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Microscopic effects in the homogenization
of the junction of rods and a thin plate

Dominique Blanchard * and Georges Griso **

Abstract
This paper is devoted to investigate a few microscopic effects in the homogenization process of the
junction of a periodic family of rods with a thin plate in elasticity. We focus on the case where the thickness
of the plate tends to zero faster than the periodicity. As a consequence of the studied microscopic effects,
the elastic coefficients of the membrane and bending limit problems for the plate are modified. Moreover,
we observe a torsion in the homogenized ”continuum” of rods which depends on the curl of the membrane

displacement of the plate.

Résumé
Cet article est destiné a mettre en évidence des effets microscopiques dans le processus d’homogénéisation
de la jonction d’une famille périodique de poutres avec une plaque mince en élasticité. Nous examinons la
situation ou I’épaisseur de la plaque tend vers zéro plus vite que la période. Les effets microscopiques observés
se traduisent par une modification des coefficients élastiques dans les problemes limites de membrane et de
flexion de la plaque. De plus, on met en évidence une torsion dans le ”continuum” homogénéisé de poutres

qui dépend du rotationnel du champ de déplacement membranaire de la plaque.
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1. Introduction

This paper pertains to the general problem of modeling the asymptotic behavior of a multistructure
made of a e-periodic set of elastic rods, with radius » = ke (k < 1/2), in junction with an elastic plate
whose thickness § can tend to zero as the periodicity € of the rods vanishes. The two critical cases 6 = 1
and § ~ £%/3 are investigated in [1] and [2], and they come under the situation where /6 — 0 for which
there is no microscopic effect induced by the rods on the limit problem for the plate which consists in the
standard membrane 2d model and the usual bending model. Here we investigate the case where §/¢ — 0
which corresponds to a ”very” thin plate (with respect to the periodicity) and where such microscopic effects
occur. Let us briefly describe the results obtained in the present paper. The main result of this work is that,
even for a homogeneous and isotropic elastic material, the homogenization of the junction of the rods with the
plate leads to a membrane 2d model and a bending model for the plate which have different coefficients that
the ones of the standard models. These new coeflicients are derived through solving elastic local problems.
Loosely speaking the microscopic effects are due to the fact that the displacement is asymptotically rigid in
the small cylinders of the plate which are below the rods.

As far as the rods are concerned, the limit model is a continuum of rods (indexed by (z1,z2)). In this

continuum, each rod has a rigid body displacement which is given by the rigid displacement of the fiber of the

1)
plate which is below this specific rod. Moreover we show that, if — is bounded then each rod has a constant

€
rotation around its axis; the angle of this rotation is equal to the curl of the 2d membrane displacement of

the limit plate model. We also show that, if @ — 400 then each small cylinder included in the plate and
below each rod has a constant rotation aroundgits axis; the angle of this rotation is also equal to the curl of
the 2d membrane displacement. The first tool used to carry out the analysis is two decompositions of the
displacement field in each rod and in the plate ( see [19], [20], [1], [2]). The second main tool is the periodic
unfolding operator in homogenization (see [10], [12], [1], [2]).

For the general theory of elasticity, we refer e.g. to [7] and for the mathematical justification of elastic
plates model to [8] and [9] (and to the references quoted in these works). A general introduction to the
mathematical modeling of elastic rods models can be found in [24].

The paper is organized as follows. Section 2 is devoted to describe the geometry and the equations
of the problem. In Section 3 we first recall the decompositions of the displacement in the rods and in the
plate and we give estimates on the terms of these decompositions in term of the elastic energy. A special
care is dedicated to these estimates in the small cylinders below the rods. Section 4 contains a few recall
on the unfolding operators in the rods and in the plate. In Section 5 we show that the limit displacement
in each rod (i.e. for a.e. (z1,x2) is a rigid displacement and that the unfold strain of the rods converges to
0. In Section 6 we identify the weak limits of the unfold displacement and of the unfold strain. Section 7
is concerned with the derivation of the kinematic transmission condition between the rods and the plate in
the limit model. In Section 8, we introduce the local membrane correctors in order to derive the membrane
limit problem for the plate and the torsion angle in each rod. Section 9 is devoted to introduce the local
bending correctors to be a position to obtain the limit bending problem in the plate. At last, in Section 10

we prove the strong convergence of the 3d energy to the energy of the limit problem as € tends to 0.

2. The geometry and the problem

Throughout the paper (e, es, e3) denotes the standard basis of R3. Let § be a sequence of positive real

numbers which tends to zero and let € be a sequence of positive real numbers which depends on § and tends

0
to zero with 6 and such that - — 0.



Let us consider a bounded connected regular domain w contained in the (z1,22) coordinate plane. The

set AV is defined for & small enough as the following subset of Z?
N ={(p,q) €Z?; lep—¢e/2,ep+¢/2[ x |eq —/2,eq+ /2] C w}.

Fix L > 0. For each (p,q) € Z%, ¢ > 0 and r = ke (k < 1/2), we consider a rod Py, whose cross section is

the disk of center (ep,eq) and radius r, and whose axis is x3 and with a height equal to L
D;’q = {({)317152) € R2 5 (331 - Ep)Q + (552 - Eq)z < T2} 9

Ppg= {(%7%2,%3) ER?; (z1,20) € Dps 0 <3< L}.

Then, we denote by QF the set of all the rods defined as above

of= |J P,
(p,q)EN:

The lower cross sections of all the rods is denoted by w.

Wwe = U D, , *x {0} Cw.
(p,a)EN:

In order to shorten the notation, we set

~ € € € €
We = U Gep—§,€p+§[x}eq—§,Eq+§DCw.
(p,q)EN

We have assumed that & < 1/2 in order to avoid the contact between two different rods (recall that

r = ke). The domain filled by the oscillating part QF (as e tends to zero) is denoted by QF
QO =wx]0o, L.

Moreover, we set

0O = {(xl,zg,xg) ER3; (r1,20) Cw, —1 <3< O},
Q=wx]—-1,L[
The 3d-plate €25 is defined, for § > 0, by
Q5 = {(ml,xg,xg) eR3; (21,22) Ew, =6 < x3 < 0}.
The elastic body under consideration is
Qs =0T Uw. UQj5 .

In order to derive the estimates that lead to the junction conditions between the rods and the plate, we

introduce below the following subsets of €. 5

= |J D5,x]-d.0]
(P,a)EN
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+ _ o+t )
Q ;=97 uc™.

Remark that Qj 5 is actually made of rods of length L+ ¢, each one being a rod of QF which is extended
for —d < x3 < 0 into the plate.
We consider the standard linear equations of elasticity in Q. s.

The displacement field in ), s is denoted by
ud Qe 5 — R3.
The linearized strain field in Q) s is defined by

'y(u‘s) = (Du‘s + (Du‘s)T) ,

N =

or equivalently by its components

(Ol + 05ul), i,j=1,2,3.

N =

Yij(u®) =

The Cauchy stress tensor in Q. s is linked to y(u®) through the standard Hooke’s law

3
(2.1) ol =\ (Z fykk(ué))> 8ij + 2uvi5(w®), 0,5 =1,2,3,
k=1

where A and p denotes the Lamé’s coefficients of the elastic material, and where d;; = 0if i # j and §;; =1

if i = j. The equation of equilibrium in €, s is
3
(2.2) —Zajgfj =fin Qs i=1,23,
j=1

where f9 : Qs — R3 denotes the applied force.
In order to specify the boundary conditions on 0€). 5, we will assume that the 3d plate is clamped on

its lateral boundary dwx| —§,0[=T's

(2.3) u® =0 on T,
and that the boundary 98 5 \ I's is free

(2.4) 0’y =0 on 90 5\ T;,

where v denotes the exterior unit normal to ;.
Remark 2.1 The boundary condition (2.4) means that the density of applied surface forces on the boundary
090 \ T's is zero. This assumption is not necessary to carry on the analysis, but it is a bit natural as far as

the fast oscillating boundary 97 is concerned.

The variational formulation of (2.2)-(2.3)-(2.4) is very standard. If V. 5 denotes the space:

Ves = {v € (1&71((2875))3 ;v=0on F(;},
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the variational formulation is

u’ € Ve,

(2.5) 3 3
/ Z a,?j'yq;j(v)dz = / Z f?vidx, Vv € Ves.
Q Q

£,8 i,j=1 £,6 =1

Throughout the paper and for any v € V, s we denote by

E(v) = /Q A (Z '7kk(”)> +2p Y (33 (0)? | da
= k=1

i,j=1
the total elastic energy of the displacement v and we set
lvle = VE(v).

Indeed choosing v = u? in (2.5) leads to the usual energy relation

3
(2.6) E(W) = /Q foufdx.

£,6 4=1

3. Decompositions of the displacement and estimates

In this section, we consider two decompositions of the displacement field in each rod and in the plate
as this was the case in [2]. These types of decompositions have been introduced in [17]-[20] to describe the
asymptotic behavior of elastic multistructures. Remark that in the present paper and in order to describe
the junction conditions between the rods and the plate, the decomposition of the displacement 9 is twofold.
In the small cylinders of the plate below each rod, u9 is split as a rod type displacement and as a plate type
displacement. This is the object of Subsection 3.1. Estimates of the terms of the decompositions of u? are
given in Subsection 3.2. This leads to natural assumptions on the forces f? in Subsection 3.3. In Subsection

3.4 we derive estimates in the small junction cylinders C&°.
3.1 Decompositions of the displacement

The displacement field in the rods QF U C®? is decomposed following [17] (see also [18]) as below:

xr1 —Ep

§ 5+ 5+ —5+
u’(x) =UT(ep,eq,z3) + R°T (ep,eq,x3) N | ©9 — € +u’"(x
(3.1) (z) (ep, eq,x3) (ep, eq,x3) 20 q (2) ve D x|~ 6L,

=Ul* (ep.eq, w3) + 0" (x)

where the field w0t satisfies

/ E‘s+(x1,x2,x3)dx1d;v2 = 0,

p,q

J;

(1‘1 — Ep)ﬂg+($1,l’2,$3)d$1d$2 = / ($2 — sq)ﬂg+(11,x2, mg)d$1dI2 = 0,
. D .q

{(xl — £p)ﬂg+(x1, X9, x3) — (2 — 6q)ﬂ‘15+(x1, 1‘2,$3)}dl‘1d$2 =0,
D5



for almost any x3 in | — 4§, L].
The functions U°+ and R°* are extended to the whole domain wx] — d, L[ through

UT (21,29, 03) = U (ep,eq,3) if  (21,29) € }Ep— Sep+ g [ X }Eq— %wﬂﬁr%[

2
(32) R6+($1,I275€3) = R6+(5p7 eq,v3) if (w1,72) € }i?p - %,5]3 + % { x }?q - %,5(1 + % {
Z/l5+(x1,a:2,x3) = R6+(Z‘1,$2,.’L‘3) =0 if (x1,22) Ew\ Q.
In the plate, we use the decomposition introduced in [19]
0
W (z) = U (21, 22) + RO (21, 72) A 0 +a° () _
(3.3) x5+ 6/2 xr e Qy,
= U2~ (z) + @ ()

where the field w®~ satisfies

0 0 6
(3.4) / ﬂ67($1,I2,$3)d$3 =0 and / (ms + i)ﬂ‘;* (z1,29,23)dzs =0 for a=1,2,

-5 -5

for almost any (z1,72) in w. Remark that the boundary condition (2.3) implies that &%~ and R?~ belong
to Hi (w).

3.2 Estimates in term of the elastic energy

Firstly, as a consequence of [19], by setting U~ = U~ ey + U~ ey we have

e

0xq N(L2(w))? oxy L2(w)

(3.5) H8U3 B 5—‘ 5— e
+ R oy + s @l 2y < €7
||H _||(L2(Q;))3 < C5|U6|57 Hvaé_H(m(Q;))g = C|U6|5~

It follows that

_ ule
SR e () + Ol | prr oy + U 1 () € C—~ 7

(3.6) c
||Ui‘|L2(Qg) < C‘u§|5» ||U3||L2(Q |U e

Secondly, using Lemma 3.1 of [18] and proceeding as Section 4 of [2] and since r = ke, we obtain the following

estimates:

ule

R5+
H Ox3 H (L2 (wx]—8,L[))? e’ H ors SH(L2(w><]76,L[))3
Hu H(L2(Q:6))3 < 05|U6|€7 ||Vﬂ5+||(m(9:6))9 < C‘u6|€-

< Clulle,
(3.7) [u’le

At last, the estimates of UT (21, 72,0) and of R%*(x1, x2,0) are given in Section 4.1 of [2] (using r = ke and
d/e bounded)

) )

Clule
U (o )|y < CLELE U (0| 2o < ,

s U (s 02wy < 75 37 (s -, 0)]| L2 w) v
' C‘u‘sg |U6‘£
ROF (0|2 < — , R, 0)||r2() < C .

[[Ra"( )I\L<>f5 5 [R5 (- 02wy < /s



From (3.7) and (3.8) we deduce that (if needed the reader is referred to [2])

ST | L2 o) —5,) %%, H@(;/{j:r L ox]b.00 < Cludle,
o+ 5
59) 1RSI L2 (wx)—s,Lp < % - (‘;7 Ha;i:z Llox]s.L0 < O%,
IR5 ™o -s.00 < C{%+§}| e H 8353 L2(wx]-5,L[) = C«|U€|5’
5 5 5
|25 H2x]—s,rp < %'\/Sg, H gx: ‘ L2 wx]6.LD) < %%

From the estimates (3.7), (3.9) and the decomposition (3.1), it follows that

C Clele
(3.10) [|u® ||(L2(Q+ E

Vo
3.3 Assumption on the forces

In view of the energy relation (2.6), estimates (3.6) and (3.10), we assume throughout the paper

f,:s = 62fi in Q:, for i = 1, 2,3,
z . _
(3.11) fg(.%‘):fa(l‘1,x2,§> n Qé’ for a = 1,2,

T3y . —
F2(x) = 6 f3 (1, 72, 73) in Qyf,
where f € (LQ(Q))3 is given. As a consequence, we obtain the following bound on the energy
(3.12) lulle < CV6,

where C' is a constant independent of € and §.

Remark 3.1. Actually and due to the analysis developped in Section 4.3 of [2] the order specified in (3.11)
3

)
for the applied forces permits to obtain estimate (3.12) as soon as —; remains bounded.
€

3.4 Estimates in the domain c=¢

In this subsection we show that in each small cylinder of C*° the displacement u° is asymptotically a

rigid displacement. Due to (3.7) we have

R — R (o, )l 22t sy < O
(3.13) ) (L2 (wx]=4,0[))* c

T —UPF(,.,0) = 23ROT(, ., 0) Aes|(r2(wx)—s0p) < C6*2.
Then let us define in each small cylinder D;qx] — 9, 0[ the rigid body displacement
R’ (21, 22, 73) = U T (pe, ge, 0) + R°F(pe, ge, 0) A ((x1 — ep)er + (w2 — eq)es + z3e3).
In view of the definitions (3.2) of 4’ and R°* and thanks to (3.13) we obtain

(3.14) U2 = R|[F2(ceys < OO, V(U2 = R)[[F12(ce5yy0 < CO.



From the estimates (3.7) of 7" we deduce that (using the fact that each cylinder of C5° has a height equal
to d)

[ 2 ey < Ce67, VT[22 ¢e.syyo < C6.

Then from (3.14) and the above estimates we obtain

(3.15) [1u® = RO[[F 125y < Ced?, IV (= R)[[F12(ce0yy0 < CO.
Indeed using the decomposition (3.3) and estimates (3.5) of @’ leads to

(3.16) U™ = RE 2 esyys < Ced? [[V(UZT = R[22 (eayyo < C6.

4. Rescaling of o; and unfolding operators in or and o

We denote by D the unit disk of R? and by Y the unit cell (] — 1/2,1/2[)2. We first recall the definition
of the unfolding operator 7°¢ given in Section 5 of [1] which is defined for any v € L?(QF) by, for almost
(331,332,333) (S Qt and (Xl,Xg) S D,

U(p€ + TEXla qe + TEXQa $3),
TE(U)(x17x27x3;X1aX2) = if (.1?1,1‘2,.’1)3) S i|5p - E7‘€p—’— E |: X i|5q - E7‘€q—’— % X}OaLL and (p7 q) € N87

2 2 2
0, if (z1,22,23) € (w\@:)x]0, L[.

The above definition of the operator 7°¢ is an adaptation to the specific geometry considered here of the
notion of unfolding operators introduced in [9] and [10] ( see also the definition of the operator 7. below).
We refer to Lemma 5.1 of [1] for the properties of this operator. Then, in order to take into account the

necessary rescaling of 05, we introduce the following operator II; defined for any function v € LQ(QE)
IIs(v)(z1, 22, X3) = v(z1,22,0X3) for (21,22, X3) € Q™ =wx] —1,0[.

Remark that II5(v) € L?(27). Indeed we have for any v € L?(25 ) and any w € L*(Qy)

(4.1) / I (v)s(w)da dredXs = %/ vwdzidredrs,
Q- Q;
olls(v) Ov B
(4.2) T I1; (3xa> , fora=1,2
Olls(v) ov
4. =05 — | .
= o~ (52)

At last since we will use a few oscillating test functions in Q7 in Section 6, we also introduce the usual
unfolding operator in homogenization theory (see [9] and [10]). The operator 7. is defined for any v € L?(27)
by, for almost (z1, 22, X3) € 27 and (X1, X3) €Y

U(p€+€X17qE+€X27X3)a
. € € € €

T-(v) (w1, T2, X3, X1, Xo) = ¢ if (21,22, X3) € }Ep — §7Ep+ 3 [ X }Eq — 575q + §[><] —1,0[ and (p,q) € N,
0 if (z1,22,X3) € (w\@:)x] —1,0[.
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Indeed 7:(v) belongs to L*(2~ x Y).

The main properties of 7. that we will use in this paper are recalled in Appendix A and Appendix B of
[2], and we refer to [9] and [10] for the proofs and various applications in homogenization.

Through application of the operators 7¢, 7. and Ils, the weak formulation (2.5) gives that for any
v € V5 such that v =0 in (w\ @e)x] — 4,0[ (after deviding (2.5) by ¢)

kQ
4 Qt+xD

+/Q y T. o Is(0?;) Tz o M5 (i (v))dardwad X3d X 1d X
- X

Tg(O';-sj)Ta(’yij (U))dﬁcldl‘gd.fnglng

(4.4)
:k26 Ta(f) . TE(U)d$1dl‘2d$3dX1dX2
QtxD

+/ H(;(fa)ng(’l)a)dl'ldiﬂngg +5 Hg(fg)Hg(’Ug)dl’ldCEQng.
Q- Q-

Actually (4.4) holds true for any v € V 5 such that v =0 in (w \ @¢) x] — ¢, 0[ because for such a v which is
zero on a neightborhood of the lateral surface I'y of the plate, the definition of 7. shows that

3
1
3/_ Z Ufj’yij(v) = /Q—xyTE OH(g(ofj)TEoH(;('yij(v))da:ldxngng1dX2.

s i,j=1

5. Weak convergences of the displacement field and of the
strain field in the rods

In this section, we introduce the weak limits of the terms of the displacement’s decomposition in the
rods. In particular we show that (upon the correct scaling) the limit torsion in the rods is independent of

xr3. At last, we prove that the limit strain in the rods is null.
5.1 Weak convergences of the displacement field in o

In view of estimates (3.9), (3.10) and (3.12), there exist subsequences (still indexed by d) such that

6T¢(ud) —uf  weakly in L*(Q* x D),
(5.1) SUT —~ Ut weakly in  L%(w; HY(0, L; R?)),
OROT ~RYE weakly in  L*(w; H'(0, L)).

According to (3.9) the functions U3, R{ and RJ do not depend on x3. Then by (3.7)

ou+

~RTANe3 =0
8$3 €3 )

which together with (3.8) leads to
(52) Z/{+ (1‘17 o, Ig) = IgRg_(CCl, 132) e — IgRT(Il, SCQ) e + L{;‘ (Il, Ig) €s3.
Moreover due to the estimate (3.7) on @+ and to (3.9) and (5.1) we have

(5.3) ut =ut.

9



o
As far as Rg+ is concerned, we first consider the case where — is bounded. In this case estimate (3.9)
€
shows that

ROt~ RY weakly in  L*(w; H'(0,L)).

) )
More precisely, if £ — 0 then RJ does not depend on x3 and belongs to L?(w). If — — ¢, ¢ € RY, we
3 €

will show in Section 6 that again the function R; is independent of 3.
1)
In the case where — — 400 we have from the same estimates
€

€

(5.4) 7

RIT ~ RS weakly in  L?(w; H'(0, L))

and from (3.8) we get R (.,.,0) = 0. We will show in Section 6 that the function R is equal to zero.

In order to analyse the asymptotic behavior of the strain tensor y(u°) in QF in the next subsection, we first

introduce the following quantities

RO =R —RIT(,.,0)
(5.5) , in Q.
U =U* —UH(,.,0) — 23 R°T(.,,.,0) Aes
Due to estimates (3.7) and (3.12) we obtain
/ V3 o't
R'o+ <c¥? H——R5+A H <OV,
(5.6) IR ermmoimey < O Dy 2o e = OV
' , i /
S+ 5+
Hua ||L2(w;H1(0,L)) = C?’ ||M3 ||L2(w;H1(O,L)) < CVo.

The constants do not depend on € and 4.
We prove the following lemma:

Lemma 5.1 : The following weak concergences hold true (up to subsequences still indexed by §):

%R;‘H - R;+ weakly in L*(w; H'(0, L)),
%uj;” ~ U weakly in  L*w; H'Y(0, L)),
1 /
%U?)‘H —Uy" weakly in L*(w; HY(0, L)),
1 3(/{16—&- 5+ . 2—‘1- Ely i L2(Q7F
(5.7) %( D5 Ro ) 1 weakly in Qh),
/6+ , N
% (62{—;1 + R15+) — Zf weakly in L*(QT),

1 .
WTf(a‘”) —~7at  weakly in  L*(QF; HY(D;R?)),
€
1. oudt . 2+ 3

%T ( e ) —0 weakly in L*(Q" x D;R?),
3

where U'+ € L2(w; HY(0, L; R3)), Z+ € L2(QF x D) and ut € L2(Q+; H(D; R3)).
Proof of lemma 5.1 : Convergences (5.7) mainly follow from the properties of the operator 7¢ together
with (5.6). O

10



Convergences (5.7) imply that

S+ ,
© (aul - Ré”) — 0 strongly in L*(2),

Vo Oz
/5+ ,

% (821; + Rf”) — 0 strongly in L*(Q"),
3

as d tends to 0, from which we deduce that

aur ot "
3@13 =R," 61’23 =-Rtin QF.

(5.8)

It follows that ¢,t € L? (w, H?(0, L)), for a = 1,2. Moreover due to the definition (5.5) of R'°* and ¢ *+
and to (5.8), we have

' / ot ot
+ o+ _ 1 _ 0y :
(5.9) R*,.,0=UT(,.,00=0 i 0 ae in w.

5.2 Weak convergences of the strain field in ot

)
Although we have assumed throughout the paper that - 0, we show now that the weak limit of the
3/2
strain in Q% is null as soon as the ratio —— tends to zero (see also remark 3.1). This is the reason why
3

all the estimates and convergences derived in this section involve the two parameters ¢ and §. In view of

the expression of the strain tensor v(u°) and of Lemma 5.1, we obtain the following weak convergences in
L?(QF x D):

1 € 5 N 1 8ﬂ3¢_ aﬂ;
N (s (%)) %(axg axa)’

1 1= ORst | 10uf
» o ~ {3t oL L
%TE(WQB(U(S)) - %{2\; + kX1% + %gi)i},
%75 (vs3(u’)) = %g — kX, a;zg — kxg%.
We denote by X1 the weak limit of the unfold stress \/LETE (0%)
(5.11) in(afj) — ¥ weakly in L*(Q* x D).

Vo

Proceeding exactly as in Section 6.1 of [1] and Section 8.1 of [2], we first derive u" and this gives

oyt X2 — X202, " 02Ut
=+ _ kX 3 k2 1 2 1 k2X X 2
" V{ Vo, * 2 2% TR A oxg |’
(5.12) '+ 27/ + 2 2 827/ +
ou o“U X5 — X7 0°U.
-+ _ _rx, s 12X X 1 22 1 2
E ”{ 2Py T 5 oiZ [



where v = m is the Poisson’s coefficient of the material. Similarly, the same computations as in
L

Section 6.1 of [1] leads to Z;,’\Of =0 and u3™ = 0. As a consequence (5.10), (5.11) and (5.12) we obtain

Zﬁ = 2;2 = ZB =0,

R R
Y= kX2 S = pk X2
(5.13) 137 T 28 = M
oy o, * O2U,*
Y =F 3 kX — kXo—2 | .
33 ( Oxs ! 8:6% 2 890%
3N+ 2
where E = % is the Young’s modulus of the elastic material.

In order to determine R; and U let us now introduce the test displacement that we use in (4.4). Let
v € C§°(w), (V1,V2) be in C°([0, L]) such that V;(0) = V»(0) = V;(0) = V5(0) = 0, V3, Az be in C*([0, L])
such that A3(0) = V3(0) = 0.

The test displacement is defined in QF by

T2 — &qQ

00 (21,22, 73) =V p(ep, eq) [ <§V1 (z3) — A3($3)> el

1 —Ep

1 — —
=+ <EV2(I3) + A3($3)> e + <V3 — 1 - EpVi(l’S) - 2 - ngé(IS)) e3‘|,

if (x1,22) € D5, w3 €]0, L[, for (p,q) € N, and v? = 0 in Q. Remark that the boundary conditions on
V1, V2, V3 and A3 at 3 = 0 imply that v e Ves.

Then in Qg‘ we have

Y11 (0?) = Y22(v°) = 112(¢°) = 0,

To —eql
/713(7}5):_\/590(5}775(]) 25 q§'A/3(m3)7

1 —epl

723(0") = Vi plep ) =—3

Aé(x3)7

1 — € To — €&
) = VB p(ep.za) (Vo) = =PV an) - 2V a)).

Since the function ¢ is smooth, the above expression of the strain of v? lead to the following strong

convergences in L2(Q+ x D):

1 1,
%75(%3(”5)) - *¢X2§A3(I3)7
1 = o 1 /

%T (y23(v°%)) — <PX1§A3($3)7

%76(723(06)) — ¢ [Vi(3) — X1VY (23) — Xa V5 (23)] .

Passing to the limit in the left hand side of (4.4) with the test displacement v°, using (5.11)-(5.13) and the

above convergences give the following quantity:

,/ @EingAgdl‘ld.ngJngdeXg+/ (pE;?)XlAgdl‘ldIgdl‘nglng
(5.14) QtxD QtxD

+/ 902;3 (Vé((Eg) - X1V{/($3) - XQVél(xg)) dxldxgdxnglng.
QtxD

12



To estimate the limit of the right hand side of (4.4), we remark that

1 1
19|20ty < CVB l9lle ) {IMilln0.0) + 2 Vel 10,0 + IVhllz20.0) + Msllz20.0) |-

Hence we obtain

§53/2
k%6 TE(f) - T¢(v°)dadrodrsd X 1d Xy < C—
QtxD €
53/2
from which we deduce that as soon as — — 0
€
(5.15) lim k2§ Te(f)T¢ (v°)dxdradrsd X dXs = 0.
=0 Q+xD

Using (5.14), (5.15) we obtain

OR
Q+xD T3
(5.16) U™ o2+ 02U, T
+E 5 S kX — kXo—— | V5 — X1V — XoVy] daydaadasd X d X, =0
Q+xD T3 oxs Ox3

for any ¢ € C§°(w), V3, Az € C°°([0, L]) such that V5(0) = A3(0) = 0, for (V1,Vs) € C°(]0, L]) such that
V1(0) = V2(0) = Vi(0) = V5(0) = 0. Since (5.16) can be localized with respect to the variable (x1,x3)
we obtain the standard torsion problem for R;‘, the standard bending problem for I/I(;['r and the standard
compression problem for L{;r with all applied forces equal to 0 (see e.g. [1]). Taking into account the
boundary conditions (5.9) (for 3 = 0), we deduce that R/3+ = UZH' = 0 a.e. in Q. Tt follows from the

’ 6
definition of R4" that the function Ry is actually independent of the variable 23 also when % —c(ceRy)

J
(see (5.4) and (5.5)). In the case where — — 400 the function Ry is equal to zero. As a conclusion of this
€
subsection, we obtain that
1

(5.17) 7575 (vij(u®)) =0 weakly in L*(QT x D).

6. Weak convergences of the displacement field and of the
strain field in the plate

In this section, we first identify the weak limit of the unfold strain in the plate in terms of two macroscopic
membrane-flexion displacements and of microscopic correctors. Then, the weak limit of the unfold stress
field is expressed as a plate stress tensor of a local Kirchhoff-Love displacement. In the whole paper, we use
the following notation for any vector field V' smooth enough with respect to the variables (X7, X3) (which

can depend on others variables)

10V, oV
Pas(V) = 5(3)([, N axa)'

6.1 Weak convergences of the displacement field in o-

We first prove Lemma 6.1 below.

13



Lemma 6.1: The following weak concergences hold true (up to subsequences still indexed by 0) :
5(ul) — u,, weakly in H(Q7),
OT5(ul) — ug strongly in H'(Q7),
U=~ —~u; weakly in Hi(w),

TE(U;;_) — Uy strongly in L*(wxY),

72(8(12‘) Oy N o,
8335 8X5

oUs™ — Usg strongly in Hy (w),
SRS =R, weakly in Hj (w),

weakly in L*(wxY),

8.%‘5

(6.1)
07, (Ug_) — U3 strongly in L*(wxY),
07 (T\’,‘{*) —R; = %Zz strongly in L*(wxY),
07, (Rg_> — R,y = —66%31 strongly in L*(w xY),
RS~ U 03 _ )
5'];( Dz, ) " 9r.0s,  OX.0X weakly in L*(w xY),
RS~ Uy 9%
67 2 )~ 3 kly i L? Y
( 024 ) Drira | OX10X, Y™ (wx¥),
and
7}(8;[;’1 + Rg_) —~Zr weakly in ~ L*(wxY),
§5—
,1::(8[/{3 - R?) — Z5 weakly in L*(w xY),
(6.2) 131?2
STEOH(;(E‘S_) —u- weakly in L*(wxY; H' (~1,0;R?)),
o’
7.0 H(;( 5 ) -0 weakly in L*(Q~ xY;R3),
T

where Uy € HE(w), u € H}(w), U, € LQ(w;ngr(Y)), us € LQ(w;ngr(Y)), u- € L2(wxY; HY(—1,0;R3)),
Zy e L2(wxY).
Proof of lemma 6.1 : Estimates (6.1) mainly follow from the properties of the operator 7; together with
(3.6) and (3.12). Notice that the strong convergence of 643~ is a direct consequence of estimate (3.5) and
of the strong convergence of dR%™ in L?(w). As a consequence of (3.3) and (3.5), we deduce that dTIs(u3)
strongly converges in H'(27). We now detail the two last estimates of (6.1).

Due to (3.6) and (3.12) the functions 6R%~, a € {1,2}, are bounded in H}(w). Then there exist two

o )

functions T1, Ta € L?(w; HY,, (Y)) (see [10-11]) such that

per
SRS —~ R, weakly in Hy (w),

6.3
(6.3) ST(VRY ) = VR, + Vxfa  weaklyin  (L*(wxY))?,

where Vx is the gradient with respect to the variables X; and X5. Let then U° € H}(w) be the solution of
the problem

0P 0P
UV — 5- 00 5 0P
(6.4) /wv v /w {RQ Oz R 8x2}
Vo € Hj(w).

14



Since U? belongs to H2 (w) and due to (3.6) and (3.12) it satisfies the following estimates:

C 9’u° C
| SIPL A X
(6.5) 1Tl < 5 P Orads I L2()~
where p is defined by
p(x) = dist(z, dw) T Ew.
Let us define the two functions
ou? oyl
Z% = Ry~ 78 = — —R°".
U= B TRy 2= o 1
It follows from (3.5), (3.12), (6.4) and (6.5) that
_ C
0ty <O 12l SC V28l < =

Then since 6/ — 0, we have (see [2], [10], [12])

6U°S ~ Uy weakly in  Hg(w),

)
~Z% — 0 strongly in L*(w),
€

J
—T.(Z%) — 0 strongly in L*(w x Y),
€

STA(VZS) =0 weakly in L2 (w; L*(Y,R?)).

There exists U3 € L, (w; HZ.,.(Y)) such that (see [11])

7;( 92U’ )A Uy 5%us

kly in L2 .(w; L3(Y)).
Dradzs | OXa0X, ooy joc(w; L*(Y))

0zq0x3

Using (6.3) and the definition of the Z2 we deduce that

9?Us RS 9z Uy T ORy Oy o )

0= 576(33:16xa 0zo 8xa) Gmdr. T aX0X, T om. T ox, “eaklvin Lin(w L7(Y)),
?Us RS 943 Uy 0% OR,  omy o )

0= 575(3%8952 T Tor. @) Gradmy | OX.0Xs  Oza  0X, ek in Lin(wi LH(Y)).

As a consequence, we have

(6.6) 0% oy 0%, _ory

' 0X,10X,  0X,’ 0X,0Xy 00X,
and then the function tiz belongs to L?(w; ngT(Y)) and the two last concergences of (6.1) hold true. Esti-
mates (6.2) are direct consequences of (3.5) and (3.12). O

Using (3.3) and Lemma 6.1, we deduce that the limit displacement u~ is a Kirchhoff-Love displacement:

- _ - _ 1\ oy
(6.7) uz =Uy, u, =U, — (Xg + 5) &Ui'

15



6.2 Weak convergences of the strain field in the plate

First in view of estimate (3.12) and of (4.1), it follows that:

65 {T oMs(vi(u’)) = X;;  weaklyin  L*Q xY),
6.8

T.olls(o);) = £;;  weaklyin  L*(Q xY),

ij g

where X € L*(Q~ x Y) and %; € L*(Q™ x Y).
Then due to the expression of the strain v(u®), to (3.3) and to Lemma 6.1, we obtain the following

relations:

o = Yo U) + T () — (Xs 4 5){

Uy Py }

(6.9) Oz 0z  0X,0Xg

(. ou Y~
Xaz = §{Za + axg}’ X33 = 5x,7

where the fields ¢, and U,, are defined by
U,; = Ul_el -|-u2_62, ﬁm, = ﬁ1e1 + ﬁgeg.

6.3 Determination of z— and z;

Let us consider the test displacement

8(p) = 1 T2\ g (L3 -
Vs(‘r) - (5(]5(1‘1,1‘2)@( e & )6( 5 ) mn 95’57
with ¢ € C°(w), ® € H).,(Y), © € C®([-1,400[; R?) and O(x3) = 0if 23 > 0. Notice that the displacement
v? is zero in QF and that II5(v?) — 0 in (L*(Q7))%.

Since §/e tends to 0, we have the following strong convergences in L?(Q2~ x Y):

7. oI5 (yap(v2)) — 0,

1, _dO
S a
(6.10) 7. 0H6(7a3(va)) - §¢ (I)dT’

3
(S
7. o 15 (y33(v2)) — qﬁ@d—Xg'

Using the above displacement v? in the formulation (4.4) with ©3 = 0 and passing to the limit as ¢ tends to

zero lead to also using (6.10)

0? N
W(ﬂ; +Z,)=0 in O xV,
3
o | 5
—(u, + Z, )|X3:71

59X, =0 in w XY,

while by (3.4) and (6.2) we have

0 0 1
/ u;dxgz/ (X3+§>E;dX3:O for a=1,2.
-1

-1
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We easily deduce from the above relations that the functions u_ and ZA(; are equal to zero (for a = 1,2) and
then X_5; = 0.
Now choosing the displacement v‘g in the formulation (4.4) with ©, = 0 and passing to the limit as § tends

to zero lead to also using (6.10)

oo M (oa) + Lann) — (Xa + 1){6?;?/8’% ; 8;;22; D+ 03] =0 oo xy,
(A (FoalU) + Taa@in) — (X5 + 1){5%% v 6)??5;(&}) SO+ 2@2}1 =0 XY
This gives
(54 0

Since by (3.4) and (6.2) we have

0
/ 5 dXs = 0,
—1

the above relation permits to derive the function @3 in terms of the fields U, U, U,, and U3. Inserting

the obtained expression into (6.9) and using (2.1) lead to

i = s [s) + D) — (Yo + 3) {5+ T3]

et i - (504 1) (2 2
2 25

(6.11) 22—2:1_—%[%2(1/{7;”52(%) (X?’Jr ){aagj +?9_)1(1§3H
+%{7M(Z/{;)+Fn(ﬁm) (XS ){8(;2;1 +ZQ—;§H,

o
= Ty [ralh) + Tralin) = (X4 ) {5 + 5252 )

%5 =0.

We now first introduce the 2d local displacement field U,,, which belongs to L2(w; H!(Y;R2)) through the

formula:
U, = [Xivii(Uy,) + Xomio(Usy) + 1] er + [Ximiz(Uy) + Xoyoo(Uy,) + 2] es

Then we consider the local Kirchhoff-Love displacement field defined by

Uy = (X?, ) ox, ¢ (Xg ) X, 2 + Uses,
where

_ 02U oU; LU

Us [Xl 5 XXy X3 >] + .

Remark that Us € L2(w; H2(Y)) (see Lemma 6.1). Hence (6.11) leads to

. E - .
S = 7z M1 (Unm + Up) + T2 (Un + Uy)],
. E - .
(612) 222 = 1_.2 [FQQ(Um+Uf)+VF11(Um+Uf)],
Y, = 1—|—I/F12(Um +Uf) 25 =0,

17



and with (6.9)

Xos :Faﬁ(ﬁm+ﬁf),
A _ _ _ _
6.13 Xow=———I'11(U,, + U I'9(U,, + Uy)|,
(6.13) 33 )\+2M[ 11( +Uy) + oo + f)]

X, =0.

7. Kinematic conditions

In this section, we first prove that under the rods, the displacement of the plate is asymptotically a rigid
body displacement. Then we deduce the limit kinematic junction condition betweeen the plate and the rods

from which follows the expression of the limit displacement in the rods.

Using the definition of 7¢, we have from (3.16)

_ 1 _
72 o HS(US - R5)||%L2(Q*><Dk))3 = gHUe(S - Ré”%L?(Csﬁ))3 < Ced

1
(where Dy = kD) and gTE oIIs (U2~ — R’) is bounded in (L(Q~; H'(Y)))%. It follows that

1
—’TE oIl (Uf_ - R‘;) —0 strongly in (L2(Q~ x Dy))3,
1 6‘

——T. oIl (U™ —R°) =0  weaklyin  (L*(Q x Dy))>.
e Xq

Due to estimate (3.8) of R3"(.,.,0) we have

RET(,.,0) =~ RS weakly in  L*(w).

1) 1)
Notice that if £ is bounded we have R = 723 and if £ — 400 the function R3 is asymptotically the

€
angle of rotation of the small cylinders included in the plate and below the rods.

In view of the definitions (3.3) of U2~ and of the rigid displacement R? (see Section 3.4) and (5.1), we

deduce that
8],{07 6ﬁa 621/{3 82ﬁ3 .
o - ()T a0 m oexn

8]/{7 8u1 1 821/{3 82ﬁ3 o C .
3:1:2 + 6X2 B (X3 + ){61‘16132 + 8X18X2} o 7R3 mowx Dk’

oy Oty Uy T o .
81'1 * 8X1 ( 3t ){a$18$2 + aXlan} R3 oW k

Since all the fields &/~ and u are independent of X3, the above relations lead to

i, = — o, X, — {(%{1 +RSC}X2+(11 in wXx Dy,
61’1 6172
ou, ou,
1 4, = 2 pC -2 i
(7.1) Us {axl RS }Xl O X5+ as in w x Dy,
02U 02Uy U
G = — x24+22% x x,+ 3X}+a+cX+cX in wx Dy,
3 {821 Bmrdmy 12T o A2 3+ aXi + X k

where, a priori, the functions a1, as, as, ¢; and ¢y belong to L?(w). Actually since the field 1 is defined up

to a field depending only on (z1,z3), we can choose a1 = a2 = a3 = 0.

18



Proposition 7.1: We have

ous ou;y
7.2 Rt = 23 R+ = I
( ) 1 (‘3332 ’ 2 axl
Proof of proposition 7.1: We consider the two first components of the displacement Ug - — R and due

to (3.16) we obtain the estimate
_ €
IR =R (5 0)lf(e,) < C5

where C. = U D;q. Then we have
(p,q) EN:

_ g
ITo(RS7) = R (4 0)l[ 22 wxpy < cs

and we use the convergences (5.1) and (6.1) to deduce that §R2*(.,0) converges strongly in L?(w) to R

and then R, = R}(.,0) in L?(w). |
8R§+
Remark 7.2 The strong convergence of §R%*(.,0) and the estimate on 8gca in (3.9) show that the
3
convergence of dR%F is actually strong in L?(w; H(0, L)). O

Let us end this section with the continuity relation between the traction Z/{gr in the rods and the bending U3

of the plate on w. Indeed from (3.16) we have
107 3 ™) — U™ (., 0)l[Z2(wxp,) < Ced®

which implies together with estimates (3.9) that U2t (.,0) strongly converges to Us in L*(w x D) and
moreover that

(7.3) Uy =U;y in w.
As a consequence of (5.2), (7.2) and (7.3), we get

oUus Uy _
(74) u+(l’1,Z2,l‘3) = 7173—3(1717562) e — $3—3(I1,l‘2)62 +Z/l3 (561,132)83.

oy Oz

auéJr
Remark 7.3 The strong convergences of 63" (.,0), the fact that 6U2*(.,0) — 0 and the estimate on

8%3
in (3.9) show that the convergence of 6U°* is actually strong in (L?(w; H'(0,L)))3. Let us emphazise that

the strong convergences of 64°+ and of §R?* together with estimate (3.9) imply that (see also (5.3))

6T (ud) — uf =U" strongly in  L*(w; H*(Dx]0, L[)).

(3 (3

O

8. The limit membrane problem for the plate and the torsion
in the rods

This section is devoted to express the membrane corrector U, in terms of four basic membrane correctors.

Using the properties of these basic correctors, we deduce the membrane elastic problem in the plate and we
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obtain the torsion in each rod as the curl of the macroscopic membrane displacement at the corresponding
point of the plate.

Throughout the paper , ve denote by R,[X:, X5| the space of polynoms of the two variables (X1, X»)
with degree less or equal to the integer ¢ (¢ > 0) and we set for p=1,2 and ¢ = 1,2

V2, oY) = {@ € Hi (V) | @ =0 on Dy}

V2 peaY) = {<I> € HP, (V) | @ € Ry[Xy, X5] on Dy, and &(0,0) = o}

Recall that due to (7.1) we have U, € V} (Y) and U3 € V2

per Dyl erDy 2(Y) for almost any (z1,22) € w.

8.1 Determination of the membrane corrector 1,

In this step we derive the expression of the fields U, in terms of U, and of four correctors.
In what follow, we denote by x a function of C5°(Y") such that x = 1 on Dy.
Let ¢ € C§°(w) and define the function . by

(1 - x(%, %))1#(1317362) + X(%7 %)w(ps,qa),
Ye(x1,22) = if (z1,22) € }Ep— g,ep—&— %{ X }Eq— g,eq-&- %[, and (p,q) € N,

0, if (z1,22) Ew )\ @e.

We consider a test displacement of the following type:
T x T T .
Vg(‘r) = 51/%(131,%2){@1 (?1, f)el + Oy (?1, f)eg} n 9575

where &, € V1, 5, o(Y) and we set ®,,, = ®1e; + Prez. Remark that v;;(v2) = 0 in QF and y;3(v2) = 0 in

Q¢ 5. We have the following strong convergence:

T* (Vé) —0 in (L*(QT x D))3.

g
Since ¢ is smooth and 1 — 1. tends to 0 in L*>(w), we easily deduce that
I1s (Vg) —0 strongly in  (L*(Q~ x Y))?,
T, o1l;s (7a5(vg)) — YT03(Prm) strongly in  L*(Q~ x Y).

We use the above displacement v in the formulation (4.4). Since the right hand side of the obtained equation

tends to zero we obtain

E

2
1-v Q- xY

(0 [(1 - V)Faﬁ(ﬁm + ﬁf)raﬁ(q)m) + vlaa (ﬁm + ﬁf)FBB(q)m)] =0,
which implies that, using also the periodicity of ®,,
(8.1) / {(1 — V)03 )Tag(®m) + vLaa(Wn)Tes(Pm)| =0 a.e. in 07,

Y

1
for any ®,, € [VpeT,Dlmo

(Y)]?. Taking into account (7.1), the problem (8.1) is a 2d elasticity problem in
Y \ Dy with prescribed displacement given by (7.1) on dDj. In order to obtain the expression of U,,, let us

now introduce the four correctors Ggﬁ), 1 € {1,2,3,4} solutions of the following problems:

{’\Srzz) € [Vzl)er,DkJ(Y)F
(82) [ [0 = IPas G0 (®n) + 1 Taa (D@ =0,
Y
Vq)m € [Vzl)er,Dk,O(Y)]27
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with the boundary conditions on 9Dy
(83) {,\57’17.) = X1e17 {’\g) = X2e1, {7\7(3) = Xleg, 07(1%) = Xgeg.

Hence using (7.1) we obtain

~ o~ ouy ~ Uy . N
(84) Uy = _711(um)vgrlz) (a 12 +RC) 2) _ (81‘21 Rc) (3) —722(2/{ ) 7(::)

8.2 Properties of the basic membrane correctors v}

Let us first deduce the equations (for i = 1,...4) that follows from the weak formulation (8.2)

62‘77(7?,1 82 m Y 14w 8207(71) .
0X2 2 9X2 2 8X10Xs ,
(8.5) ) ) 2i(i) 2 in Y\ Dy
aV'm,2 a m2 1+v 8V'm,l -0
0X? 2 0X3 2 0X10Xy

The symmetric characters of the unit cell Y and Dy together with the structure of equations (8.5) and
the boundary conditions (8.3) permit to obtain

56 {Aﬁf)l(Xl,Xz)zvﬁ?g(Xg,Xl) - {A<3) L(X, Xp) = 92, (X0, X))

Vi (X1, Xs) = v7(q}b,)1()(2,)(1) VO (X1, Xo) = g?l(XQ,Xﬂ

m,2
and the following properties of symmetry

9(1)1 is odd with respect to X7 and even w.r.t. Xo,

()
()

S(2)
vm,2

is even w.r.t. X7 and odd w.r.t. Xo,
m.a 1s even wr.t. Xy and odd w.r.t. Xo,

is odd w.r.t. X; and even w.r.t. Xs.

Let us introduce the following notation
<UD >, = / [(1 — ) Tas (W) T0p(®,) + yrw(\p)rw(@)} Y(,®) € [HY(Y)]? x [HY(Y)].
Y

Indeed < -,- >, is a scalar product in [V}I,er_’ Dk,1(Y)]2~ The above properties of symmetry of the correctors

imply that
57) <O I > =< W W 5
. < 653)767(3) >m=< {’\7(73))7652) >m

Through integration by parts we have

m,1

< G%),Vg) >m:/aD [Fu(v(z))nlvgn)l +(1— V)Mo (z))nzv(J) + Dy (V( ))nlv(ﬁ) }
k

+/3D |:F22( 7’21))”2"571)2 + (1 — V)Fm(v(z))nlv( 7) + VFM( ni))n2{’\£i?2:|
k
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_ X1e1 + Xgeg

VXE+ X3

where n = nieq + ngeg = . We deduce that

(8.8) <vD 3@ 5~ F6) 5 W GO 5 — W ) 5 — 0.
Let us now define the 4 x 4 real matrix A,, by (A,,)i; =< V%),\Am(ﬂ) >, fori,j=1...,4. As a consequence

of equalities (8.7) and (8.8) we obtain the following structure for the matrix A,,:

a 0 0 b R
(8 9) A, = 0 ¢ d 0 where @ =< V(l) V(l) > b=< V%)vv%) >ms
. m = 2 g (c) 0 c=<vP 3@ 5 = d=<v® 3B >
a

Indeed the very definition of A, shows that this matrix is positively defined.
8.3 The membrane-torsion problem.

Let ¢y, = ¢1e1 + ¢aes € [C5°(w)]? and © € C5°(w). We introduce below the test-displacement which allows,
after passing to the limit in (4.4), to obtain the limit problem which couples the membrane displacement

U, of the plate and the torsion angle RS in the cylinders. We set

(1 - x(ﬂ, ﬂ))cbm(xl,xz) + x(xl @) [fbm(ps, qe) — (w2 — q)O(pe, ge)ey

e’ e e
+ (z1 — pe)O(pe, qE)ez}

3 3 3 3
_7€p+§|:xi|€q__7€q—i_§|:7 and(paq)ENE7

if (z1,29) € }5p— ) )

0, if (x1,22) Ew\ We.

This displacement belongs to V. s and satisfies w® = 0 in (w\@.)x]—6,0[. Moreover w? is a rigid displacement

in 9:5. Since ¢,, and © are smooth we have

0T* Wg —0 strongly in  [L?(Q x D)3,
(8.10) { (we) [L( )]

I5(W2) — épm strongly in  [L?(Q7)).

Passing to the limit in the right hand side of (4.4) with the help of (8.10) gives the following term

0
(811) /Fagﬁa, Wlth Fa(zl,l’g):/ fa(l’l,xg,Xg)ng.
w —1

As far as the strain of the field w? is concerned, the strong convergences hold true in L2(Q2~ x Y)

Tz o s (1 (w2)) = (1= x)711(dm) — j—;((l [Xl% +X2{% + @}}7
Tz o 5 (722(w2)) — (1= x)22(dm) — ;—;2 [Xl{% - } +X2%}’
(8.12) T o s (m2(w2)) — (1= x)m2(dm) — %aa—;é [Xl% + X2{% + 9}]
“3ax, o o)+ gl
7. oI5 (vis(w?)) = 0.
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Passing to the limit in (4.4) with the test-displacement w?, using (6.11), (6.12) and the strong convergences
(8.12) leads to

E

1 2 [(1 - V)Faﬁ(ﬁm + ﬁf)raﬁ((f’m) + Vraa(ﬁm + 6)‘)Fﬁﬁ($m)} = / Fota,
-V Q= xY w

where

®,, = ({Xﬂn(éf’m) + Xz{% + @H —x(X) [Xl’yu(@bm) + Xz{% + @}Del

0z
+ (|:X2'}/22(¢m) —I—Xl{% - }} - X(X) {XQ'YQQ(QSm) +X1{§;§? - H)eQ'

Using the expressions of U ¢ and 57,“ we obtain

(8.13) 1_EV2/ < Uy, O >m=/Fa¢a7
where o 91 96,
¢, = ([Xﬂu(@n) + X2{8—1'2 + @H —x(X) [X1711(¢m) + X2{5—$2 + @}Del
+ ([X2722(¢m) +X1{% - @H - x(X) [Xﬂzz(éf’m) + Xl{% - @}DeQ'
We have

< U @i >m=< T, B > +(1 = 2)705 Us )V05(Sm) + V700 Us ) 185 (6m).
Due to the periodicity of U,,, the fact that x =1 on Dy and (8.1), we obtain

o~

< ﬁma q)m >m=< ﬁmv (I)m >m

where

= ~ 01 ~ 092 ~ ~
- _ 1) _ (XL (2 _ (X2 _ (3) _ (4)
(I)m 711(¢m)vm (3582 + 9) Vi (6171 ®> Vi V22 (¢m)vm .

Taking into account the definition of the matrix A,, we finally obtain

o (U) Y11(Pm)
S~ o+ RS 2110
< U, @ >m= A 3123 RC : % 0 + (1 = )Y U )Vap(dm) + VYaa (Un ) 188 (Dm)-
6:61 - 3 8x1
Va2 (Uy,) 122(0m)

In view of (8.13) and using standard density results, the above equality shows that U, and RS are solutions
of the problem

Uy € HYw ), R € %)
At N ()
i) oo [ [ | | BT | s @ s(6) 4 vreatins(o)]
et )\l
:/Fa(;sa, Vo e Hi(w;R?), VO e L%(w).
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In order to derive RY in terms of U,

., we first choose ¢ = 0 in (8.14) and we obtain due to the expression
(8.9) of A,,

o, Uy c) _
(Cid)(a.’EQ B 8561 +2R3> 707

which gives since ¢ # d

(8.15) RS = 2 (au; 8“‘;).

2\ 9z  Oxy

Through elimination of the function RS and choosing © = 0 in (8.14) permit to obtain the following

Theorem.

Theorem 8.1: The membrane displacement U,, is the solution of the problem

U, € Hy(w;R?),
B (U;,) 711(9)
(8.16) T2 |:v4m Yi2(Up) | - | Mm2(0) | + (1 = 1)VapUnn)Vap (@) + vVaaUp)vs8(0)
w Yoo (Uy,) Yo2(9)
- [ Faa. Vo € Hy(wsR2),
where
a 0 b
An=10 2(c+d) 0
b 0 a

where the real numbers a,b and 2(c + d) are given by

a=<v) V0V >, b=<IW. I >, 2ct+d) =<3P+3P D+ >, .

O
Remark 8.2 Indeed the properties of the matrix A,, show that (8.16) admits a unique solution. |
In the standard membrane elastic problem, the usual matrix A4,, is equal to zero in (8.16) so that the mem-
1 0 v 5
brane elastic matrix is given by [ 0 2(1 —v) 0 |. Let us emphazise that, in the present case where — — 0,
v 0 1 ¢
1+a 0 v+b
the membrane elastic matrix in (8.16) is equal to 0 21-v+4+c+d) 0 which corresponds to
v+b 0 14a

an anisotropic elastic material. This shows that the rods induce microscopic effects on the elastic matrix
of the membrane problem. Actually, since the material is homogeneous, they are due to geometrical effects

which take into account the fact that the rods force the small cylinders C*% (in the plate below the rods)

become asymptotically rigid bodies. These microscopic effects do not occur in the case where — — 400 (see
€

[1] and [2]).

9. The limit bending for the plate

This section is organized as the previous one. We first express the bending corrector U3 in terms of

three basic bending correctors and then we deduce the bending macroscopic problem for the plate.
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9.1 Determination of the bending corrector s,

In this step we derive the expression of the function U3 in terms of ¢; and of three basic correctors.

We consider a test displacement of the following type:

§ 8V§,3 an,B )
Vi(z) = —(z3+9/2) o2 e1 — (x3+4/2) 02s e + V¢ ses,
2
s _& T T2
V573(l‘) - 6 ¢a($17$2)¢< c ) c )7

where the function 1. is defined in Subsection 8.1 and ® € Vﬁer’ p,.1(Y). We first have

13
NART e

and then
6T5(VS) -0  strongly in [L*(QF x D)J3.

Secondly one has

2
€
IV23ll2) < ¢, ITs(V2 )2y < Ce
and then
0.1) SI5(VE ) — 0 strongly in  L?(Q27),
9.1 '
ng(Vg,a) —0 strongly in ~ L*(Q7).

Due to the definition of . and to the properties of ®, the strain tensor of the above test displacement

is zero in the rods QF. As far as this strain tensor in Q2 is concerned, we have

0?P

9X.0%, strongly in  L*(Q~ x Y),

7. o 15 (Yap(V2)) — _<X3 + %)w

T. o 5 (7i3(V?2)) = 0.

(9.2)

Let us introduce the local Kirchhoff-Love displacement ® ¢

1\ 99 1\ 0®
o :—(X —)— —(X —)— o
f 3t 35 aXlel 3t 3 8X2€2+ es

so that the limit in (9.2) is nothing else that the strain tensor I'o3(¢¥®¢). Using this notation, passing to the
limit in (4.4) according to (6.12), (9.1) and (9.2) leads to

E

2
1-v2 Jo-xv

Y [(1 ~ )lap(Un + Up)Tap(®f) + 100 (U + Up)Ts(2) | =0,

which implies that, using also the periodicity of ®;

0%u; 0?® . o
(9.3) /Y {(1 —v) IX.0X, 0X.0X; +rvAxusAx®| =0 a.e. in Q7.

Let us now introduce the local correctors in order to explicit the expression of Us in terms of Us .
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The space V2, b, 5(Y) is endowed with the scalar product

0?0 9*v
<o, v > = /Y {(1 _V)aXaan 8Xa8Xg +VAX(I)AX\I’].

Recalling that x is a function of C§°(Y) such that x = 1 on Dy, the three functions 1/2x(X)X?, x(X)X; X
and 1/2x(X)X3 indeed belong to Vper pr2(Y). Let us denote respectively by V), V@ and V® the
orthogonal projections of 1/2x(X)X?, 1/2x(X)X3 and x(X)X; X on the subspace (Vger’Dk’l(Y)) with
respect to the scalar product < .,. >y. Remark that the correctors VO, V@ and V® do not depend on

the function x since x = 1 in Dy. Now in view of (9.3), of the quadratic part of U3 given by (7.1) and the
definitions of the correctors we deduce the following decomposition
821/{_ 8 Us 7 _ O*Uy

4 Gz = 3)
(9 ) us a.Tl V 8I161‘2 81‘% v

9.2 Properties of the basic bending correctors v®

Using the explicit expression of the scalar product < .,. >y, the geometrical symmetry of the cell Y
and of Dy, and the symmetric properties of the three functions 1/2X%, X; X, and 1/2X3, we have that

V(X Xo) =V)(Xy, X))  and V(X Xy) = VO (X, Xy)
VW is even w.r.t. X7 and even w.r.t. Xo

(9.5) N
V@ is odd w.r.t. X1 and odd w.r.t. Xo

V® is even w.r.t. X7 and even w.r.t. Xs.

From the above properties of ‘7(1), V® and ‘7(3), it follows that
(9.6) <VO VR 5=0 and < VO VA > =0

Let us now define the 3 x 3 real matrix Ay by (Ays)i; =< V(i),‘/}(j) >. Indeed, Ay is a positively defined
matrix. Moreover, as a consequence of the properties (9.5) and (9.6), we obtain the following structure of

the matrix Ay:

a 0 Vv
A= {0 ¢ 0] whee W =< PO PO, W PO P05, e PO PO
¥ 0 d

9.3 The bending problem.

Let ¢ be arbitrary in C§°(w) and define the function ¢. on wx| — 4§, L[ by

¢(pe, qe) + (w1 — pe)g—i(paqa) + (w2 — ¢e) (;% (pe, qe)

Pe(z) = if ze sp—g,ep—l—%{x]aq—g,aq—i—% x]—4,L[, and (p,q) € N,
0 if x € (w\@e)x]— 6, LI

We choose the following test displacement of V; 5

ow? . 1 T T 1 /a1
s o 3 s _ 1o 1 X2 1 1 X2
wsya(:c) = —(x3+0/2) oz, where we 3(z) 3 (1 X(_E o >>¢+ 6X(_5 o )d)s(x).



Let us notice that the displacement wg is a rigid displacement in each rod of QF while it is a Kirchhoff-Love
- (bs

displacement in Qj . Since ¢ is smooth and
€

tends to 0 in L*°(w), we have the following convergences:

6T€(W‘;a) — —xgaaT(b strongly in  L*(QT x D),

5TE(W‘;3) — ¢ strongly in  L*(QT x D),

(9.7) 96 ,
Il5(w? ) (X3 + 2) oz strongly in  L*(Q7),
STs(wl 5) — strongly in  L?(Q7).

€,

Now we derive the limit of the unfold strain 7;;(w?). We only detail the computations for y;1(w?). We have

(22 - g (2 )
7. o Il (711(Wg)) = —(X3 + %) [( )T (g%;)) (81‘1) : (8301) 88))((1 B /Ts(d)) EQTE(%) 5)2(12}

We use the following results which can be found in Lemma A1l in Appendix A of [2] and which allow to pass
to the limit in 72 o I (y11(w?))

9¢ Ope
8131 81’1 0 ¢ 0 (b : oo
8 Xl_a + X 0207, strongly in L*®(wxY),
T.(¢) — T-(¢2) 2070 9% 2 0% . .
—— [Xl 92 +2X1X> 07,005 + X5 8—35%} strongly in L®(w xY).

Proceeding similarly for the other components of the strain tensor, we finally obtain:

o M(raa(wt) — (X + 3) (00 58 ~ 255 Mg + g
1% [X132f+axlxgafg2+xg%),
. T o s (maz(w2)) — _(X3 + %) ((1 )361(;;2 - ai?l [Xl a:izgm + XQ%}
38)?2 X gif X2 agigng - %a 82§X2 xi gif T2XXs a:?fgxg + XS%D’
7. o 5 (vis(w?)) = 0.

Let us introduce the local Kirchhoff-Love displacement ® ¢ (i.e. with respect to the local variables (X1, X2, X3))

P (X3+1)ai)3e1— (%3 + 5 )8<I)3eg+<1>de3

6X1 8X2
~ X?0%¢ 0% X3 0% % 0%¢ 0% 0%¢
h Py =L~ 4+ X1 X =2 —21x? 2X, X X2= 2|,
where 3 [ 2 89@% T4 283618902 Tt 2 03:2} [ 18 z T2 239618902 231’%

Passing to the limit in (4.4) with the test-displacement w?, using (6.11), (6.12), (9.7) and the strong con-

vergences (9.8) leads to the following problem:

E o o 9
el (1= )Tas(T + Up)ag(Bg) + 1 aa(O + T Tap(85)] :/wpw_/wc;a%
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where

0 L
F3 :/ fg(.,.,Xg)dX3+kJ2/ fg(.,.,l‘g)dxg,
—1 0

0 1 L
Go = / (X3 + §)fa(7 . X3)dXs + k‘2/ 23 fal.s . x3)des.
1 0

Then using the fact that I~Jm does not depend of X3, the above equation gives

(9.10) 12(1EV )/W<Uf,(1)f >p= /F3¢ /

Now we set

uy = —(X3 + %)g—;ﬁm - (X3 + - )ngez + Uzes

so that
Uy 9%
02,028 02,013

< U, &5 >p=<1s,P; >; +(1 - v) + VAU Ag.
Due to the periodicity of Uy, the fact that x =1 on Dy, and (9.3) we obtain

<Up, By >p=< iy, &f >,

where

~ 0D 0D
Py =— (X:H- )—391 (X3+ ) —Sey + Byey,

8X1 an
2 0? Pos Po 0? Pos
Po = _o_Z ¥ @) _
3 8501 (9$18$2V 8:02

Taking into account the definition of the matrix Ay we finally obtain

82 ,92¢

87‘ o} 27— 2
<Up®s>=Ar | g | | oogm | 7OV aumar, uane, T /AU A9

U ¢

O3 Oz

In view of (9.10) and using standard density arguments, the above equality shows that U5 is the unique
solution of the problem detailed in the following theorem.

Theorem 9.1: The bending Us s the unique solution of the problem

Uy € H(w)
Tty 9%
i, o Puy 0%
1—v)o—— AU A
(9-11) 1_”2/w 85215,’%2 O 0 V) g 90 Do, T VA Y
| &TZ 8_;83
/ 36 — / Go .
¥ € HE(w)
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a 0 b
Ar=10 ¢ 0 with o =<VO VO >y =< VO YO 50/ VO YO 5
¥ 0 d
O
Remark 9.2 Indeed the properties of the matrix Ay show that (9.11) admits a unique solution. |

Let us notice that, as for the membrane problem (8.16), there are microscopic effects of the rods on the

bending elastic matrix in the problem (9.11) since the usual bending matrix for a homogeneous material is

1 0 v 1+d 0 v+
simply | 0 2(1—wv) 0 | while here it is equal to 0 21-v)+<d 0
v 0 1 v+ 0 1+a

10. Convergence of the energies

1
In this section we prove that the rescaled elastic energy 55 (u‘s) converges to the total energy of the
limit problems (8.16) and (9.11) as & tends to zero. We take u® as a test displacement in (2.5) and we use

the inequality

2
k— / TE(0'5 )TE('yij(u‘s))dxldxgdxnglng
QtxD

5 i
(10.1) )
+/ ’TE o H(;((T?j)’];— o ]._.[5(’Yij(u5))d$1dl’2dX3dX1dX2 < gg(u(s)
Q- xY
to obtain
K T¢(02)T¢ (i (v))dxydzodrsd X 1 d X
F Uij Yijlu T10T20T3 1 2
Q+txD
+ / Tc 0 s (09,)Te 0 Ts(7i5(u’))dw1dw2d X3d X1d X
(10.2) @27y
<k25 Te(f) - T¢(u®)dxydaodrsd X dX o
QtxD
+ / s (fo)s(ud)dridrodXs + 6 [ Ts(f3)s(ul)drydradXs.
_ o

Using (5.1),(5.3), (6.1), (6.7), (7.2), (8.11), (9.9) to pass to the limit in (10.2), leads to

2
A =1lim sup(k— / TE(O'gj)TE(%j (ué))dﬂhdxgdngXmng
6—0 QtxD

(10.3) + / T. o 5(0?;) Tz o Ts(yi (u5))dx1dx2dX3dX1dX2)
Q- xY

SU=
S/Fau(;ﬁ-/Fggug—/Gai.
w w w axa

From (8.14) in which we choose ¢ =U,, and © = R§ we obtain

o (Y (e
[ Pt = 2 [ [ | 2200 || T2 |+ = s @ @) + e W04
Yoo (Up,) Va2 (Usy,)

[\
Nej



Now from (8.4), (8.15), the definition of the matrix A,, and the periodicity of u,, we deduce

E - NN N
[ bt =175 [ 1< G >0 0= 002050 10 Ur) + 50 U 052,

— s [ <O T

Proceding similarly from (9.11) we obtain

_ Uy  E o
[)FBL& —/Q)Gaaxa = 12(1*1/2)/M<Uf’Uf >f.

Notice that

E S
<Up, Uy >n +712(1_y2)/w<Uf,Uf >

/
E/w . - . 0,0

(1 = )Tap(Un)lap(Un) + T aa(Un)las(Un)

Y
+7/ y [(1 — V)Lap(Up)lap(Uy) + VFaa(ﬁf)Fﬁﬁ(ﬁf)}

- (1= 0)Tas(Un + T)Tap (O + Ty) + 1 aa(Uin + U Ts(0 + ).

Then using (10.3), the above equalities lead to

A<

— / [(1 — ) Tas(Upm + U las(Up, + Uj) + 000 (U + U 50, + Uf)} .
Q- xY

Now from (6.12) and (6.13), the right hand side of the above inequality can be expressed as

4 S /Q*XY Ei_in;

so that the definition of A in (10.3), the linear constitutive relation (2.1) and the classical l.s.c. argument

permit to conclude that

1
TTE(U%) — 0 strongly in L*(Q" x D),
(10.4) 0

1
—675(%-j (u®)) — 0 strongly in L*(Q* x D),
and
(105) Tz o M5 (vi5(u?)) — X strongly in L*(Q~ xY),
. T. 0 Hg(ofj) - X strongly in L*(Q™ xY).

Indeed the above analysis and the strong convergences (10.4) and (10.5) show that the elastic energy of the
problem (2.5) converges to the total energy of the limit problems (8.16) and (9.11) i.e.

1. 4 E mUy,) iUy, i i ) _
Sé(u ) —> 1.2 |:Am YizUp) | - | Yi2WUp) | + (1 = v)vapUp)VapUs,) + V“Yaa(um)VBﬂ(Um)}
¢ Vo2 (Uy,) Yoo (Uy,)
°Uy Uy
) 6‘%’? 8(1?% 621/{— 621/{_
-~ Uy 22U _ 3 3 B 3
BT /w [Af 921002 oron | T (1 V)iaxaaxg Doy + vAU; AU, ]

2°U; o%u,
E)mg aggg
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