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Microscopic effects in the homogenization

of the junction of rods and a thin plate

Dominique Blanchard * and Georges Griso **

Abstract
This paper is devoted to investigate a few microscopic effects in the homogenization process of the

junction of a periodic family of rods with a thin plate in elasticity. We focus on the case where the thickness

of the plate tends to zero faster than the periodicity. As a consequence of the studied microscopic effects,

the elastic coefficients of the membrane and bending limit problems for the plate are modified. Moreover,

we observe a torsion in the homogenized ”continuum” of rods which depends on the curl of the membrane

displacement of the plate.

Résumé
Cet article est destiné à mettre en évidence des effets microscopiques dans le processus d’homogénéisation

de la jonction d’une famille périodique de poutres avec une plaque mince en élasticité. Nous examinons la

situation où l’épaisseur de la plaque tend vers zéro plus vite que la période. Les effets microscopiques observés

se traduisent par une modification des coefficients élastiques dans les problèmes limites de membrane et de

flexion de la plaque. De plus, on met en évidence une torsion dans le ”continuum” homogénéisé de poutres

qui dépend du rotationnel du champ de déplacement membranaire de la plaque.
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1. Introduction

This paper pertains to the general problem of modeling the asymptotic behavior of a multistructure

made of a ε-periodic set of elastic rods, with radius r = kε (k < 1/2), in junction with an elastic plate

whose thickness δ can tend to zero as the periodicity ε of the rods vanishes. The two critical cases δ = 1

and δ ∼ ε2/3 are investigated in [1] and [2], and they come under the situation where ε/δ → 0 for which

there is no microscopic effect induced by the rods on the limit problem for the plate which consists in the

standard membrane 2d model and the usual bending model. Here we investigate the case where δ/ε → 0

which corresponds to a ”very” thin plate (with respect to the periodicity) and where such microscopic effects

occur. Let us briefly describe the results obtained in the present paper. The main result of this work is that,

even for a homogeneous and isotropic elastic material, the homogenization of the junction of the rods with the

plate leads to a membrane 2d model and a bending model for the plate which have different coefficients that

the ones of the standard models. These new coefficients are derived through solving elastic local problems.

Loosely speaking the microscopic effects are due to the fact that the displacement is asymptotically rigid in

the small cylinders of the plate which are below the rods.

As far as the rods are concerned, the limit model is a continuum of rods (indexed by (x1, x2)). In this

continuum, each rod has a rigid body displacement which is given by the rigid displacement of the fiber of the

plate which is below this specific rod. Moreover we show that, if

√
δ

ε
is bounded then each rod has a constant

rotation around its axis; the angle of this rotation is equal to the curl of the 2d membrane displacement of

the limit plate model. We also show that, if

√
δ

ε
→ +∞ then each small cylinder included in the plate and

below each rod has a constant rotation around its axis; the angle of this rotation is also equal to the curl of

the 2d membrane displacement. The first tool used to carry out the analysis is two decompositions of the

displacement field in each rod and in the plate ( see [19], [20], [1], [2]). The second main tool is the periodic

unfolding operator in homogenization (see [10], [12], [1], [2]).

For the general theory of elasticity, we refer e.g. to [7] and for the mathematical justification of elastic

plates model to [8] and [9] (and to the references quoted in these works). A general introduction to the

mathematical modeling of elastic rods models can be found in [24].

The paper is organized as follows. Section 2 is devoted to describe the geometry and the equations

of the problem. In Section 3 we first recall the decompositions of the displacement in the rods and in the

plate and we give estimates on the terms of these decompositions in term of the elastic energy. A special

care is dedicated to these estimates in the small cylinders below the rods. Section 4 contains a few recall

on the unfolding operators in the rods and in the plate. In Section 5 we show that the limit displacement

in each rod (i.e. for a.e. (x1, x2) is a rigid displacement and that the unfold strain of the rods converges to

0. In Section 6 we identify the weak limits of the unfold displacement and of the unfold strain. Section 7

is concerned with the derivation of the kinematic transmission condition between the rods and the plate in

the limit model. In Section 8, we introduce the local membrane correctors in order to derive the membrane

limit problem for the plate and the torsion angle in each rod. Section 9 is devoted to introduce the local

bending correctors to be a position to obtain the limit bending problem in the plate. At last, in Section 10

we prove the strong convergence of the 3d energy to the energy of the limit problem as ε tends to 0.

2. The geometry and the problem
Throughout the paper (e1, e2, e3) denotes the standard basis of R3. Let δ be a sequence of positive real

numbers which tends to zero and let ε be a sequence of positive real numbers which depends on δ and tends

to zero with δ and such that
δ

ε
→ 0.
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Let us consider a bounded connected regular domain ω contained in the (x1, x2) coordinate plane. The

set Nε is defined for ε small enough as the following subset of Z2

Nε =
{
(p, q) ∈ Z2 ; ]εp − ε/2, εp + ε/2[ × ]εq − ε/2, εq + ε/2[ ⊂ ω

}
.

Fix L > 0. For each (p, q) ∈ Z2, ε > 0 and r = kε (k < 1/2), we consider a rod Pε
p,q whose cross section is

the disk of center (εp, εq) and radius r, and whose axis is x3 and with a height equal to L

Dε
p,q =

{
(x1, x2) ∈ R2 ; (x1 − εp)2 + (x2 − εq)2 < r2

}
,

Pε
p,q =

{
(x1, x2, x3) ∈ R3 ; (x1, x2) ∈ Dε,r

p,q, 0 < x3 < L
}

.

Then, we denote by Ω+
ε the set of all the rods defined as above

Ω+
ε =

⋃

(p,q)∈Nε

Pε
p,q.

The lower cross sections of all the rods is denoted by ωε

ωε =
⋃

(p,q)∈Nε

Dε
p,q × {0} ⊂ ω.

In order to shorten the notation, we set

ω̃ε =
⋃

(p,q)∈Nε

(]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[)
⊂ ω.

We have assumed that k < 1/2 in order to avoid the contact between two different rods (recall that

r = kε). The domain filled by the oscillating part Ω+
ε (as ε tends to zero) is denoted by Ω+

Ω+ = ω×]0, L[.

Moreover, we set

Ω− =
{
(x1, x2, x3) ∈ R3 ; (x1, x2) ∈ ω, −1 < x3 < 0

}
,

Ω = ω×] − 1, L[.

The 3d-plate Ω−
δ is defined, for δ > 0, by

Ω−
δ =

{
(x1, x2, x3) ∈ R3 ; (x1, x2) ∈ ω, −δ < x3 < 0

}
.

The elastic body under consideration is

Ωε,δ = Ω+
ε ∪ ωε ∪ Ω−

δ .

In order to derive the estimates that lead to the junction conditions between the rods and the plate, we

introduce below the following subsets of Ωε,δ

Cεδ =
⋃

(p,q)∈Nε

Dε
p,q×] − δ, 0[,
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Ω+
ε,δ = Ω+

ε ∪ Cεδ.

Remark that Ω+
ε,δ is actually made of rods of length L+δ, each one being a rod of Ω+

ε which is extended

for −δ < x3 < 0 into the plate.

We consider the standard linear equations of elasticity in Ωε,δ.

The displacement field in Ωε,δ is denoted by

uδ : Ωε,δ → R3.

The linearized strain field in Ωε,δ is defined by

γ(uδ) =
1

2

(
Duδ + (Duδ)T

)
,

or equivalently by its components

γij(u
δ) =

1

2

(
∂iu

δ
j + ∂ju

δ
i

)
, i, j = 1, 2, 3.

The Cauchy stress tensor in Ωε,δ is linked to γ(uδ) through the standard Hooke’s law

(2.1) σδ
ij = λ

(
3∑

k=1

γkk(uδ))

)
δij + 2µγij(u

δ), i, j = 1, 2, 3,

where λ and µ denotes the Lamé’s coefficients of the elastic material, and where δij = 0 if i 6= j and δij = 1

if i = j. The equation of equilibrium in Ωε,δ is

(2.2) −
3∑

j=1

∂jσ
δ
ij = fδ

i in Ωε,δ, i = 1, 2, 3,

where f δ : Ωε,δ → R3 denotes the applied force.

In order to specify the boundary conditions on ∂Ωε,δ, we will assume that the 3d plate is clamped on

its lateral boundary ∂ω×] − δ, 0[= Γδ

(2.3) uδ = 0 on Γδ ,

and that the boundary ∂Ωε,δ \ Γδ is free

(2.4) σδν = 0 on ∂Ωε,δ \ Γδ,

where ν denotes the exterior unit normal to Ωε,δ .

Remark 2.1 The boundary condition (2.4) means that the density of applied surface forces on the boundary

∂Ωε \ Γδ is zero. This assumption is not necessary to carry on the analysis, but it is a bit natural as far as

the fast oscillating boundary ∂Ω+
ε is concerned.

The variational formulation of (2.2)-(2.3)-(2.4) is very standard. If Vε,δ denotes the space:

Vε,δ =
{

v ∈
(
H1(Ωε,δ)

)3
; v = 0 on Γδ

}
,
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the variational formulation is

(2.5)





uδ ∈ Vε,δ,
∫

Ωε,δ

3∑

i,j=1

σδ
ijγij(v)dx =

∫

Ωε,δ

3∑

i=1

f δ
i vidx, ∀v ∈ Vε,δ.

Throughout the paper and for any v ∈ Vε,δ we denote by

E(v) =

∫

Ωε,δ


λ

(
3∑

k=1

γkk(v)

)2

+ 2µ

3∑

i,j=1

(γij(v))2


 dx

the total elastic energy of the displacement v and we set

|v|E =
√

E(v).

Indeed choosing v = uδ in (2.5) leads to the usual energy relation

(2.6) E(uδ) =

∫

Ωε,δ

3∑

i=1

f δ
i uδ

i dx.

3. Decompositions of the displacement and estimates
In this section, we consider two decompositions of the displacement field in each rod and in the plate

as this was the case in [2]. These types of decompositions have been introduced in [17]-[20] to describe the

asymptotic behavior of elastic multistructures. Remark that in the present paper and in order to describe

the junction conditions between the rods and the plate, the decomposition of the displacement uδ is twofold.

In the small cylinders of the plate below each rod, uδ is split as a rod type displacement and as a plate type

displacement. This is the object of Subsection 3.1. Estimates of the terms of the decompositions of uδ are

given in Subsection 3.2. This leads to natural assumptions on the forces f δ
i in Subsection 3.3. In Subsection

3.4 we derive estimates in the small junction cylinders Cε,δ .

3.1 Decompositions of the displacement

The displacement field in the rods Ω+
ε ∪ Cε,δ is decomposed following [17] (see also [18]) as below:

(3.1)





uδ(x) = Uδ+(εp, εq, x3) + Rδ+(εp, εq, x3) ∧




x1 − εp
x2 − εq

0


 + uδ+(x)

= U δ+
e (εp, εq, x3) + uδ+(x)

x ∈ Dε
p,q×] − δ, L[,

where the field uδ+ satisfies ∫

Dε
p,q

uδ+(x1, x2, x3)dx1dx2 = 0,

∫

Dε
p,q

(x1 − εp)uδ+
3 (x1, x2, x3)dx1dx2 =

∫

Dε
p,q

(x2 − εq)uδ+
3 (x1, x2, x3)dx1dx2 = 0,

∫

Dε
p,q

{
(x1 − εp)uδ+

2 (x1, x2, x3) − (x2 − εq)uδ+
1 (x1, x2, x3)

}
dx1dx2 = 0,
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for almost any x3 in ] − δ, L[.

The functions Uδ+ and Rδ+ are extended to the whole domain ω×] − δ, L[ through

(3.2)





Uδ+(x1, x2, x3) = Uδ+(εp, εq, x3) if (x1, x2) ∈
]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[

Rδ+(x1, x2, x3) = Rδ+(εp, εq, x3) if (x1, x2) ∈
]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[

Uδ+(x1, x2, x3) = Rδ+(x1, x2, x3) = 0 if (x1, x2) ∈ ω \ ω̃ε.

In the plate, we use the decomposition introduced in [19]

(3.3)





uδ(x) = Uδ−(x1, x2) + Rδ−(x1, x2) ∧




0
0

x3 + δ/2


 + uδ−(x)

= Uδ−
e (x) + uδ−(x)

x ∈ Ω−
δ ,

where the field uδ− satisfies

(3.4)

∫ 0

−δ

uδ−(x1, x2, x3)dx3 = 0 and

∫ 0

−δ

(
x3 +

δ

2

)
uδ−

α (x1, x2, x3)dx3 = 0 for α = 1,2,

for almost any (x1, x2) in ω. Remark that the boundary condition (2.3) implies that Uδ− and Rδ− belong

to H1
0 (ω).

3.2 Estimates in term of the elastic energy

Firstly, as a consequence of [19], by setting Uδ−
m = Uδ−

1 e1 + Uδ−
2 e2 we have

(3.5)





δ
∥∥∥∂Rδ−

∂xα

∥∥∥
(L2(ω))2

+
∥∥∥∂Uδ−

3

∂x1
+ Rδ−

2

∥∥∥
L2(ω)

+
∥∥∥∂Uδ−

3

∂x2
−Rδ−

1

∥∥∥
L2(ω)

+
∥∥γαβ(Uδ−

m )
∥∥

L2(ω)
≤ C

|uδ|E√
δ

,

||uδ−||(L2(Ω−
δ

))3 ≤ Cδ|uδ|E , ||∇uδ−||(L2(Ω−
δ

))9 ≤ C |uδ|E .

It follows that

(3.6)





δ||Rδ−
α ||H1(ω) + δ||Uδ−

3 ||H1(ω) + ||Uδ−
α ||H1(ω) ≤ C

|uδ |E√
δ

,

||uδ
α||L2(Ω−

δ
) ≤ C|uδ |E , ||uδ

3||L2(Ω−
δ

) ≤
C

δ
|uδ |E .

Secondly, using Lemma 3.1 of [18] and proceeding as Section 4 of [2] and since r = kε, we obtain the following

estimates:

(3.7)





∥∥∥∂Rδ+

∂x3

∥∥∥
(L2(ω×]−δ,L[))2

≤ C
|uδ|E

ε
,

∥∥∥∂Uδ+

∂x3
−Rδ+ ∧ e3

∥∥∥
(L2(ω×]−δ,L[))3

≤ C|uδ|E ,

||uδ+||(L2(Ω+
ε,δ))3 ≤ Cε|uδ |E , ||∇uδ+||(L2(Ω+

ε,δ))9 ≤ C|uδ |E .

At last, the estimates of Uδ+(x1, x2, 0) and of Rδ+(x1, x2,0) are given in Section 4.1 of [2] (using r = kε and

δ/ε bounded)

(3.8)





||Uδ+
α (., ., 0)||L2(ω) ≤ C

|uδ|E√
δ

, ||Uδ+
3 (., ., 0)||L2(ω) ≤

C

δ

|uδ |E√
δ

,

||Rδ+
α (., .,0)||L2(ω) ≤

C

δ

|uδ |E√
δ

, ||Rδ+
3 (., ., 0)||L2(ω) ≤ C

|uδ |E√
δ

.
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From (3.7) and (3.8) we deduce that (if needed the reader is referred to [2])

(3.9)





||Uδ+
3 ||L2(ω×]−δ,L[) ≤

C

δ

|uδ |E√
δ

,
∥∥∥∂Uδ+

3

∂x3

∥∥∥
L2(ω×]−δ,L[)

≤ C|uδ|E ,

||Rδ+
α ||L2(ω×]−δ,L[) ≤

C

δ

|uδ|E√
δ

,
∥∥∥∂Rδ+

α

∂x3

∥∥∥
L2(ω×]−δ,L[)

≤ C
|uδ |E

ε
,

||Rδ+
3 ||L2(ω×]−δ,L[) ≤ C

{ 1√
δ

+
1

ε

}
|uδ|E ,

∥∥∥∂Rδ+
3

∂x3

∥∥∥
L2(ω×]−δ,L[)

≤ C
|uδ |E

ε
,

||Uδ+
α ||L2(ω×]−δ,L[) ≤

C

δ

|uδ |E√
δ

,
∥∥∥∂Uδ+

α

∂x3

∥∥∥
L2(ω×]−δ,L[)

≤ C

δ

|uδ |E√
δ

.

From the estimates (3.7), (3.9) and the decomposition (3.1), it follows that

(3.10) ||uδ ||(L2(Ω+
ε ))3 ≤ C

δ

|uδ|E√
δ

.

3.3 Assumption on the forces

In view of the energy relation (2.6), estimates (3.6) and (3.10), we assume throughout the paper

(3.11)





f δ
i = δ2fi in Ω+

ε , for i = 1, 2, 3,

f δ
α(x) = fα

(
x1, x2,

x3

δ

)
in Ω−

δ , for α = 1, 2,

f δ
3 (x) = δf3

(
x1, x2,

x3

δ

)
in Ω−

δ ,

where f ∈
(
L2(Ω)

)3
is given. As a consequence, we obtain the following bound on the energy

(3.12) |uδ|E ≤ C
√

δ,

where C is a constant independent of ε and δ.

Remark 3.1. Actually and due to the analysis developped in Section 4.3 of [2] the order specified in (3.11)

for the applied forces permits to obtain estimate (3.12) as soon as
δ3

ε2
remains bounded.

3.4 Estimates in the domain Cε,δ

In this subsection we show that in each small cylinder of Cε,δ the displacement uδ is asymptotically a

rigid displacement. Due to (3.7) we have

(3.13)





||Rδ+ −Rδ+(., ., 0)||(L2(ω×]−δ,0[))3 ≤ C
δ3/2

ε
,

||Uδ+ − Uδ+(., ., 0) − x3Rδ+(., ., 0) ∧ e3||(L2(ω×]−δ,0[))3 ≤ Cδ3/2.

Then let us define in each small cylinder Dε
p,q×] − δ, 0[ the rigid body displacement

Rδ(x1, x2, x3) = Uδ+(pε, qε, 0) + Rδ+(pε, qε, 0) ∧
(
(x1 − εp)e1 + (x2 − εq)e2 + x3e3

)
.

In view of the definitions (3.2) of Uδ+ and Rδ+ and thanks to (3.13) we obtain

(3.14) ||U δ+
e − Rδ||2(L2(Cε,δ))3 ≤ Cδ3, ||∇(Uδ+

e − Rδ)||2(L2(Cε,δ))9 ≤ Cδ.
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From the estimates (3.7) of uδ+ we deduce that (using the fact that each cylinder of Cε,δ has a height equal

to δ)

||uδ+||2(L2(Cε,δ))3 ≤ Cεδ2, ||∇uδ+||2(L2(Cε,δ))9 ≤ Cδ.

Then from (3.14) and the above estimates we obtain

(3.15) ||uδ − Rδ||2(L2(Cε,δ))3 ≤ Cεδ2, ||∇(uδ − Rδ)||2(L2(Cε,δ))9 ≤ Cδ.

Indeed using the decomposition (3.3) and estimates (3.5) of uδ− leads to

(3.16) ||U δ−
e − Rδ||2(L2(Cε,δ))3 ≤ Cεδ2, ||∇(U δ−

e − Rδ)||2(L2(Cε,δ))9 ≤ Cδ.

4. Rescaling of Ω−
δ and unfolding operators in Ω+

ε and Ω−

We denote by D the unit disk of R2 and by Y the unit cell (] − 1/2, 1/2[)2. We first recall the definition

of the unfolding operator T ε given in Section 5 of [1] which is defined for any v ∈ L2(Ω+
ε ) by, for almost

(x1, x2, x3) ∈ Ω+ and (X1, X2) ∈ D,

T ε(v)(x1, x2, x3,X1, X2) =





v(pε + rεX1, qε + rεX2, x3),

if (x1, x2, x3) ∈
]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[
×]0, L[, and (p, q) ∈ Nε,

0, if (x1, x2, x3) ∈
(
ω \ ω̃ε

)
×]0, L[.

The above definition of the operator T ε is an adaptation to the specific geometry considered here of the

notion of unfolding operators introduced in [9] and [10] ( see also the definition of the operator Tε below).

We refer to Lemma 5.1 of [1] for the properties of this operator. Then, in order to take into account the

necessary rescaling of Ω−
δ , we introduce the following operator Πδ defined for any function v ∈ L2(Ω−

δ )

Πδ(v)(x1, x2, X3) = v(x1, x2, δX3) for (x1, x2, X3) ∈ Ω− = ω×] − 1, 0[.

Remark that Πδ(v) ∈ L2(Ω−). Indeed we have for any v ∈ L2(Ω−
δ ) and any w ∈ L2(Ω−

δ )

(4.1)

∫

Ω−
Πδ(v)Πδ(w)dx1dx2dX3 =

1

δ

∫

Ω−
δ

vwdx1dx2dx3,

(4.2)
∂Πδ(v)

∂xα
= Πδ

(
∂v

∂xα

)
, for α = 1, 2,

(4.3)
∂Πδ(v)

∂X3
= δΠδ

(
∂v

∂x3

)
.

At last since we will use a few oscillating test functions in Ω− in Section 6, we also introduce the usual

unfolding operator in homogenization theory (see [9] and [10]). The operator Tε is defined for any v ∈ L2(Ω−)

by, for almost (x1, x2, X3) ∈ Ω− and (X1, X2) ∈ Y

Tε(v)(x1, x2, X3,X1, X2) =





v(pε + εX1, qε + εX2, X3),

if (x1, x2, X3) ∈
]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[
×] − 1, 0[ and (p, q) ∈ Nε,

0 if (x1, x2,X3) ∈ (ω \ ω̃ε)×] − 1, 0[.
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Indeed Tε(v) belongs to L2(Ω− × Y ).

The main properties of Tε that we will use in this paper are recalled in Appendix A and Appendix B of

[2], and we refer to [9] and [10] for the proofs and various applications in homogenization.

Through application of the operators T ε, Tε and Πδ, the weak formulation (2.5) gives that for any

v ∈ Vε,δ such that v = 0 in (ω \ ω̃ε)×]− δ, 0[ (after deviding (2.5) by δ)

(4.4)





k2

δ

∫

Ω+×D

T ε(σδ
ij)T ε(γij(v))dx1dx2dx3dX1dX2

+

∫

Ω−×Y

Tε ◦ Πδ(σ
δ
ij)Tε ◦ Πδ(γij(v))dx1dx2dX3dX1dX2

=k2δ

∫

Ω+×D

T ε(f) · T ε(v)dx1dx2dx3dX1dX2

+

∫

Ω−
Πδ(fα)Πδ(vα)dx1dx2dX3 + δ

∫

Ω−
Πδ(f3)Πδ(v3)dx1dx2dX3.

Actually (4.4) holds true for any v ∈ Vε,δ such that v = 0 in (ω \ ω̃ε)×] − δ, 0[ because for such a v which is

zero on a neightborhood of the lateral surface Γδ of the plate, the definition of Tε shows that

1

δ

∫

Ω−
δ

3∑

i,j=1

σδ
ijγij(v) =

∫

Ω−×Y

Tε ◦Πδ(σ
δ
ij)Tε ◦ Πδ(γij(v))dx1dx2dX3dX1dX2.

5. Weak convergences of the displacement field and of the
strain field in the rods

In this section, we introduce the weak limits of the terms of the displacement’s decomposition in the

rods. In particular we show that (upon the correct scaling) the limit torsion in the rods is independent of

x3. At last, we prove that the limit strain in the rods is null.

5.1 Weak convergences of the displacement field in Ω+

In view of estimates (3.9), (3.10) and (3.12), there exist subsequences (still indexed by δ) such that

(5.1)





δT ε(uδ
i ) ⇀ u+

i weakly in L2(Ω+ × D),

δUδ+ ⇀ U+ weakly in L2(ω; H1(0, L; R3)),

δRδ+
α ⇀ R+

α weakly in L2(ω; H1(0, L)).

According to (3.9) the functions U+
3 , R+

1 and R+
2 do not depend on x3. Then by (3.7)

∂U+

∂x3
−R+ ∧ e3 = 0,

which together with (3.8) leads to

(5.2) U+(x1, x2, x3) = x3R+
2 (x1, x2) e1 − x3R+

1 (x1, x2) e2 + U+
3 (x1, x2) e3.

Moreover due to the estimate (3.7) on uδ+ and to (3.9) and (5.1) we have

(5.3) u+ = U+.

9



As far as Rδ+
3 is concerned, we first consider the case where

√
δ

ε
is bounded. In this case estimate (3.9)

shows that

Rδ+
3 ⇀ R+

3 weakly in L2(ω; H1(0, L)).

More precisely, if

√
δ

ε
→ 0 then R+

3 does not depend on x3 and belongs to L2(ω). If

√
δ

ε
→ c, c ∈ R∗

+, we

will show in Section 6 that again the function R+
3 is independent of x3.

In the case where

√
δ

ε
→ +∞ we have from the same estimates

(5.4)
ε√
δ
Rδ+

3 ⇀ R+
3 weakly in L2(ω; H1(0, L))

and from (3.8) we get R+
3 (., ., 0) = 0. We will show in Section 6 that the function R+

3 is equal to zero.

In order to analyse the asymptotic behavior of the strain tensor γ(uδ) in Ω+
ε in the next subsection, we first

introduce the following quantities

(5.5)

{
R

′δ+ = Rδ+ −Rδ+(., ., 0)

U
′δ+ = Uδ+ − Uδ+(., ., 0) − x3 Rδ+(., ., 0) ∧ e3

in Ω+.

Due to estimates (3.7) and (3.12) we obtain

(5.6)





∥∥R′δ+
∥∥

L2(ω;H1(0,L;R3))
≤ C

√
δ

ε
,

∥∥∥∂U ′δ+

∂x3
−R

′δ+ ∧ e3

∥∥∥
(L2(ω×]0,L[))3

≤ C
√

δ,

∥∥U ′δ+
α

∥∥
L2(ω;H1(0,L))

≤ C

√
δ

ε
,

∥∥U ′δ+
3

∥∥
L2(ω;H1(0,L))

≤ C
√

δ.

The constants do not depend on ε and δ.

We prove the following lemma:

Lemma 5.1 : The following weak concergences hold true (up to subsequences still indexed by δ):

(5.7)





ε√
δ
R

′δ+
i ⇀ R

′+
i weakly in L2(ω;H1(0, L)),

ε√
δ
U

′δ+
α ⇀ U

′+
α weakly in L2(ω;H1(0, L)),

1√
δ
U

′δ+
3 ⇀ U

′+
3 weakly in L2(ω;H1(0, L)),

1√
δ

(∂U
′δ+
1

∂x3
−R

′δ+
2

)
⇀ Ẑ+

1 weakly in L2(Ω+),

1√
δ

(∂U
′δ+
2

∂x1
+ R

′δ+
1

)
⇀ Ẑ+

2 weakly in L2(Ω+),

1

ε
√

δ
T ε(uδ+) ⇀ u+ weakly in L2(Ω+; H1(D; R3)),

1√
δ
T ε

(∂uδ+

∂x3

)
⇀ 0 weakly in L2(Ω+ × D; R3),

where U ′+ ∈ L2(ω; H1(0, L; R3)), Ẑ+
α ∈ L2(Ω+ × D) and u+ ∈ L2(Ω+;H1(D; R3)).

Proof of lemma 5.1 : Convergences (5.7) mainly follow from the properties of the operator T ε together

with (5.6).
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Convergences (5.7) imply that

ε√
δ

(
∂U

′δ+
1

∂x3
−R

′δ+
2

)
→ 0 strongly in L2(Ω+),

ε√
δ

(
∂U

′δ+
2

∂x3
+ R

′δ+
1

)
→ 0 strongly in L2(Ω+),

as δ tends to 0, from which we deduce that

(5.8)
∂U

′+
1

∂x3
= R

′+
2

∂U
′+
2

∂x3
= −R

′+
1 in Ω+.

It follows that U ′+
α ∈ L2

(
ω,H2(0, L)

)
, for α = 1, 2. Moreover due to the definition (5.5) of R′δ+ and U ′δ+

and to (5.8), we have

(5.9) R
′+(., ., 0) = U

′+(., ., 0) = 0
∂U

′+
1

∂x3
=

∂U
′+
2

∂x3
= 0 a.e. in ω.

5.2 Weak convergences of the strain field in Ω+

Although we have assumed throughout the paper that
δ

ε
→ 0, we show now that the weak limit of the

strain in Ω+ is null as soon as the ratio
δ3/2

ε
tends to zero (see also remark 3.1). This is the reason why

all the estimates and convergences derived in this section involve the two parameters ε and δ. In view of

the expression of the strain tensor γ(uδ) and of Lemma 5.1, we obtain the following weak convergences in

L2(Ω+ ×D):

(5.10)





1√
δ
T ε

(
γαβ(uδ)

)
⇀

1

2k

( ∂u+
α

∂Xβ
+

∂u+
β

∂Xα

)
,

1√
δ
T ε

(
γ13(u

δ)
)

⇀
1

2

{
Ẑ+

1 + kX2
∂R

′+
3

∂x3
+

1

k

∂u+
3

∂X1

}
,

1√
δ
T ε

(
γ23(u

δ)
)

⇀
1

2

{
Ẑ+

2 + kX1
∂R

′+
3

∂x3
+

1

k

∂u+
3

∂X2

}
,

1√
δ
T ε

(
γ33(u

δ)
)

⇀
∂U

′+
3

∂x3
− kX1

∂2U
′+
1

∂x2
3

− kX2
∂2U

′+
2

∂x2
3

.

We denote by Σ+ the weak limit of the unfold stress
1√
δ
T ε(σδ)

(5.11)
1√
δ
T ε(σδ

ij) ⇀ Σ+
ij weakly in L2(Ω+ × D).

Proceeding exactly as in Section 6.1 of [1] and Section 8.1 of [2], we first derive u+ and this gives

(5.12)





u1
+ = ν

{
−kX1

∂U
′+
3

∂x3
+ k2 X2

1 − X2
2

2

∂2U
′+
1

∂x2
3

+ k2X1X2
∂2U

′+
2

∂x2
3

}
,

u2
+ = ν

{
−kX2

∂U
′+
3

∂x3
+ k2X1X2

∂2U
′+
1

∂x2
3

+ k2 X2
2 − X2

1

2

∂2U
′+
2

∂x2
3

}
,
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where ν =
λ

2(λ + µ)
is the Poisson’s coefficient of the material. Similarly, the same computations as in

Section 6.1 of [1] leads to Ẑ+
α = 0 and u3

+ = 0. As a consequence (5.10), (5.11) and (5.12) we obtain

(5.13)





Σ+
11 = Σ+

22 = Σ+
12 = 0,

Σ+
13 = −µkX2

∂R
′+
3

∂x3
, Σ+

23 = µkX1
∂R

′+
3

∂x3
,

Σ+
33 = E

(
∂U

′+
3

∂x3
− kX1

∂2U
′+
1

∂x2
3

− kX2
∂2U

′+
2

∂x2
3

)
.

where E =
µ(3λ + 2µ)

λ + µ
is the Young’s modulus of the elastic material.

In order to determine R′

3 and U ′
let us now introduce the test displacement that we use in (4.4). Let

ϕ ∈ C∞
0 (ω), (V1,V2) be in C∞([0, L]) such that V1(0) = V2(0) = V′

1(0) = V ′
2(0) = 0, V3, A3 be in C∞([0, L])

such that A3(0) = V3(0) = 0.

The test displacement is defined in Ω+
ε by

vδ(x1, x2, x3) =
√

δ ϕ(εp, εq)

[(
1

ε
V1(x3) −

x2 − εq

ε
A3(x3)

)
e1

+

(
1

ε
V2(x3) +

x1 − εp

ε
A3(x3)

)
e2 +

(
V3 −

x1 − εp

ε
V ′

1(x3) −
x2 − εq

ε
V′

2(x3)

)
e3

]
,

if (x1, x2) ∈ Dε
p,q , x3 ∈]0, L[, for (p, q) ∈ Nε, and vδ = 0 in Ω−

δ . Remark that the boundary conditions on

V1, V2, V3 and A3 at x3 = 0 imply that vδ ∈ Vε,δ.

Then in Ω+
ε we have

γ11(v
δ) = γ22(v

δ) = γ12(v
δ) = 0,

γ13(v
δ) = −

√
δ ϕ(εp, εq)

x2 − εq

ε

1

2
A′

3(x3),

γ23(v
δ) =

√
δ ϕ(εp, εq)

x1 − εp

ε

1

2
A′

3(x3),

γ33(v
δ) =

√
δ ϕ(εp, εq)

(
V′

3(x3) −
x1 − εp

ε
V ′′

1 (x3) −
x2 − εq

ε
V ′′

2 (x3)

)
.

Since the function ϕ is smooth, the above expression of the strain of vδ lead to the following strong

convergences in L2(Ω+ × D):

1√
δ
T ε(γ13(v

δ)) → −ϕX2
1

2
A′

3(x3),

1√
δ
T ε(γ23(v

δ)) → ϕX1
1

2
A′

3(x3),

1√
δ
T ε(γ23(v

δ)) → ϕ [V ′
3(x3) − X1V ′′

1 (x3) − X2V ′′
2 (x3)] .

Passing to the limit in the left hand side of (4.4) with the test displacement vδ, using (5.11)-(5.13) and the

above convergences give the following quantity:

(5.14)





−
∫

Ω+×D

ϕΣ+
13X2A′

3dx1dx2dx3dX1dX2 +

∫

Ω+×D

ϕΣ+
23X1A′

3dx1dx2dx3dX1dX2

+

∫

Ω+×D

ϕΣ+
33 (V ′

3(x3) − X1V ′′
1 (x3) − X2V′′

2 (x3)) dx1dx2dx3dX1dX2.
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To estimate the limit of the right hand side of (4.4), we remark that

||vδ ||L2(Ω+
ε ) ≤ C

√
δ ||φ||L∞(ω)

{1

ε
||V1||H1(0,L) +

1

ε
||V2||H1(0,L) + ||V3||L2(0,L) + ||A3||L2(0,L)

}
.

Hence we obtain

k2δ

∫

Ω+×D

T ε(f) · T ε(vδ)dx1dx2dx3dX1dX2 ≤ C
δ3/2

ε

from which we deduce that as soon as
δ3/2

ε
→ 0

(5.15) lim
δ→0

k2δ

∫

Ω+×D

T ε(f)T ε(vδ)dx1dx2dx3dX1dX2 = 0.

Using (5.14), (5.15) we obtain

(5.16)





µk

∫

Ω+×D

ϕ(X2
1 + X2

2 )
∂R

′+
3

∂x3
A′

3dx1dx2dx3dX1dX2

+E

∫

Ω+×D

ϕ

[
∂U

′+
3

∂x3
− kX1

∂2U
′+
1

∂x2
3

− kX2
∂2U

′+
2

∂x2
3

]
[V ′

3 −X1V ′′
1 − X2V ′′

2 ] dx1dx2dx3dX1dX2 = 0

for any ϕ ∈ C∞
0 (ω), V3, A3 ∈ C∞([0, L]) such that V3(0) = A3(0) = 0, for (V1,V2) ∈ C∞([0, L]) such that

V1(0) = V2(0) = V ′
1(0) = V′

2(0) = 0. Since (5.16) can be localized with respect to the variable (x1, x2)

we obtain the standard torsion problem for R
′+
3 , the standard bending problem for U ′+

α and the standard

compression problem for U
′+
3 with all applied forces equal to 0 (see e.g. [1]). Taking into account the

boundary conditions (5.9) (for x3 = 0), we deduce that R
′+
3 = U

′+
i = 0 a.e. in Ω+. It follows from the

definition of R
′+
3 that the function R+

3 is actually independent of the variable x3 also when

√
δ

ε
→ c (c ∈ R∗

+)

(see (5.4) and (5.5)). In the case where

√
δ

ε
→ +∞ the function R+

3 is equal to zero. As a conclusion of this

subsection, we obtain that

(5.17)
1√
δ
T ε

(
γij(u

δ)
)

⇀ 0 weakly in L2(Ω+ × D).

6. Weak convergences of the displacement field and of the
strain field in the plate

In this section, we first identify the weak limit of the unfold strain in the plate in terms of two macroscopic

membrane-flexion displacements and of microscopic correctors. Then, the weak limit of the unfold stress

field is expressed as a plate stress tensor of a local Kirchhoff-Love displacement. In the whole paper, we use

the following notation for any vector field V smooth enough with respect to the variables (X1, X2) (which

can depend on others variables)

Γαβ(V ) =
1

2

( ∂Vα

∂Xβ
+

∂Vβ

∂Xα

)
.

6.1 Weak convergences of the displacement field in Ω−

We first prove Lemma 6.1 below.
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Lemma 6.1: The following weak concergences hold true (up to subsequences still indexed by δ) :

(6.1)





Πδ(u
δ
α) ⇀ u−

α weakly in H1(Ω−),

δΠδ(u
δ
3) → u−

3 strongly in H1(Ω−),

Uδ−
α ⇀ U−

α weakly in H1
0 (ω),

Tε

(
Uδ−

α

)
→ U−

α strongly in L2(ω × Y ),

Tε

(∂Uδ−
α

∂xβ

)
⇀

∂U−
α

∂xβ
+

∂ûα

∂Xβ
weakly in L2(ω × Y ),

δUδ−
3 → U−

3 strongly in H1
0 (ω),

δRδ−
α ⇀ R−

α weakly in H1
0 (ω),

δTε

(
Uδ−

3

)
→ U−

3 strongly in L2(ω × Y ),

δTε

(
Rδ−

1

)
→ R−

1 =
∂U−

3

∂x2
strongly in L2(ω × Y ),

δTε

(
Rδ−

2

)
→ R−

2 = −∂U−
3

∂x1
strongly in L2(ω × Y ),

δTε

(∂Rδ−
1

∂xα

)
⇀ − ∂2U−

3

∂xα∂x2
− ∂2û3

∂Xα∂X2
weakly in L2(ω × Y ),

δTε

(∂Rδ−
2

∂xα

)
⇀

∂2U−
3

∂x1xα
+

∂2û3

∂X1∂Xα
weakly in L2(ω × Y ),

and

(6.2)





Tε

(∂Uδ−
3

∂x1
+ Rδ−

2

)
⇀ Ẑ−

1 weakly in L2(ω × Y ),

Tε

(∂Uδ−
3

∂x2
−Rδ−

1

)
⇀ Ẑ−

2 weakly in L2(ω × Y ),

1

δ
Tε ◦ Πδ(u

δ−) ⇀ u− weakly in L2(ω × Y ; H1(−1, 0; R3)),

Tε ◦ Πδ

(∂uδ−

∂xα

)
⇀ 0 weakly in L2(Ω− × Y ; R3),

where U−
3 ∈ H2

0 (ω), u ∈ H1
0 (ω), ûα ∈ L2(ω;H1

per(Y )), û3 ∈ L2(ω;H2
per(Y )), u− ∈ L2(ω×Y ; H1(−1,0; R3)),

Ẑ−
α ∈ L2(ω × Y ).

Proof of lemma 6.1 : Estimates (6.1) mainly follow from the properties of the operator Tε together with

(3.6) and (3.12). Notice that the strong convergence of δUδ−
3 is a direct consequence of estimate (3.5) and

of the strong convergence of δRδ−
α in L2(ω). As a consequence of (3.3) and (3.5), we deduce that δΠδ(u

δ
3)

strongly converges in H1(Ω−). We now detail the two last estimates of (6.1).

Due to (3.6) and (3.12) the functions δRδ−
α , α ∈ {1, 2}, are bounded in H1

0 (ω). Then there exist two

functions r̂1, r̂2 ∈ L2(ω;H1
per(Y )) (see [10-11]) such that

(6.3)





δRδ−
α ⇀ R−

α weakly in H1
0 (ω),

δTε

(
∇Rδ−

α

)
⇀ ∇R−

α + ∇X r̂α weakly in (L2(ω × Y ))2,

where ∇X is the gradient with respect to the variables X1 and X2. Let then Uδ ∈ H1
0 (ω) be the solution of

the problem

(6.4)





∫

ω

∇Uδ∇Φ = −
∫

ω

[
Rδ−

2

∂Φ

∂x1
−Rδ−

1

∂Φ

∂x2

]

∀Φ ∈ H1
0 (ω).
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Since Uδ belongs to H2
loc(ω) and due to (3.6) and (3.12) it satisfies the following estimates:

(6.5) ||Uδ ||H1(ω) ≤
C

δ
,

∥∥∥ρ
∂2Uδ

∂xα∂xβ

∥∥∥
L2(ω)

≤ C

δ
,

where ρ is defined by

ρ(x) = dist(x, ∂ω) x ∈ ω.

Let us define the two functions

Zδ
1 =

∂Uδ

∂x1
+ Rδ−

2 , Zδ
2 =

∂Uδ

∂x2
−Rδ−

1 .

It follows from (3.5), (3.12), (6.4) and (6.5) that

||Uδ − Uδ−
3 ||H1(ω) ≤ C, ||Zδ

α||L2(ω) ≤ C ||ρ∇Zδ
α||L2(ω) ≤

C

δ
.

Then since δ/ε → 0, we have (see [2], [10], [12])





δUδ ⇀ U−
3 weakly in H1

0 (ω),

δ

ε
Zδ

α → 0 strongly in L2(ω),

δ

ε
Tε(Z

δ
α) → 0 strongly in L2(ω × Y ),

δTε(∇Zδ
α) ⇀ 0 weakly in L2

loc(ω; L2(Y,R2)).

There exists û3 ∈ L2
loc(ω; H2

per(Y )) such that (see [11])

δTε

( ∂2Uδ

∂xα∂xβ

)
⇀

∂2U−
3

∂xα∂xβ
+

∂2û3

∂Xα∂Xβ
weakly in L2

loc(ω; L2(Y )).

Using (6.3) and the definition of the Zδ
α we deduce that

0 = δTε

( ∂2Uδ

∂x1∂xα
+

∂Rδ−
2

∂xα
− ∂Zδ

1

∂xα

)
⇀

∂2U−
3

∂x1∂xα
+

∂2û3

∂X1∂Xα
+

∂R2

∂xα
+

∂r̂2

∂Xα
weakly in L2

loc(ω; L2(Y )),

0 = δTε

( ∂2Uδ

∂xα∂x2
− ∂Rδ−

1

∂xα
− ∂Zδ

2

∂xα

)
⇀

∂2U−
3

∂xα∂x2
+

∂2û3

∂Xα∂X2
− ∂R1

∂xα
− ∂r̂1

∂Xα
weakly in L2

loc(ω; L2(Y )).

As a consequence, we have

(6.6)
∂2û3

∂X1∂Xα
= − ∂r̂2

∂Xα
,

∂2û3

∂Xα∂X2
=

∂r̂1

∂Xα
,

and then the function û3 belongs to L2(ω; H2
per(Y )) and the two last concergences of (6.1) hold true. Esti-

mates (6.2) are direct consequences of (3.5) and (3.12).

Using (3.3) and Lemma 6.1, we deduce that the limit displacement u− is a Kirchhoff-Love displacement:

(6.7) u−
3 = U−

3 , u−
α = U−

α −
(

X3 +
1

2

)
∂U−

3

∂xα
.
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6.2 Weak convergences of the strain field in the plate

First in view of estimate (3.12) and of (4.1), it follows that:

(6.8)

{
Tε ◦ Πδ(γij(u

δ)) ⇀ X−
ij weakly in L2(Ω− × Y ),

Tε ◦Πδ(σ
δ
ij) ⇀ Σ−

ij weakly in L2(Ω− × Y ),

where X−
ij ∈ L2(Ω− × Y ) and Σ−

ij ∈ L2(Ω− × Y ).

Then due to the expression of the strain γ(uδ), to (3.3) and to Lemma 6.1, we obtain the following

relations:

(6.9)





X−
αβ = γαβ(U−

m) + Γαβ(ûm) −
(
X3 +

1

2

){ ∂2U−
3

∂xα∂xβ
+

∂2û3

∂Xα∂Xβ

}
,

X−
α3 =

1

2

{
Ẑ−

α +
∂u−

α

∂X3

}
, X−

33 =
∂u−

3

∂X3
,

where the fields U−
m and ûm are defined by

U−
m = U−

1 e1 + U−
2 e2, ûm = û1e1 + û2e2.

6.3 Determination of u− and Ẑ−
α

Let us consider the test displacement

vδ
ε(x) = δφ(x1, x2)Φ

(x1

ε
,
x2

ε

)
Θ

(x3

δ

)
in Ωε,δ,

with φ ∈ C∞
0 (ω), Φ ∈ H1

per(Y ), Θ ∈ C∞([−1, +∞[; R3) and Θ(x3) = 0 if x3 ≥ 0. Notice that the displacement

vδ
ε is zero in Ω+

ε and that Πδ

(
vδ

ε

)
−→ 0 in (L2(Ω−))3.

Since δ/ε tends to 0, we have the following strong convergences in L2(Ω− × Y ):

(6.10)





Tε ◦Πδ

(
γαβ(vδ

ε)
)
−→ 0,

Tε ◦ Πδ

(
γα3(v

δ
ε)

)
−→ 1

2
φ Φ

dΘα

dX3
,

Tε ◦ Πδ

(
γ33(v

δ
ε)

)
−→ φΦ

dΘ3

dX3
.

Using the above displacement vδ
ε in the formulation (4.4) with Θ3 = 0 and passing to the limit as δ tends to

zero lead to also using (6.10)





∂2

∂X2
3

(
u−

α + Ẑ−
α

)
= 0 in Ω− × Y,

∂

∂X3

(
u−

α + Ẑ−
α

)
|X3=−1

= 0 in ω × Y,

while by (3.4) and (6.2) we have

∫ 0

−1

u−
α dX3 =

∫ 0

−1

(
X3 +

1

2

)
u−

α dX3 = 0 for α = 1,2.
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We easily deduce from the above relations that the functions u−
α and Ẑ−

α are equal to zero (for α = 1, 2) and

then X−
α3 = 0.

Now choosing the displacement vδ
ε in the formulation (4.4) with Θα = 0 and passing to the limit as δ tends

to zero lead to also using (6.10)

∂

∂X3

[
λ
(
γαα(U−

m) + Γαα(ûm) −
(
X3 +

1

2

){ ∂2U−
3

∂xα∂xα
+

∂2û3

∂Xα∂Xα

})
+ (λ + 2µ)

∂u−
3

∂X3

]
= 0 in Ω− × Y,

[
λ
(
γαα(U−

m) + Γαα(ûm) −
(
X3 +

1

2

){ ∂2U−
3

∂xα∂xα
+

∂2û3

∂Xα∂Xα

})
+ (λ + 2µ)

∂u−
3

∂X3

]
|X3=−1

= 0 in ω × Y.

This gives

X−
33 =

∂u−
3

∂X3
= − λ

λ + 2µ

(
γαα(U−

m) + Γαα(ûm) −
(
X3 +

1

2

){ ∂2U−
3

∂xα∂xα
+

∂2û3

∂Xα∂Xα

})
.

Since by (3.4) and (6.2) we have
∫ 0

−1

u−
3 dX3 = 0,

the above relation permits to derive the function u−
3 in terms of the fields U−

m, U−
3 , ûm and û3. Inserting

the obtained expression into (6.9) and using (2.1) lead to

(6.11)





Σ−
11 =

E

1 − ν2

[
γ11(U−

m) + Γ11(ûm) −
(
X3 +

1

2

){∂2U−
3

∂x2
1

+
∂2û3

∂X2
1

}]

+
Eν

1 − ν2

[
γ22(U−

m) + Γ22(ûm) −
(
X3 +

1

2

){∂2U−
3

∂x2
2

+
∂2û3

∂X2
2

}]
,

Σ−
22 =

E

1 − ν2

[
γ22(U−

m) + Γ22(ûm) −
(
X3 +

1

2

){∂2U−
3

∂x2
2

+
∂2û3

∂X2
2

}]

+
Eν

1 − ν2

[
γ11(U−

m) + Γ11(ûm) −
(
X3 +

1

2

){∂2U−
3

∂x2
1

+
∂2û3

∂X2
1

}]
,

Σ−
12 =

E

1 + ν

[
γ12(U−

m) + Γ12(ûm) −
(
X3 +

1

2

){ ∂2U−
3

∂x1∂x2
+

∂2û3

∂X1∂X2

}]
,

Σ−
i3 = 0.

We now first introduce the 2d local displacement field Ũm which belongs to L2(ω; H1(Y ; R2)) through the

formula:

Ũm =
[
X1γ11(U−

m) + X2γ12(U−
m) + û1

]
e1 +

[
X1γ12(U−

m) + X2γ22(U−
m) + û2

]
e2.

Then we consider the local Kirchhoff-Love displacement field defined by

Ũf = −
(
X3 +

1

2

)∂Ũ3

∂X1
e1 −

(
X3 +

1

2

)∂Ũ3

∂X2
e2 + Ũ3e3,

where

Ũ3 =
1

2

[
X2

1

∂2U−
3

∂x2
1

+ 2X1X2
∂2U−

3

∂x1∂x2
+ X2

2

∂2U−
3

∂x2
2

]
+ û3.

Remark that Ũ3 ∈ L2(ω; H2(Y )) (see Lemma 6.1). Hence (6.11) leads to

(6.12)





Σ−
11 =

E

1 − ν2

[
Γ11(Ũm + Ũf ) + νΓ22(Ũm + Ũf )

]
,

Σ−
22 =

E

1 − ν2

[
Γ22(Ũm + Ũf ) + νΓ11(Ũm + Ũf )

]
,

Σ−
12 =

E

1 + ν
Γ12(Ũm + Ũf) Σ−

i3 = 0,
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and with (6.9)

(6.13)





X−
αβ = Γαβ(Ũm + Ũf ),

X−
33 = − λ

λ + 2µ

[
Γ11(Ũm + Ũf) + Γ22(Ũm + Ũf )

]
,

X−
α3 = 0.

7. Kinematic conditions
In this section, we first prove that under the rods, the displacement of the plate is asymptotically a rigid

body displacement. Then we deduce the limit kinematic junction condition betweeen the plate and the rods

from which follows the expression of the limit displacement in the rods.

Using the definition of Tε, we have from (3.16)

‖Tε ◦ Πδ

(
U δ−

e − Rδ
)
‖2
(L2(Ω−×Dk))3 =

1

δ
‖U δ−

e − Rδ‖2
(L2(Cε,δ))3 ≤ Cεδ

(where Dk = kD) and
1

ε
Tε ◦ Πδ

(
U δ−

e − Rδ
)

is bounded in (L2(Ω−; H1(Y )))3. It follows that

1

ε
Tε ◦Πδ

(
U δ−

e − Rδ
)
−→ 0 strongly in (L2(Ω− × Dk))3,

1

ε

∂

Xα
Tε ◦Πδ

(
U δ−

e − Rδ
)

⇀ 0 weakly in (L2(Ω− ×Dk))3.

Due to estimate (3.8) of Rδ+
3 (., ., 0) we have

Rδ+
3 (., ., 0) ⇀ RC

3 weakly in L2(ω).

Notice that if

√
δ

ε
is bounded we have RC

3 = R+
3 and if

√
δ

ε
→ +∞ the function RC

3 is asymptotically the

angle of rotation of the small cylinders included in the plate and below the rods.

In view of the definitions (3.3) of Uδ−
e and of the rigid displacement Rδ (see Section 3.4) and (5.1), we

deduce that

∂U−
α

∂xα
+

∂ûα

∂Xα
−

(
X3 +

1

2

){∂2U−
3

∂x2
α

+
∂2û3

∂X2
α

}
= 0 in ω × Dk,

∂U−
1

∂x2
+

∂û1

∂X2
−

(
X3 +

1

2

){ ∂2U−
3

∂x1∂x2
+

∂2û3

∂X1∂X2

}
= −RC

3 in ω ×Dk,

∂U−
2

∂x1
+

∂û2

∂X1
−

(
X3 +

1

2

){ ∂2U−
3

∂x1∂x2
+

∂2û3

∂X1∂X2

}
= RC

3 in ω ×Dk.

Since all the fields U− and û are independent of X3, the above relations lead to

(7.1)





û1 = −∂U−
1

∂x1
X1 −

{∂U−
1

∂x2
+ RC

3

}
X2 + a1 in ω × Dk,

û2 = −
{∂U−

2

∂x1
−RC

3

}
X1 −

∂U−
2

∂x2
X2 + a2 in ω × Dk,

û3 = −1

2

[∂2U−
3

∂x2
1

X2
1 + 2

∂2U−
3

∂x1∂x2
X1X2 +

∂2U−
3

∂x2
2

X2
2

]
+ a3 + c1X1 + c2X2 in ω × Dk,

where, a priori, the functions a1, a2, a3, c1 and c2 belong to L2(ω). Actually since the field û is defined up

to a field depending only on (x1, x2), we can choose a1 = a2 = a3 = 0.
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Proposition 7.1: We have

(7.2) R+
1 =

∂U−
3

∂x2
, R+

2 = −∂U−
3

∂x1
.

Proof of proposition 7.1: We consider the two first components of the displacement Uδ−
e − Rδ and due

to (3.16) we obtain the estimate

||Rδ−
α −Rδ+

α (., 0)||2L2(Cε) ≤ C
ε

δ

where Cε =
⋃

(p,q)∈Nε

Dε
p,q . Then we have

‖Tε(Rδ−
α ) −Rδ+

α (., 0)||2L2(ω×Dk) ≤ C
ε

δ

and we use the convergences (5.1) and (6.1) to deduce that δRδ+
α (., 0) converges strongly in L2(ω) to R−

α

and then R−
α = R+

α (., 0) in L2(ω).

Remark 7.2 The strong convergence of δRδ+
α (., 0) and the estimate on

∂Rδ+
α

∂x3
in (3.9) show that the

convergence of δRδ+
α is actually strong in L2(ω; H1(0, L)).

Let us end this section with the continuity relation between the traction U+
3 in the rods and the bending U−

3

of the plate on ω. Indeed from (3.16) we have

‖δTε(Uδ−
3 ) − δUδ+

3 (., 0)||2L2(ω×Dk) ≤ Cεδ3

which implies together with estimates (3.9) that δUδ+
3 (.,0) strongly converges to U−

3 in L2(ω × Dk) and

moreover that

(7.3) U+
3 = U−

3 in ω.

As a consequence of (5.2), (7.2) and (7.3), we get

(7.4) U+(x1, x2, x3) = −x3
∂U−

3

∂x1
(x1, x2) e1 − x3

∂U−
3

∂x2
(x1, x2) e2 + U−

3 (x1, x2) e3.

Remark 7.3 The strong convergences of δUδ+
3 (., 0), the fact that δUδ+

α (., 0) → 0 and the estimate on
∂Uδ+

∂x3

in (3.9) show that the convergence of δUδ+ is actually strong in (L2(ω; H1(0, L)))3. Let us emphazise that

the strong convergences of δUδ+ and of δRδ+ together with estimate (3.9) imply that (see also (5.3))

δT ε(uδ
i ) → u+

i = U+
i strongly in L2(ω;H1(D×]0, L[)).

8. The limit membrane problem for the plate and the torsion
in the rods

This section is devoted to express the membrane corrector ûm in terms of four basic membrane correctors.

Using the properties of these basic correctors, we deduce the membrane elastic problem in the plate and we
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obtain the torsion in each rod as the curl of the macroscopic membrane displacement at the corresponding

point of the plate.

Throughout the paper , ve denote by Rq[X1, X2] the space of polynoms of the two variables (X1, X2)

with degree less or equal to the integer q (q ≥ 0) and we set for p = 1, 2 and q = 1,2

Vp
per,Dk,0(Y ) =

{
Φ ∈ Hp

per(Y ) | Φ = 0 on Dk

}

Vp
per,Dk,q(Y ) =

{
Φ ∈ Hp

per(Y ) | Φ ∈ Rq [X1,X2] on Dk, and Φ(0,0) = 0
}

Recall that due to (7.1) we have ûα ∈ V1
per,Dk,1(Y ) and û3 ∈ V2

per,Dk,2(Y ) for almost any (x1, x2) ∈ ω.

8.1 Determination of the membrane corrector ûm

In this step we derive the expression of the fields ûm in terms of U−
m and of four correctors.

In what follow, we denote by χ a function of C∞
0 (Y ) such that χ = 1 on Dk.

Let ψ ∈ C∞
0 (ω) and define the function ψ ε by

ψ ε(x1, x2) =





(
1 − χ

(x1

ε
,
x2

ε

))
ψ (x1, x2) + χ

(x1

ε
,
x2

ε

)
ψ (pε, qε),

if (x1, x2) ∈
]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[
, and (p, q) ∈ Nε,

0, if (x1, x2) ∈ ω \ ω̃ε.

We consider a test displacement of the following type:

vδ
ε(x) = εψ ε(x1, x2)

{
Φ1

(x1

ε
,
x2

ε

)
e1 + Φ2

(x1

ε
,
x2

ε

)
e2

}
in Ωε,δ

where Φα ∈ V1
per,Dk,0(Y ) and we set Φm = Φ1e1 + Φ2e2. Remark that γij(v

δ
ε) = 0 in Ω+

ε and γi3(v
δ
ε) = 0 in

Ωε,δ . We have the following strong convergence:

T ε
(
vδ

ε

)
−→ 0 in (L2(Ω+ × D))3.

Since φ is smooth and ψ − ψ ε tends to 0 in L∞(ω), we easily deduce that

Πδ

(
vδ

ε

)
−→ 0 strongly in (L2(Ω− × Y ))2,

Tε ◦ Πδ

(
γαβ(vδ

ε)
)
−→ ψ Γαβ(Φm) strongly in L2(Ω− × Y ).

We use the above displacement vδ
ε in the formulation (4.4). Since the right hand side of the obtained equation

tends to zero we obtain

E

1 − ν2

∫

Ω−×Y

ψ
[
(1 − ν)Γαβ(Ũm + Ũf )Γαβ(Φm) + νΓαα(Ũm + Ũf)Γββ(Φm)

]
= 0,

which implies that, using also the periodicity of Φm

(8.1)

∫

Y

[
(1 − ν)Γαβ(ûm)Γαβ(Φm) + νΓαα(ûm)Γββ(Φm)

]
= 0 a.e. in Ω−,

for any Φm ∈ [V1
per,Dk,0(Y )]2. Taking into account (7.1), the problem (8.1) is a 2d elasticity problem in

Y \Dk with prescribed displacement given by (7.1) on ∂Dk. In order to obtain the expression of ûm, let us

now introduce the four correctors v̂
(i)
m , i ∈ {1, 2,3, 4} solutions of the following problems:

(8.2)





v̂(i)
m ∈ [V1

per,Dk,1(Y )]2
∫

Y

[
(1 − ν)Γαβ(v̂(i)

m )Γαβ(Φm) + νΓαα(v̂(i)
m )Γββ(Φm)

]
= 0,

∀Φm ∈ [V1
per,Dk,0(Y )]2,

20



with the boundary conditions on ∂Dk

(8.3) v̂(1)
m = X1e1, v̂(2)

m = X2e1, v̂(3)
m = X1e2, v̂(4)

m = X2e2.

Hence using (7.1) we obtain

(8.4) ûm = −γ11(U−
m)v̂(1)

m −
(∂U−

1

∂x2
+ RC

3

)
v̂(2)

m −
(∂U−

2

∂x1
−RC

3

)
v̂(3)

m − γ22(U−
m)v̂(4)

m .

8.2 Properties of the basic membrane correctors v̂
(i)
m

Let us first deduce the equations (for i = 1, . . . 4) that follows from the weak formulation (8.2)

(8.5)





∂2v̂
(i)
m,1

∂X2
1

+
1 − ν

2

∂2v̂
(i)
m,1

∂X2
2

+
1 + ν

2

∂2v̂
(i)
m,2

∂X1∂X2
= 0

∂2v̂
(i)
m,2

∂X2
1

+
1 − ν

2

∂2v̂
(i)
m,2

∂X2
2

+
1 + ν

2

∂2v̂
(i)
m,1

∂X1∂X2
= 0

in Y \ Dk.

The symmetric characters of the unit cell Y and Dk together with the structure of equations (8.5) and

the boundary conditions (8.3) permit to obtain

(8.6)

{
v̂

(4)
m,1(X1,X2) = v̂

(1)
m,2(X2, X1)

v̂
(4)
m,2(X1,X2) = v̂

(1)
m,1(X2, X1)

and

{
v̂

(3)
m,1(X1, X2) = v̂

(2)
m,2(X2, X1)

v̂
(3)
m,2(X1, X2) = v̂

(2)
m,1(X2, X1)

and the following properties of symmetry





v̂
(1)
m,1 is odd with respect to X1 and even w.r.t. X2,

v̂
(1)
m,2 is even w.r.t. X1 and odd w.r.t. X2,

v̂
(2)
m,1 is even w.r.t. X1 and odd w.r.t. X2,

v̂
(2)
m,2 is odd w.r.t. X1 and even w.r.t. X2.

Let us introduce the following notation

< Ψ, Φ >m=

∫

Y

[
(1 − ν)Γαβ(Ψ)Γαβ(Φm) + νΓαα(Ψ)Γββ(Φ)

]
∀(Ψ, Φ) ∈ [H1(Y )]2 × [H1(Y )]2.

Indeed < ·, · >m is a scalar product in [V1
per,Dk,1(Y )]2. The above properties of symmetry of the correctors

imply that

(8.7)

{
< v̂(1)

m , v̂(1)
m >m=< v̂(4)

m , v̂(4)
m >m,

< v̂(2)
m , v̂(2)

m >m=< v̂(3)
m , v̂(3)

m >m .

Through integration by parts we have

< v̂(i)
m , v̂(j)

m >m=

∫

∂Dk

[
Γ11(v̂

(i)
m )n1v̂

(j)
m,1 + (1 − ν)Γ12(v̂

(i)
m )n2v̂

(j)
m,1 + νΓ22(v̂

(i)
m )n1v̂

(j)
m,1

]

+

∫

∂Dk

[
Γ22(v̂

(i)
m )n2v̂

(j)
m,2 + (1 − ν)Γ12(v̂

(i)
m )n1v̂

(j)
m,2 + νΓ11(v̂

(i)
m )n2v̂

(j)
m,2

]
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where n = n1e1 + n2e2 = −X1e1 + X2e2√
X2

1 + X2
2

. We deduce that

(8.8) < v̂(1)
m , v̂(2)

m >m=< v̂(1)
m , v̂(3)

m >m=< v̂(4)
m , v̂(3)

m >m=< v̂(4)
m , v̂(2)

m >m= 0.

Let us now define the 4× 4 real matrix Am by (Am)ij =< v̂
(i)
m , v̂

(j)
m >m for i, j = 1 . . . ,4. As a consequence

of equalities (8.7) and (8.8) we obtain the following structure for the matrix Am:

(8.9) Am =




a 0 0 b
0 c d 0
0 d c 0
b 0 0 a


 where

{
a =< v̂(1)

m , v̂(1)
m >m, b =< v̂(1)

m , v̂(4)
m >m,

c =< v̂(2)
m , v̂(2)

m >m, d =< v̂(2)
m , v̂(3)

m >m .

Indeed the very definition of Am shows that this matrix is positively defined.

8.3 The membrane-torsion problem.

Let φm = φ1e1 + φ2e2 ∈ [C∞
0 (ω)]2 and Θ ∈ C∞

0 (ω). We introduce below the test-displacement which allows,

after passing to the limit in (4.4), to obtain the limit problem which couples the membrane displacement

U−
m of the plate and the torsion angle RC

3 in the cylinders. We set

wδ
ε(x) =





(
1 − χ

(x1

ε
,
x2

ε

))
φm(x1, x2) + χ

(x1

ε
,
x2

ε

)[
φm(pε, qε) − (x2 − qε)Θ(pε, qε)e1

+ (x1 − pε)Θ(pε, qε)e2

]

if (x1, x2) ∈
]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[
, and (p, q) ∈ Nε,

0, if (x1, x2) ∈ ω \ ω̃ε.

This displacement belongs to Vε,δ and satisfies wδ
ε = 0 in (ω\ω̃ε)×]−δ, 0[. Moreover wδ

ε is a rigid displacement

in Ω+
ε,δ. Since φm and Θ are smooth we have

(8.10)

{
δT ε(wδ

ε) → 0 strongly in [L2(Ω × D)]3,

Πδ(w
δ
ε) → φm strongly in [L2(Ω−)]3.

Passing to the limit in the right hand side of (4.4) with the help of (8.10) gives the following term

(8.11)

∫

ω

Fαφα, with Fα(x1, x2) =

∫ 0

−1

fα(x1, x2, X3)dX3.

As far as the strain of the field wδ
ε is concerned, the strong convergences hold true in L2(Ω− × Y )

(8.12)





Tε ◦ Πδ

(
γ11(w

δ
ε)

)
→

(
1 − χ

)
γ11(φm) − ∂χ

∂X1

[
X1

∂φ1

∂x1
+ X2

{∂φ1

∂x2
+ Θ

}]
,

Tε ◦ Πδ

(
γ22(w

δ
ε)

)
→

(
1 − χ

)
γ22(φm) − ∂χ

∂X2

[
X1

{∂φ2

∂x1
− Θ

}
+ X2

∂φ2

∂x2

]
,

Tε ◦ Πδ

(
γ12(w

δ
ε)

)
→

(
1 − χ

)
γ12(φm) − 1

2

∂χ

∂X2

[
X1

∂φ1

∂x1
+ X2

{∂φ1

∂x2
+ Θ

}]

− 1

2

∂χ

∂X1

[
X1

{∂φ2

∂x1
− Θ

}
+ X2

∂φ2

∂x2

]
,

Tε ◦ Πδ

(
γi3(w

δ
ε)

)
= 0.
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Passing to the limit in (4.4) with the test-displacement wδ
ε, using (6.11), (6.12) and the strong convergences

(8.12) leads to

E

1 − ν2

∫

Ω−×Y

[
(1 − ν)Γαβ(Ũm + Ũf )Γαβ(Φ̃m) + νΓαα(Ũm + Ũf)Γββ(Φ̃m)

]
=

∫

ω

Fαφα,

where

Φ̃m =
([

X1γ11(φm) + X2

{∂φ1

∂x2
+ Θ

}]
− χ(X)

[
X1γ11(φm) + X2

{∂φ1

∂x2
+ Θ

}])
e1

+
([

X2γ22(φm) + X1

{∂φ2

∂x1
− Θ

}]
− χ(X)

[
X2γ22(φm) + X1

{∂φ2

∂x1
− Θ

}])
e2.

Using the expressions of Ũf and Φ̃m, we obtain

(8.13)
E

1 − ν2

∫

ω

< Ũm, Φ̃m >m=

∫

ω

Fαφα,

where

Φ̃m =
([

X1γ11(φm) + X2

{∂φ1

∂x2
+ Θ

}]
− χ(X)

[
X1γ11(φm) + X2

{∂φ1

∂x2
+ Θ

}])
e1

+
([

X2γ22(φm) + X1

{∂φ2

∂x1
− Θ

}]
− χ(X)

[
X2γ22(φm) + X1

{∂φ2

∂x1
− Θ

}])
e2.

We have

< Ũm, Φ̃m >m=< ûm, Φ̃m >m +(1 − ν)γαβ(U−
m)γαβ(φm) + νγαα(U−

m)γββ(φm).

Due to the periodicity of ûm, the fact that χ = 1 on Dk and (8.1), we obtain

< ûm, Φ̃m >m=< ûm, Φ̂m >m

where

Φ̂m = −γ11(φm)v̂(1)
m −

(∂φ1

∂x2
+ Θ

)
v̂(2)

m −
(∂φ2

∂x1
−Θ

)
v̂(3)

m − γ22(φm)v̂(4)
m .

Taking into account the definition of the matrix Am we finally obtain

< Ũm, Φ̃m >m= Am




γ11(U−
m)

∂U−
1

∂x2
+ RC

3

∂U−
2

∂x1
−RC

3

γ22(U−
m)


 ·




γ11(φm)
∂φ1

∂x2
+ Θ

∂φ2

∂x1
− Θ

γ22(φm)


 + (1 − ν)γαβ(U−

m)γαβ(φm) + νγαα(U−
m)γββ(φm).

In view of (8.13) and using standard density results, the above equality shows that U−
m and RC

3 are solutions

of the problem

(8.14)





U−
m ∈ H1

0 (ω; R2), RC
3 ∈ L2(ω)

E

1 − ν2

∫

ω

[
Am




γ11(U−
m)

∂U−
1

∂x2
+ RC

3

∂U−
2

∂x1
−RC

3

γ22(U−
m)


 ·




γ11(φ)
∂φ1

∂x2
+ Θ

∂φ2

∂x1
− Θ

γ22(φ)


 + (1 − ν)γαβ(U−

m)γαβ(φ) + νγαα(U−
m)γββ(φ)

]

=

∫

ω

Fαφα, ∀φ ∈ H1
0 (ω; R2), ∀Θ ∈ L2(ω).
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In order to derive RC
3 in terms of U−

m , we first choose φ = 0 in (8.14) and we obtain due to the expression

(8.9) of Am

(c − d)
(∂U−

1

∂x2
− ∂U−

2

∂x1
+ 2RC

3

)
= 0,

which gives since c 6= d

(8.15) RC
3 = −1

2

(∂U−
1

∂x2
− ∂U−

2

∂x1

)
.

Through elimination of the function RC
3 and choosing Θ = 0 in (8.14) permit to obtain the following

Theorem.

Theorem 8.1: The membrane displacement U−
m is the solution of the problem

(8.16)





U−
m ∈ H1

0 (ω;R2),

E

1 − ν2

∫

ω

[
Am




γ11(U−
m)

γ12(U−
m)

γ22(U−
m)


 ·




γ11(φ)
γ12(φ)
γ22(φ)


 + (1 − ν)γαβ(U−

m)γαβ(φ) + νγαα(U−
m)γββ(φ)

]

=

∫

ω

Fαφα, ∀φ ∈ H1
0 (ω; R2),

where

Am =




a 0 b
0 2(c + d) 0
b 0 a




where the real numbers a,b and 2(c + d) are given by

a =< v̂(1)
m , v̂(1)

m >m, b =< v̂(1)
m , v̂(4)

m >m, 2(c + d) =< v̂(2)
m + v̂(3)

m , v̂(2)
m + v̂(3)

m >m .

Remark 8.2 Indeed the properties of the matrix Am show that (8.16) admits a unique solution.

In the standard membrane elastic problem, the usual matrix Am is equal to zero in (8.16) so that the mem-

brane elastic matrix is given by




1 0 ν
0 2(1 − ν) 0
ν 0 1


. Let us emphazise that, in the present case where

δ

ε
→ 0,

the membrane elastic matrix in (8.16) is equal to




1 + a 0 ν + b
0 2(1 − ν + c + d) 0

ν + b 0 1 + a


 which corresponds to

an anisotropic elastic material. This shows that the rods induce microscopic effects on the elastic matrix

of the membrane problem. Actually, since the material is homogeneous, they are due to geometrical effects

which take into account the fact that the rods force the small cylinders Cεδ (in the plate below the rods)

become asymptotically rigid bodies. These microscopic effects do not occur in the case where
δ

ε
→ +∞ (see

[1] and [2]).

9. The limit bending for the plate
This section is organized as the previous one. We first express the bending corrector û3 in terms of

three basic bending correctors and then we deduce the bending macroscopic problem for the plate.

24



9.1 Determination of the bending corrector û3

In this step we derive the expression of the function û3 in terms of U−
3 and of three basic correctors.

We consider a test displacement of the following type:

Vδ
ε(x) = −(x3 + δ/2)

∂Vδ
ε,3

∂x1
e1 − (x3 + δ/2)

∂Vδ
ε,3

∂x2
e2 + Vδ

ε,3e3,

Vδ
ε,3(x) =

ε2

δ
ψ ε(x1, x2)Φ

(x1

ε
,
x2

ε

)
,

where the function ψ ε is defined in Subsection 8.1 and Φ ∈ V2
per,Dk,1(Y ). We first have

‖Vδ
ε‖(L2(Ω+))3 ≤ C

ε

δ
,

and then

δT ε(Vδ
ε) → 0 strongly in [L2(Ω+ × D)]3.

Secondly one has

‖Vδ
ε,3‖L2(ω) ≤ C

ε2

δ
, ‖Πδ(V

δ
ε,α)‖L2(Ω−) ≤ Cε

and then

(9.1)

{
δΠδ(V

δ
ε,3) → 0 strongly in L2(Ω−),

Πδ(V
δ
ε,α) → 0 strongly in L2(Ω−).

Due to the definition of ψ ε and to the properties of Φ, the strain tensor of the above test displacement

is zero in the rods Ω+
ε . As far as this strain tensor in Ω− is concerned, we have

(9.2)





Tε ◦ Πδ

(
γαβ(Vδ

ε)
)
−→ −

(
X3 +

1

2

)
ψ

∂2Φ

∂Xα∂Xβ
strongly in L2(Ω− × Y ),

Tε ◦ Πδ

(
γi3(V

δ
ε)

)
= 0.

Let us introduce the local Kirchhoff-Love displacement Φf

Φf = −
(
X3 +

1

2

) ∂Φ

∂X1
e1 −

(
X3 +

1

2

) ∂Φ

∂X2
e2 + Φe3

so that the limit in (9.2) is nothing else that the strain tensor Γαβ(ψ Φf ). Using this notation, passing to the

limit in (4.4) according to (6.12), (9.1) and (9.2) leads to

E

1 − ν2

∫

Ω−×Y

ψ
[
(1 − ν)Γαβ(Ũm + Ũf)Γαβ(Φf ) + νΓαα(Ũm + Ũf)Γββ(Φf )

]
= 0,

which implies that, using also the periodicity of Φf

(9.3)

∫

Y

[
(1 − ν)

∂2û3

∂Xα∂Xβ

∂2Φ

∂Xα∂Xβ
+ ν∆Xû3∆XΦ

]
= 0 a.e. in Ω−.

Let us now introduce the local correctors in order to explicit the expression of û3 in terms of U−
3 .
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The space V2
per,Dk,2(Y ) is endowed with the scalar product

< Φ, Ψ >f=

∫

Y

[
(1 − ν)

∂2Φ

∂Xα∂Xβ

∂2Ψ

∂Xα∂Xβ
+ ν∆XΦ∆XΨ

]
.

Recalling that χ is a function of C∞
0 (Y ) such that χ = 1 on Dk, the three functions 1/2χ(X)X2

1 , χ(X)X1X2

and 1/2χ(X)X2
2 indeed belong to V2

per,Dk,2(Y ). Let us denote respectively by V̂ (1), V̂ (2) and V̂ (3) the

orthogonal projections of 1/2χ(X)X2
1 , 1/2χ(X)X2

2 and χ(X)X1X2 on the subspace
(
V2

per,Dk,1(Y )
)⊥

with

respect to the scalar product < ., . >f . Remark that the correctors V̂ (1), V̂ (2) and V̂ (3) do not depend on

the function χ since χ = 1 in Dk. Now in view of (9.3), of the quadratic part of û3 given by (7.1) and the

definitions of the correctors we deduce the following decomposition

(9.4) û3 = −∂2U−
3

∂x2
1

V̂ (1) − 2
∂2U−

3

∂x1∂x2
V̂ (2) − ∂2U−

3

∂x2
2

V̂ (3).

9.2 Properties of the basic bending correctors V̂ (i)

Using the explicit expression of the scalar product < ., . >f , the geometrical symmetry of the cell Y

and of Dk and the symmetric properties of the three functions 1/2X2
1 , X1X2 and 1/2X2

2 , we have that

(9.5)





V̂ (3)(X1, X2) = V̂ (1)(X2, X1) and V̂ (2)(X1, X2) = V̂ (2)(X2, X1)

V̂ (1) is even w.r.t. X1 and even w.r.t. X2

V̂ (2) is odd w.r.t. X1 and odd w.r.t. X2

V̂ (3) is even w.r.t. X1 and even w.r.t. X2.

From the above properties of V̂ (1), V̂ (2) and V̂ (3), it follows that

(9.6) < V̂ (1), V̂ (2) >f= 0 and < V̂ (3), V̂ (2) >f= 0.

Let us now define the 3 × 3 real matrix Af by (Af )ij =< V̂ (i), V̂ (j) >f . Indeed, Af is a positively defined

matrix. Moreover, as a consequence of the properties (9.5) and (9.6), we obtain the following structure of

the matrix Af :

Af =




a′ 0 b′

0 c′ 0
b′ 0 a′


 where a′ =< V̂ (1), V̂ (1) >f , b′ =< V̂ (1), V̂ (3) >f , c′ =< V̂ (2), V̂ (2) >f .

9.3 The bending problem.

Let φ be arbitrary in C∞
0 (ω) and define the function φε on ω×] − δ, L[ by

φε(x) =





φ(pε, qε) + (x1 − pε)
∂φ

∂x1
(pε, qε) + (x2 − qε)

∂φ

∂x2
(pε, qε)

if x ∈
]
εp − ε

2
, εp +

ε

2

[
×

]
εq − ε

2
, εq +

ε

2

[
×]− δ, L[, and (p, q) ∈ Nε,

0 if x ∈ (ω \ ω̃ε)×] − δ,L[.

We choose the following test displacement of Vε,δ

wδ
ε,α(x) = −(x3 + δ/2)

∂wδ
ε,3

∂xα
where wδ

ε,3(x) =
1

δ

(
1− χ

(x1

ε
,
x2

ε

))
φ +

1

δ
χ
(x1

ε
,
x2

ε

)
φε(x).

26



Let us notice that the displacement wδ
ε is a rigid displacement in each rod of Ω+

ε while it is a Kirchhoff-Love

displacement in Ω−
δ . Since φ is smooth and

φ − φε

ε
tends to 0 in L∞(ω), we have the following convergences:

(9.7)





δT ε(wδ
ε,α) → −x3

∂φ

∂xα
strongly in L2(Ω+ × D),

δT ε(wδ
ε,3) → φ strongly in L2(Ω+ × D),

Πδ(w
δ
ε,α) → −

(
X3 +

1

2

) ∂φ

∂xα
strongly in L2(Ω−),

δΠδ(w
δ
ε,3) → φ strongly in L2(Ω−).

Now we derive the limit of the unfold strain γij(w
δ
ε). We only detail the computations for γ11(w

δ
ε). We have

Tε ◦ Πδ

(
γ11(w

δ
ε)

)
= −

(
X3 +

1

2

)[(
1 − χ

)
Tε

(∂2φ

∂x2
1

)
− 2

Tε

( ∂φ

∂x1

)
− Tε

(∂φε

∂x1

)

ε

∂χ

∂X1
−

Tε

(
φ) − Tε

(
φε)

ε2

∂2χ

∂X2
1

]
.

We use the following results which can be found in Lemma A1 in Appendix A of [2] and which allow to pass

to the limit in Tε ◦Πδ

(
γ11(w

δ
ε)

)

Tε

( ∂φ

∂x1

)
− Tε

(∂φε

∂x1

)

ε
→ X1

∂2φ

∂x2
1

+ X2
∂2φ

∂x1∂x2
strongly in L∞(ω × Y ),

Tε

(
φ) − Tε

(
φε)

ε2
→ 1

2

[
X2

1

∂2φ

∂x2
1

+ 2X1X2
∂2φ

∂x1∂x2
+ X2

2

∂2φ

∂x2
2

]
strongly in L∞(ω × Y ).

Proceeding similarly for the other components of the strain tensor, we finally obtain:

(9.8)





Tε ◦ Πδ

(
γαα(wδ

ε)
)
−→ −

(
X3 +

1

2

)((
1 − χ

) ∂2φ

∂x2
α

− 2
∂χ

∂Xα

[
X1

∂2φ

∂x1∂xα
+ X2

∂2φ

∂x2∂xα

]

− 1

2

∂2χ

∂X2
α

[
X2

1

∂2φ

∂x2
1

+ 2X1X2
∂2φ

∂x1∂x2
+ X2

2

∂2φ

∂x2
2

])
,

Tε ◦ Πδ

(
γ12(w

δ
ε)

)
−→ −

(
X3 +

1

2

)((
1 − χ

) ∂2φ

∂x1∂x2
− ∂χ

∂X1

[
X1

∂2φ

∂x1∂x2
+ X2

∂2φ

∂x2
2

]

− ∂χ

∂X2

[
X1

∂2φ

∂x2
1

+ X2
∂2φ

∂x1∂x2

]
− 1

2

∂2χ

∂X1∂X2

[
X2

1

∂2φ

∂x2
1

+ 2X1X2
∂2φ

∂x1∂x2
+ X2

2

∂2φ

∂x2
2

])
,

Tε ◦ Πδ

(
γi3(w

δ
ε)

)
= 0.

Let us introduce the local Kirchhoff-Love displacement Φ̃f (i.e. with respect to the local variables (X1, X2,X3))

Φ̃f = −
(
X3 +

1

2

)∂Φ̃3

∂X1
e1 −

(
X3 +

1

2

)∂Φ̃3

∂X2
e2 + Φ̃3e3

where Φ̃3 =
[X2

1

2

∂2φ

∂x2
1

+ X1X2
∂2φ

∂x1∂x2
+

X2
2

2

∂2φ

∂x2
2

]
− χ

2

[
X2

1

∂2φ

∂x2
1

+ 2X1X2
∂2φ

∂x1∂x2
+ X2

2

∂2φ

∂x2
2

]
.

Passing to the limit in (4.4) with the test-displacement wδ
ε, using (6.11), (6.12), (9.7) and the strong con-

vergences (9.8) leads to the following problem:

E

1 − ν2

∫

Ω−×Y

[
(1 − ν)Γαβ(Ũm + Ũf )Γαβ(Φ̃f ) + νΓαα(Ũm + Ũf )Γββ(Φ̃f)

]
=

∫

ω

F3φ −
∫

ω

Gα
∂φ

∂xα
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where

(9.9)





F3 =

∫ 0

−1

f3(., ., X3)dX3 + k2

∫ L

0

f3(., ., x3)dx3,

Gα =

∫ 0

−1

(
X3 +

1

2

)
fα(., ., X3)dX3 + k2

∫ L

0

x3fα(., ., x3)dx3.

Then using the fact that Ũm does not depend of X3, the above equation gives

(9.10)
E

12(1 − ν2)

∫

ω

< Ũf , Φ̃f >f=

∫

ω

F3φ −
∫

ω

Gα
∂φ

∂xα
.

Now we set

ûf = −
(
X3 +

1

2

) ∂û3

∂X1
e1 −

(
X3 +

1

2

) ∂û3

∂X2
e2 + û3e3

so that

< Ũf , Φ̃f >f=< ûf , Φ̃f >f +(1 − ν)
∂2U−

3

∂xα∂xβ

∂2φ

∂xα∂xβ
+ ν∆U−

3 ∆φ.

Due to the periodicity of ûf , the fact that χ = 1 on Dk and (9.3) we obtain

< ûf , Φ̃f >f=< ûf , Φ̂f >f ,

where

Φ̂f = −
(
X3 +

1

2

)∂Φ̂3

∂X1
e1 −

(
X3 +

1

2

)∂Φ̂3

∂X2
e2 + Φ̂3e3,

Φ̂3 = − ∂2φ

∂x2
1

V̂ (1) − 2
∂2φ

∂x1∂x2
V̂ (2) − ∂2φ

∂x2
2

V̂ (3).

Taking into account the definition of the matrix Af we finally obtain

< Ũf , Φ̃f >f= Af




∂2U−
3

∂x2
1

∂2U−
3

∂x1∂x2

∂2U−
3

∂x2
2







∂2φ
∂x2

1

∂2φ
∂x1∂x2

∂2φ
∂x2

2


 + (1 − ν)

∂2U−
3

∂xα∂xβ

∂2φ

∂xα∂xβ
+ ν∆U−

3 ∆φ.

In view of (9.10) and using standard density arguments, the above equality shows that U−
3 is the unique

solution of the problem detailed in the following theorem.

Theorem 9.1: The bending U−
3 is the unique solution of the problem

(9.11)





U−
3 ∈ H2

0 (ω)

E

12(1 − ν2)

∫

ω

[
Af




∂2U−
3

∂x2
1

∂2U−
3

∂x1∂x2

∂2U−
3

∂x2
2







∂2φ
∂x2

1

∂2φ
∂x1∂x2

∂2φ
∂x2

2


 + (1 − ν)

∂2U−
3

∂xα∂xβ

∂2φ

∂xα∂xβ
+ ν∆U−

3 ∆φ
]

=

∫

ω

F3φ −
∫

ω

Gα
∂φ

∂xα

∀φ ∈ H2
0 (ω)
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where

Af =




a′ 0 b′

0 c′ 0
b′ 0 a′


 with a′ =< V̂ (1), V̂ (1) >f , b′ =< V̂ (1), V̂ (3) >f , c′ =< V̂ (2), V̂ (2) >f .

Remark 9.2 Indeed the properties of the matrix Af show that (9.11) admits a unique solution.

Let us notice that, as for the membrane problem (8.16), there are microscopic effects of the rods on the

bending elastic matrix in the problem (9.11) since the usual bending matrix for a homogeneous material is

simply




1 0 ν
0 2(1 − ν) 0
ν 0 1


 while here it is equal to




1 + a′ 0 ν + b′

0 2(1 − ν) + c′ 0
ν + b′ 0 1 + a′


.

10. Convergence of the energies

In this section we prove that the rescaled elastic energy
1

δ
E(uδ) converges to the total energy of the

limit problems (8.16) and (9.11) as δ tends to zero. We take uδ as a test displacement in (2.5) and we use

the inequality

(10.1)





k2

δ

∫

Ω+×D

T ε(σδ
ij)T ε(γij(u

δ))dx1dx2dx3dX1dX2

+

∫

Ω−×Y

Tε ◦ Πδ(σ
δ
ij)Tε ◦ Πδ(γij(u

δ))dx1dx2dX3dX1dX2 ≤ 1

δ
E(uδ)

to obtain

(10.2)





k2

δ

∫

Ω+×D

T ε(σδ
ij)T ε(γij(u

δ))dx1dx2dx3dX1dX2

+

∫

Ω−×Y

Tε ◦ Πδ(σ
δ
ij)Tε ◦ Πδ(γij(u

δ))dx1dx2dX3dX1dX2

≤k2δ

∫

Ω+×D

T ε(f) · T ε(uδ)dx1dx2dx3dX1dX2

+

∫

Ω−
Πδ(fα)Πδ(u

δ
α)dx1dx2dX3 + δ

∫

Ω−
Πδ(f3)Πδ(u

δ
3)dx1dx2dX3.

Using (5.1),(5.3), (6.1), (6.7), (7.2), (8.11), (9.9) to pass to the limit in (10.2), leads to

(10.3)





A = lim sup
δ→0

(k2

δ

∫

Ω+×D

T ε(σδ
ij)T ε(γij(u

δ))dx1dx2dx3dX1dX2

+

∫

Ω−×Y

Tε ◦Πδ(σ
δ
ij)Tε ◦ Πδ(γij(u

δ))dx1dx2dX3dX1dX2

)

≤
∫

ω

FαU−
α +

∫

ω

F3U−
3 −

∫

ω

Gα
∂U−

3

∂xα
.

From (8.14) in which we choose φ = U−
m and Θ = RC

3 we obtain

∫

ω

FαU−
α =

E

1 − ν2

∫

ω

[
Am




γ11(U−
m)

γ12(U−
m)

γ21(U−
m)

γ22(U−
m)


 ·




γ11(U−
m)

γ12(U−
m)

γ21(U−
m)

γ22(U−
m)


 + (1 − ν)γαβ(U−

m)γαβ(U−
m) + νγαα(U−

m)γββ(U−
m)

]
.

29



Now from (8.4), (8.15), the definition of the matrix Am and the periodicity of ûm we deduce

∫

ω

FαU−
α =

E

1 − ν2

∫

ω

[
< ûm, ûm >m +(1 − ν)γαβ(U−

m)γαβ(U−
m) + νγαα(U−

m)γββ(U−
m)

]

=
E

1 − ν2

∫

ω

< Ũm, Ũm >m .

Proceding similarly from (9.11) we obtain

∫

ω

F3U−
3 −

∫

ω

Gα
∂U−

3

∂xα
=

E

12(1 − ν2)

∫

ω

< Ũf , Ũf >f .

Notice that

E

1 − ν2

∫

ω

< Ũm, Ũm >m +
E

12(1 − ν2)

∫

ω

< Ũf , Ũf >f

=
E

1 − ν2

∫

ω×Y

[
(1 − ν)Γαβ(Ũm)Γαβ(Ũm) + νΓαα(Ũm)Γββ(Ũm)

]

+
E

12(1 − ν2)

∫

ω×Y

[
(1 − ν)Γαβ(Ũf)Γαβ(Ũf) + νΓαα(Ũf)Γββ(Ũf)

]

=
E

1 − ν2

∫

Ω−×Y

[
(1 − ν)Γαβ(Ũm + Ũf )Γαβ(Ũm + Ũf) + νΓαα(Ũm + Ũf )Γββ(Ũm + Ũf )

]
.

Then using (10.3), the above equalities lead to

A ≤ E

1 − ν2

∫

Ω−×Y

[
(1 − ν)Γαβ(Ũm + Ũf )Γαβ(Ũm + Ũf) + νΓαα(Ũm + Ũf )Γββ(Ũm + Ũf )

]
.

Now from (6.12) and (6.13), the right hand side of the above inequality can be expressed as

A ≤
∫

Ω−×Y

Σ−
ijX

−
ij

so that the definition of A in (10.3), the linear constitutive relation (2.1) and the classical l.s.c. argument

permit to conclude that

(10.4)





1√
δ
T ε(σδ

ij) → 0 strongly in L2(Ω+ × D),

1√
δ
T ε(γij(u

δ)) → 0 strongly in L2(Ω+ × D),

and

(10.5)

{
Tε ◦ Πδ(γij(u

δ)) → X−
ij strongly in L2(Ω− × Y ),

Tε ◦ Πδ(σ
δ
ij) → Σ−

ij strongly in L2(Ω− × Y ).

Indeed the above analysis and the strong convergences (10.4) and (10.5) show that the elastic energy of the

problem (2.5) converges to the total energy of the limit problems (8.16) and (9.11) i.e.

1

δ
E(uδ) −→ E

1 − ν2

∫

ω

[
Am




γ11(U−
m)

γ12(U−
m)

γ22(U−
m)


 ·




γ11(U−
m)

γ12(U−
m)

γ22(U−
m)


 + (1 − ν)γαβ(U−

m)γαβ(U−
m) + νγαα(U−

m)γββ(U−
m)

]

+
E

12(1 − ν2)

∫

ω

[
Af




∂2U−
3

∂x2
1

∂2U−
3

∂x1∂x2

∂2U−
3

∂x2
2







∂2U−
3

∂x2
1

∂2U−
3

∂x1∂x2

∂2U−
3

∂x2
2


 + (1 − ν)

∂2U−
3

∂xα∂xβ

∂2U−
3

∂xα∂xβ
+ ν∆U−

3 ∆U−
3

]
.
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