher in a finite-size analysis. The shift of the critical temperature with the film thickness obtained here by MC simulation is in an excellent agreement with their prediction.

I. INTRODUCTION

During the last 30 years. physics of surfaces and objects of nanometric size have attracted an immense interest. This is due to important applications in industry. [START_REF] Zangwill | Physics at Surfaces[END_REF][START_REF]Ultrathin Magnetic Structures[END_REF] An example is the so-called giant magneto-resistance (GMR) used in data storage devices, magnetic sensors, ... [START_REF] Baibich | [END_REF]4,5,[START_REF]Solid State Physics[END_REF] In parallel to these experimental developments, much theoretical effort [START_REF] Binder | Phase Transitions and Critical Phenomena[END_REF][START_REF] Diehl | Phase Transitions and Critical Phenomena[END_REF] has also been devoted to the search of physical mechanisms lying behind new properties found in nanoscale objects such as ultrathin films, ultrafine particles, quantum dots, spintronic devices etc. This effort aimed not only at providing explanations for experimental observations but also at predicting new effects for future experiments.

The physics of two-dimensional (2D) systems is very exciting. Some of those 2D systems can be exactly solved: one famous example is the Ising model on the square lattice which has been solved by Onsager. 9 This model shows a phase transition at a finite temperature T c given by sinh 2 (2J/k B T c ) = 1 where J is the nearest-neighbor (NN) interaction. Another interesting result is the absence of long-range ordering at finite temperatures for the continuous spin models (XY and Heisenberg models) in 2D. 10 In general, three-dimensional (3D) systems for any spin models cannot be unfortunately solved. However, several methods in the theory of phase transitions and critical phenomena can be used to calculate the critical behaviors of these systems. [START_REF] Zinn-Justin | Quantum Field Theory and Critical Phenomena[END_REF] This paper deals with systems between 2D and 3D. Many theoretical studies have been devoted to thermodynamic properties of thin films, magnetic multilayers,... [START_REF] Binder | Phase Transitions and Critical Phenomena[END_REF][START_REF] Diehl | Phase Transitions and Critical Phenomena[END_REF][START_REF] Diep | [END_REF]13,14 In spite of this, several points are still not yet understood. It is known a long time ago that the presence of a surface in magnetic materials can give rise to surface spin-waves which are localized in the vicinity of the surface. 15 These localized modes may be acoustic with a low-lying energy or optical with a high energy, in the spin-wave spectrum. Low-lying energy modes contribute to reduce in general surface magnetization at finite temperatures. One of the consequences is the surface disordering which may occur at a temperature lower than that for interior magnetization. 16 The existence of low-lying surface modes depends on the lattice structure, the surface orientation, the surface parameters, surface conditions (impurities, roughness, ...) etc. There are two interesting cases: in the first case a surface transition occurs at a temperature distinct from that of the interior spins and in the second case the surface transition coincides with the interior one, i. e. existence of a single transition. Theory of critical phenomena at surfaces [START_REF] Binder | Phase Transitions and Critical Phenomena[END_REF][START_REF] Diehl | Phase Transitions and Critical Phenomena[END_REF] and Monte Carlo (MC) simulations 17,18 of critical behavior of the surface-layer magnetization at the extraordinary transition in the three-dimensional Ising model have been carried out. These works suggested several scenarios in which the nature of the surface transition and the transition in thin films depends on many factors in particular on the symmetry of the Hamiltonian and on surface parameters.

We confine ourselves here in the case of a simple cubic film with Ising model. For our purpose, we suppose all interactions are the same everywhere even at the surface. This case is the simplest case where there is no surface-localized spin-wave modes and there is only a single phase transition at a temperature for the whole system (no separate surface phase transition). 15,16 Other complicated cases will be left for future investigations. However, some preliminary discussions on this point for complicated surfaces have been reported in some of our previous papers. 19,20 In the case of a simple cubic film with Ising model, Capehart and Fisher have studied the critical behavior of the susceptibility using a finite-size scaling analysis. 21 They showed that there is a crossover from 2D to 3D behavior as the film thickness increases. The so-called "effective" exponent γ has been shown to vary according to a scaling function depending both on the film thickness and the distance to the transition temperature. As will be seen below the scaling suggested by Capehart and Fisher is in agreement with what we find here using extensive MC simulation.

The aim of this paper is to investigate the effect of the thickness on the critical exponents of the film. To carry out these purposes, we shall use MC simulations with highly accurate multiple histogram technique. 22,23,24 The paper is organized as follows. Section II is devoted to a description of the model and method. Results are shown and discussed in section III. Concluding remarks are given in section IV.

II. MODEL AND METHOD

A. Model

Let us consider the Ising spin model on a film made from a ferromagnetic simple cubic lattice. The size of the film is L × L × N z . We apply the periodic boundary conditions (PBC) in the xy planes to simulate an infinite xy dimension. The z direction is limited by the film thickness N z . If N z = 1 then one has a 2D square lattice.

The Hamiltonian is given by

H = - i,j J i,j σ i • σ j (1) 
where σ i is the Ising spin of magnitude 1 occupying the lattice site i, i,j indicates the sum over the NN spin pairs σ i and σ j .

In the following, the interaction between two NN surface spins is denoted by J s , while all other interactions are supposed to be ferromagnetic and all equal to J = 1 for simplicity. Let us note in passing that in the semiinfinite crystal the surface phase transition occurs at the bulk transition temperature when J s ≃ 1.52J. This point is called "extraordinary phase transition" which is characterized by some particular critical exponents. 17,18 In the case of thin films, i. e. N z is finite, it has been theoretically shown that when J s = 1 the bulk behavior is observed when the thickness becomes larger than a few dozens of atomic layers: 15 surface effects are insignificant on thermodynamic properties such as the value of the critical temperature, the mean value of magnetization at a given T , ... When J s is smaller than J, surface magnetization is destroyed at a temperature lower than that for bulk spins. 16 The criticality of a film with uniform interaction, i.e. J s = J, has been studied by Capehart and Fisher as a function of the film thickness using a scaling analysis 21 and by MC simulations. 25,26 The results by Capehart and Fisher indicated that as long as the film thickness is finite the phase transition is strictly that of the 2D Ising universality class. However, they showed that at a temperature away from the transition temperature T c (N z ), the system can behave as a 3D one when the spin-spin correlation length ξ(T ) is much smaller than the film thickness, i. e. ξ(T )/N z ≪ 1. As T gets very close to T c (N z ), ξ(T )/N z → 1, the system undergoes a crossover to 2D criticality. We will return to this work for comparison with our results shown below.

B. Multiple histogram technique

The multiple histogram technique is known to reproduce with very high accuracy the critical exponents of second order phase transitions. 22,23,24 The overall probability distribution 23 at temperature T obtained from n independent simulations, each with N j configurations, is given by

P (E, T ) = n i=1 H i (E) exp[E/k B T ] n j=1 N j exp[E/k B T j -f j ] , (2) 
where

exp[f i ] = E P (E, T i ). (3) 
The thermal average of a physical quantity A is then calculated by

A(T ) = E A P (E, T )/z(T ), (4) 
in which

z(T ) = E P (E, T ). ( 5 
)
Thermal averages of physical quantities are thus calculated as continuous functions of T , now the results should be valid over a much wider range of temperature than for any single histogram.

In MC simulations, one calculates the averaged order parameter M (M : magnetization of the system), averaged total energy E , specific heat C v , susceptibility χ, first order cumulant of the energy C U , and n th order cumulant of the order parameter V n for n = 1 and 2. These quantities are defined as

E = H , (6) 
C v = 1 k B T 2 E 2 -E 2 , (7) 
χ = 1 k B T M 2 -M 2 , (8) 
C U = 1 - E 4 3 E 2 2 , (9) 
V n = ∂ ln M n ∂(1/k B T ) = E - M n E M n . ( 10 
)
Let us discuss the case where all dimensions can go to infinity. For example, consider a system of size L d where d is the space dimension. For a finite L, the pseudo "transition" temperatures can be identified by the maxima of C v and χ, .... These maxima do not in general take place at the same temperature. Only at infinite L that the pseudo "transition" temperatures of these respective quantities coincide at the real transition temperature T c (∞). So when we work at the maxima of V n , C v and χ, we are in fact working at temperatures away from T c (∞). Let us define the reduced temperature which measures the "distance" from T c (∞) by

t = T -T c (∞) T c (∞) (11) 
This distance tends to zero when all dimensions go to infinity. For large values of L, the following scaling relations are expected (see details in Ref. 24):

V max 1 ∝ L 1/ν , V max 2 ∝ L 1/ν , (12) 
C max v = C 0 + C 1 L α/ν (13) 
and

χ max ∝ L γ/ν (14) 
at their respective 'transition' temperatures T c (L), and

C U = C U [T c (∞)] + AL -α/ν , (15) 
M Tc(∞) ∝ L -β/ν (16) 
and

T c (L) = T c (∞) + C A L -1/ν , (17) 
where A, C 0 , C 1 and C A are constants. We estimate ν independently from V max 1 and V max

2

. With this value we calculate γ from χ max and α from C max v . Note that we can estimate T c (∞) using the last expression. Then, using T c (∞), we can calculate β from M Tc(∞) . The Rushbrooke scaling law α + 2β + γ = 2 is then in principle verified.

Let us emphasize that the expressions Eqs. ( 12)-( 17) are valid for large L. To be sure that L are large enough, one has to allow for corrections to scaling of the form, for example,

χ max = B 1 L γ/ν (1 + B 2 L -ω ) ( 18 
)
V max n = D 1 L 1/ν (1 + D 2 L -ω ) ( 19 
)
where B 1 , B 2 , D 1 and D 2 are constants and ω is a correction exponent. 27 Similar forms exist also for the other exponents. Usually, these corrections are extremely small if L is large enough as is the case with today's largememory computers. So, in general they do not therefore alter the results using Eqs. ( 12)- (17).

C. The case of films with finite thickness

In the case of a thin film of size L × L × N z , Capehart and Fisher 21 have showed that as long as the film thickness N z is not allowed to go to infinity, there is a 2D-3D crossover if one does not work at the real transition temperature T c (L = ∞, N z ). Following Capehart and Fisher, let us define

ṫ = T -T c (L = ∞, N z ) T c (3D) (20) 
x = N 1/ν3D z ṫ ( 21 
)
where ν 3D is the 3D ν exponent and T c (3D) the 3D critical temperature. When x is larger than a value x 0 , i. e. at a temperature away from T c (L = ∞, N z ), the system behaves as a 3D one. While when x < x 0 , it should behave as a 2D one. This crossover was argued from a comparison of the correlation length in the z direction to the film thickness. As a consequence, if we work exactly at T c (L = ∞, N z ) we should observe the 2D critical exponents for finite N z . Otherwise, we should observe the so-called "effective critical exponents" whose values are found between those of 2D and 3D cases. This point is fundamentally very important. There have been some attempts to verify it by MC simulations, 25 but these results were not convincing due to their poor MC quality. In the following we show with high-precision MC technique that the prediction of Capehart and Fisher is really verified.

III. RESULTS

The xy linear sizes L = 20, 24, 30, ..., 80 have been used in our simulations. For N z = 3, sizes up to 160 have been used to evaluate corrections to scaling.

In practice, we use first the standard MC simulations to localize for each size the transition temperatures T E 0 (L) for specific heat and T m 0 (L) for susceptibility. The equilibrating time is from 200000 to 400000 MC steps/spin and the averaging time is from 500000 to 1000000 MC steps/spin. Next, we make histograms at 8 different temperatures T j (L) around the transition temperatures T E,m 0 (L) with 2 millions MC steps/spin, after discarding 1 millions MC steps/spin for equilibrating. Finally, we make again histograms at 8 different temperatures around the new transition temperatures T E,m 0 (L) with 2 × 10 6 and 4 × 10 6 MC steps/spin for equilibrating and averaging time, respectively. Such an iteration procedure gives extremely good results for systems studied so far. Errors shown in the following have been estimated using statistical errors, which are very small thanks to our multiple histogram procedure, and fitting errors given by fitting software.

We note that only ν is directly calculated from MC data. Exponent γ obtained from χ max and ν suffers little errors (systematic errors and errors from ν). Other exponents are obtained by MC data and several-step fitting. For example, to obtain α we have to fit C max v of Eq. 13 by choosing C 0 , C 1 and by using the value of ν. So, in practice, in most cases, one calculates α or β from MC data and uses the Rushbrooke scaling law to calculate the remaining exponent. Now, similar to the discussion given in subsection II B, if we work at a distance away from T c (L = ∞, N z ) we should observe "effective critical exponents". This is the case because in the finite size analysis using the multiple histogram technique, we measure the maxima of V n , C V and χ which occur at different temperatures for a finite L. These temperatures, though close to, are not T c (L = ∞, N z ). To give a precision on this point, we show the values of these maxima and the corresponding temperatures for N z = 7 in Table I. For the value of

= 7. L C max v χ max V max 1 V max 2 T c(C max v ) Tc(χ max ) Tc(V max 1 ) Tc(V max
T c (L = ∞, N z = 7), see Table II.
Given this fact, we emphasize that calculations using Eqs. ( 12)-( 17) will give effective critical exponents except of course for the case N z = 1 where the results correspond to real critical exponents.

We show now the results obtained by MC simulations with the Hamiltonian (1). We have tested that all exponents do not change in the finite size scaling with L ≥ 30. So most of results are shown for L ≥ 30 except for ν where the lowest sizes L = 20, 24 can be used without modifying its value.

Let us show in Fig. 1 the layer magnetizations and their corresponding susceptibilities of the first three layers, in the case where J s = 1. It is interesting to note that the surface layer is smaller that the interior layers, as it has been shown theoretically by the Green's function method a long time ago. 15,16 The surface spins have smaller local field due to the lack of neighbors, so thermal fluctuations will reduce more easily the surface magnetization with respect to the interior ones. The susceptibilities have their peaks at the same temperature, indicating a single transition.

Figure 2 shows total magnetization of the film and the total susceptibility. This indicates clearly that there is only one peak as said above.

A. Finite size scaling

Let us show some results obtained from multiple histograms described above. Figure 3 shows the susceptibility and the first derivative V 1 versus T around their maxima for several sizes.

We show in Fig. 4 the maximum of the first derivative the figure. In order to see the deviation from the 2D exponent, we plot in Fig. 5 ν as a function of thickness N z . We observe here a small but systematic deviation of ν from its 2D value (ν 2D = 1) with increasing thickness. To show the precision of our method, we give here the results of N z = 1. For N z = 1, we have 1/ν = 1.0010 ± 0.0028 which yields ν = 0.9990 ± 0.0031 and γ/ν = 1.7537 ± 0.0034 (see Figs. The deviation of ν from the 2D value when N z increases is due, as discussed earlier, to the crossover to 3D ( ṫ is not zero). Other exponents will suffer the same deviations as seen below.

We show in Fig. 6 the maximum of the susceptibility versus L in the ln -ln scale for film thicknesses up to N z = 13. We have used only results of L ≥ 30. Including L = 20 and 24 will result, unlike the case of ν, in a decrease of γ of about one percent for N z ≥ 7. From the slopes of these straight lines, we obtain the values of effective γ/ν. Using the values of ν obtained above, we deduce the values of γ which are plotted in Fig. 7 as a function of thickness N z . Unlike the case of ν, we observe here a stronger deviation of γ from its 2D value (1.75) with increasing thickness. This finding is somewhat interesting: the magnitude of the deviation from the 2D value may be different from one critical exponent to another: ≃ 3% for ν and ≃ 8% for γ when N z goes from 1 to 13. We will see below that β varies even more strongly.

We show now in Fig. 8 L for N z = 1, 3, 5, ..., 13. Note that for each N z we had to look for C 0 , C 1 and α/ν which give the best fit with data of C max v . Due to the fact that there are several parameters which can induce a wrong combination of them, we impose that α should satisfy the condition 0 ≤ α ≤ 0.11 where the lower limit of α corresponds to the value of 2D case and the upper limit to the 3D case. In doing so, we get very good results shown in Fig. 8. From these ratios of α/ν we deduce α for each N z . The values of α are shown in Table II for several N z .

It is interesting to note that the effective exponents obtained above give rise to the effective dimension of thin film. This is conceptually not rigorous but this is what observed in experiments. Replacing the effective values of α obtained above in d eff = (2 -α)/ν we obtain d eff shown in Fig. 9.

We note that d eff is very close to 2. It varies from 2 to ≃ 2.061 for N z going from 1 to 13. The 2D character is thus dominant even with larger N z . This supports the idea that the finite correlation in the z direction, though qualitatively causing a deviation, cannot strongly alter the 2D critical behavior. This point is interesting because, as said earlier, some thermodynamic properties may show already their 3D values at a thickness of about a few dozens of layers, but not the critical behavior. To show an example of this, let us plot in Fig. 10 α/ν = 0.002297 (22) α/ν = 0.002332(36) α/ν = 0.002224 (16) α/ν = 0.002250 (19) α/ν = 0.002264 (25) α/ν = 0.002287 (26) α/ν = 0.001994 (24) 5.46 FIG. 9: Effective dimension of thin film obtained by using effective exponents, as a function of thickness.

sition temperature at L = ∞ for several N z , using Eq. 17 for each given N z . As seen, T c (∞) reaches already ≃ 4.379 at N z = 13 while its value at 3D is 4.51. 27,28 A rough extrapolation shows that the 3D values is attained for N z ≃ 25 while the critical exponents at this thickness are far away from the 3D ones.

Let us show the prediction of Capehart and Fisher 21 on the critical temperature as a function of N z . Defining the critical-point shift as

ε(N z ) = [T c (L = ∞, N z ) -T c (3D)] /T c (3D) (22) 
they showed that

ε(N z ) ≈ b N 1/ν z [1 + a/N z ] (23) 
where ν = 0.6289 (3D value). Using T c (3D) = 4.51, we fit the above formula with T c (L = ∞, N z ) taken from Table II, we obtain a = -1.37572 and b = -1.92629.

The MC results and the fitted curve are shown in Fig. 10. Note that if we do not use the correction factor [1 + a/N z ], the fit is not good for small N z . The prediction of Capehart and Fisher is thus very well verified.

We give here the precise values of T c (L = ∞, N z ) for each thickness. For N z = 1, we have FIG. 11: Effective exponent β, obtained by using Eq. 16, versus the film thickness.

T c (L = ∞, N z = N z ε( ) N z -0.2 -0.
1) = 2.2699 ± 0.0005. Note that the exact value of T c (∞) is 2.26919 by solving the equation sinh 2 (2J/T c ) = 1. Again here, the excellent agreement of our result shows the efficiency of the multiple histogram technique as applied in the present paper. The values of T c (L = ∞) for other N z are summarized in Table II.

Calculating now M (L) at these values of T c (L = ∞, N z ) and using Eq. 16, we obtain β/ν for each N z . For N z = 1, we have β/ν = 0.1268 ± 0.0022 which yields β = 0.1266 ± 0.0049 which is in excellent agreement with the exact result 0.125. Note that if we calculate β from α + 2β + γ = 2, then β = (2 -1.75198 -0.00199)/2 = 0.12302 ± 0.0035 which is in good agreement with the direct calculation within errors. We show in Fig. 11 the values of β obtained by direct calculation using Eq. 16.

Note that the deviation of β from the 2D value when N z varies from 1 to 13 is due to the crossover effect discussed in subsection II C. It represents about 60%. Remember that the 3D value of β is 0.3258 ± 0.0044. 27 Finally, for convenience, let us summarize our results in Table II for N z = 1, 3, ..., 13. Except for N z = 1, all other cases are effective exponents discussed above. Due to the smallness of α, its value is shown with 5 decimals without rounding.

B. Larger sizes and correction to scaling

We consider here the effects of larger L and of the correction to scaling. For the effect of larger L, we will extend our size up to L = 160, for just the case N z = 3.

The results indicate that larger L does not change the results shown above. Figure 12(a) displays the maximum of V 1 as a function of L up to 160. Using Eq. ( 12), i. e. without correction to scaling, we obtain 1/ν = 1.009 ± 0.001 which is to be compared to 1/ν = 1.008 ± 0.002 using L up to 80. The change is therefore insignificant because it is at the third decimal i. e. at the error level. The same is observed for γ/ν as shown in Fig. 12(b): γ/ν = 1.752 ± 0.002 using L up to 160 instead of γ/ν = 1.751 ± 0.002 using L up to 80. Now, let us allow for correction to scaling, i. e. we use Eq.( 18) instead of Eq. ( 14) for fitting. We obtain the following values: γ/ν = 1.751 ± 0.002, B 1 = 0.05676, B 2 = 1.57554, ω = 3.26618 if we use L = 70 to 160 (see Fig. 13). The value of γ/ν in the case of no scaling correction is 1.752 ± 0.002. Therefore, we can conclude that this correction is insignificant. The large value of ω explains the smallness of the correction.

C. Role of boundary condition

To close this section, let us touch upon the question: does the absence of PBC in the z direction cause the deviation of the critical exponents? The answer is no: we have calculated ν and γ for N z = 5 in both cases, with and without PBC in the z direction. The results show no significant difference between the two cases as seen in Figs. 14 and15. We have found the same thing with N z = 11 shown in Figs. 16 and17. So, we conclude that the fixed thickness will result in the deviation of the critical exponents, not from the absence of the PBC. This is somewhat surprising since we may think, incorrectly, that the PBC should mimic the infinite dimension so that we should obtain the 3D behavior when applying the PBC. As will be seen below, the 3D behavior is recovered only when the finite size scaling is applied in the z direction at the same time in the xy plane. To show this, we plot in Figs. 18 and19 the results for the 3D case. Tc(L = ∞, Nz) 1 0.9990 ± 0.0028 1.7520 ± 0.0062 0.00199 ± 0.00279 0.1266 ± 0.0049 2.0000 ± 0.0028 2.2699 ± 0.0005 3 0.9922 ± 0.0019 1.7377 ± 0.0035 0.00222 ± 0.00192 0.1452 ± 0.0040 2.0135 ± 0.0019 3.6365 ± 0.0024 5 0.9876 ± 0.0023 1.7230 ± 0.0069 0.00222 ± 0.00234 0.1639 ± 0.0051 2.0230 ± 0.0023 4.0234 ± 0.0028 7 0.9828 ± 0.0024 1.7042 ± 0.0087 0.00223 ± 0.00238 0.1798 ± 0.0069 2.0328 ± 0.0024 4.1939 ± 0.0032 9 0.9780 ± 0.0016 1.6736 ± 0.0084 0.00224 ± 0.00161 0.1904 ± 0.0071 2.0426 ± 0.0016 4.2859 ± 0.0022 11 0.9733 ± 0.0025 1.6354 ± 0.0083 0.00224 ± 0.00256 0.1995 ± 0.0088 2.0526 ± 0.0026 4.3418 ± 0.0032 13 0.9692 ± 0.0026 1.6122 ± 0.0102 0.00226 ± 0.00268 0.2059 ± 0.0092 2.0613 ± 0.0027 4.3792 ± 0.0034 Even with our modest sizes (up to L = N z = 21, since it is not our purpose to treat the 3D case here), we obtain ν = 0.613±0.005 and γ = 1.250±0.005 very close to their 3D best known values ν 3D = 0.6302 ± 0.0001 from Ref.

28 and ν 3D = 0.6289 ± 0.0008 and γ 3D = 1.2390 ± 0.0025 obtained by using 24 ≤ L ≤ 96 given in Ref. 27.

IV. CONCLUDING REMARKS

We have considered a simple system, namely the Ising model on a simple cubic thin film, in order to clarify the point whether or not there is a continuous deviation of the 2D exponents with varying film thickness. From results obtained by the highly accurate multiple histogram technique shown above, we conclude that the critical exponents in thin films show a continuous deviation from their 2D values as soon as the thickness departs from 1. This deviation stems from a deep physical mechanism: Capehart and Fisher 21 have argued that if one works exactly at the critical temperature T c (L = ∞, N z ) then the critical exponents should be those of 2D universality class as long as the film thickness is finite. At T c (L = ∞, N z ), the correlation in the z direction ξ remains finite while those in the xy planes become infinite. Hence ξ is irrelevant to the criticality. This yields therefore the 2D behavior. However, when the system is away from T c (L = ∞, N z ), as is the case in numerical simulations using finite sizes, the system may have a 3D behavior as long as ξ << N z . This should yield a deviation of 2D critical exponents. The results we obtained in this paper verify this picture. In addition, the prediction of Capehart and Fisher for the shift of the critical temperature with the film thickness is in a perfect agreement with our simulations. Note furthermore that (i) the deviations of the exponents from their 2D values are very different in magnitude: while ν and α vary very little over the studied range of thickness, γ and specially β suffer stronger deviations, (ii) with a fixed thickness N z = 1, the same "effective" exponents are observed, within errors, in simulations with and without periodic boundary condition in the z direction, (iii) to obtain the 3D behavior, the finite size scaling should be applied si-multaneously in the three directions, i. e. all dimensions should be allowed to go to infinity. If we do not apply the scaling in the z direction, we will not obtain 3D behavior even with a very large, but fixed, thickness and even with periodic boundary condition in the z direction, (iv) with regard to the critical behavior, thin films behave as systems with effective critical exponents whose values are those between 2D and 3D.

To conclude, we hope that the numerical results shown in this paper will help experimentalists to interpret their data which are usually obtained at a finite distance from the critical point. It should be also desirable to study more cases to clarify the role of thickness on the behavior of very thin films, in particular the effect of the film thickness on the bulk first-order transition.
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 I Maxima and temperatures at the maxima of Vn (n = 1, 2), Cv and χ for various L with Nz

  FIG.10: Critical temperature at infinite L as a function of the film thickness. Points are MC results, continuous line is the prediction of Capehart and Fisher, Eq. (23). The agreement is excellent.
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 II Critical exponents, effective dimension and critical temperature at infinite xy limit as obtained in this paper.
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: Maximum of susceptibility versus L in the lnln scale for 3D case.