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INTRODUCTION AND MAIN RESULTS

We set ∆ = -(∂ 11 + ∂ 22 ) on open set Ω of R 2 with a smooth (or C 2,α , α > 0) boundary.

We consider the following equation:

(P ) ∆u = V e u in Ω ⊂ R 2 , u = 0 in ∂Ω.
Here, we assume that: 1 (Ω) and u ∈ W 1,1 0 (Ω).

0 ≤ V ≤ b < +∞, e u ∈ L
We can see in [START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF] a nice formulation of this problem (P ) in the sense of the distributions. This Problem arises from geometrical and physical problems see for example [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Nagasaki | Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities[END_REF][START_REF] Tarantello | Multiple condensate solutions for the Chern-Simons-Higgs theory[END_REF]. The above equation was studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Chang | Scalar curvature equation on 2and 3-spheres[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] De Figueiredo | A priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations[END_REF][START_REF] Ding | The differential equation ∆u = 8π -8πhe u on a compact Riemann surface[END_REF][START_REF] Gilbarg | Elliptic Partial Differential Equations of Second order[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF][START_REF] Nagasaki | Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities[END_REF][START_REF] Tarantello | Multiple condensate solutions for the Chern-Simons-Higgs theory[END_REF], where one can find some existence and compactness results. In [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] we have the following important Theorem, Theorem A(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).For (u i ) i and (V i ) i two sequences of functions relative to (P ) with,

0 < a ≤ V i ≤ b < +∞ then, for all compact subset K of Ω it holds, sup K u i ≤ c,
with c depending on a, b, K and Ω.

One can find in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] an interior estimate if we assume a = 0, but we need an assumption on the integral of e u i , namely, we have: Theorem B(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).For (u i ) i and (V i ) i two sequences of functions relative to the problem (P ) with, 0 ≤ V i ≤ b < +∞ and Ω e u i dy ≤ C, then, for all compact subset K of Ω it holds;

sup K u i ≤ c,
with c depending on b, C, K and Ω.

We look to the uniform boundedness on all Ω of sequences of solutions of the Problem (P ). Remark that, when a = 0 the boundedness of Ω e u i is a necessary condition in the problem (P ) as showed in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] by the following counterexample.

Theorem C(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).There are two sequences (u i ) i and (V i ) i of the problem (P ) with,

0 ≤ V i ≤ b < +∞ and Ω e u i dy ≤ C, such that, sup Ω u i → +∞.
To obtain the two first previous results (Theorems A and B) Brezis and Merle used an inequality (Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) obtained by an approximation argument with the Fatou's lemma and they applied the maximum principle in W 1,1 0 (Ω) which arises from Kato's inequality. Also this weak form of the maximum principle is used to prove the local uniform boundedness result by comparing a certain function and the Newtonian potential. We refer to [START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF] for a topic about the weak form of the maximum principle.

Remarks: 1) Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], can be obtained by the usual maximum principle and Agmon regularity theorem which require C 2 regularity on the domain.

2) The duality Theorem which we use require C 2 regularity on the domain, see Gilbarg-Trudinger books.

Note that for the problem (P ), by using the Pohozaev identity, we can prove that Ω e u i is uniformly bounded when 0 < a ≤ V i ≤ b < +∞ and ||∇V i || L ∞ ≤ A and Ω starshaped, when a = 0 and ∇ log V i is uniformly bounded, we can bound uniformly Ω V i e u i . In [START_REF] Ma | Convergence for a Liouville equation[END_REF] Ma-Wei have proved that those results stay true for all open sets not necessarily starshaped.

In [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF] Chen-Li have proved that if a = 0 and ∇ log V i is uniformly bounded, then the functions are uniformly bounded near the boundary.

In [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF] Chen-Li have proved that if a = 0 and Ω e u i is uniformly bounded and ∇ log V i is uniformly bounded, then we have the compactness result directly. Ma-Wei in [START_REF] Ma | Convergence for a Liouville equation[END_REF], extend this result in the case where a > 0.

If we assume V more regular, we can have another type of estimates called sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF] that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
One can see in [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF] an explicit value of C a b = a b . In his proof Shafrir has used a blow-up function, the Stokes formula and an isoperimetric inequality see [START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (V i ) i uniformly Lipschitzian with A its Lipschitz constant then C(a/b) = 1 and c = c(a, b, A, K, Ω) see Brezis-Li-Shafrir [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. This result was extended for Hölderian sequences (V i ) i by Chen-Lin, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF]. Also, one can see in [START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF] an extension of the Brezis-Li-Shafrir result to compact Riemannian surfaces without boundary. One can see in [START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF] explicit form, (8πm, m ∈ N * exactly), for the numbers in front of the Dirac masses when the solutions blow-up. Here, the notion of isolated blow-up point is used.

In [START_REF] Chang | Scalar curvature equation on 2and 3-spheres[END_REF] we have some a priori estimates on the 2 and 3-spheres S 2 , S 3 .

Here we give the behavior of the blow-up points on the boundary and a proof of Brezis-Merle Problem with Lipschitz condition.

The Brezis-Merle Problem (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) is:

Problem. Suppose that V i → V in C 0 ( Ω) with 0 ≤ V i . Also, we consider a sequence of solutions (u i ) of (P ) relative to (V i ) such that, Ω e u i dx ≤ C,
is it possible to have:

||u i || L ∞ ≤ C?
Here, we give a caracterization of the behavior of the blow-up points on the boundary and also, in particular we extend Chen-Li theorems, indeed, the result of Chen-Li holds for analytic domains and our result holds for smooth of C 2,α domains. For the behavior of the blow-up points on the boundary, the following condition is enough,

0 ≤ V i ≤ b.
The condition V i → V in C 0 ( Ω) is not necessary, but for the proof of the compactness for the Brezis-Merle problem we assume that:

||∇V i || L ∞ ≤ A.
Our main results are: Theorem 1.1. Assume that max Ω u i → +∞, where (u i ) are solutions of the problem (P ) with:

0 ≤ V i ≤ b and Ω e u i dx ≤ C, ∀ i,
then, after passing to a subsequence, there is a function u, there is a number N ∈ N and there are N points x 1 , . . . , x N ∈ ∂Ω, such that,

∂ ν u i → ∂ ν u + N j=1 α j δ x j , α j ≥ 4π, in the sense of measures on ∂Ω. u i → u in C 1 loc ( Ω -{x 1 , . . . , x N }). Theorem 1.2.
Assume that (u i ) are solutions of (P ) relative to (V i ) with the following conditions:

0 ≤ V i ≤ b, ||∇V i || L ∞ ≤ A and Ω e u i ≤ C, we have, ||u i || L ∞ ≤ c(b, A, C, Ω).
In the previous theorem we have a proof of the global a priori estimate which concern the problem (P ). The proof of Chen-Li and Ma-Wei [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF], use the moving-plane method for the case ∇ log V i uniformly bounded near the boundary (and C 2,α domain, 1 ≥ α > 0) and for analytic domain for the case ∇V i uniformly bounded.

To prove Theorem 1.2, we argue by contradiction and use Theorem 1.1.

PROOF OF THE THEOREMS

Proof of theorem 1.1:

We have:

u i ∈ W 1,1 0 (Ω).
Since e u i ∈ L 1 (Ω) by the corollary 1 of Brezis-Merle's paper (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) we have e u i ∈ L k (Ω) for all k > 2 and the elliptic estimates of Agmon and the Sobolev embedding (see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]) imply that:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
We denote by ∂ ν u i the inner normal derivative. By the maximum principle we have, ∂ ν u i ≥ 0.

By the Stokes formula we have,

∂Ω ∂ ν u i dσ ≤ C,
We use the weak convergence in the space of Radon measures to have the existence of a nonnegative Radon measure µ such that,

∂Ω ∂ ν u i ϕdσ → µ(ϕ), ∀ ϕ ∈ C 0 (∂Ω).
We take an x 0 ∈ ∂Ω such that, µ(x 0 ) < 4π. For ǫ > 0 small enough set I ǫ = B(x 0 , ǫ) ∩ ∂Ω. We choose a function η ǫ such that,

           η ǫ ≡ 1, on I ǫ , 0 < ǫ < δ/2, η ǫ ≡ 0, outside I 2ǫ , 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I 2ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
We take a ηǫ such that,

∆η ǫ = 0 in Ω ⊂ R 2 , ηǫ = η ǫ in ∂Ω.
Remark: We use the following steps in the construction of η ǫ :

We take a cutoff function η 0 in B(0, 2) or B(x 0 , 2):

1-We set η ǫ (x) = η 0 (|x -x 0 |/ǫ) in the case of the unit disk it is sufficient.

2-Or, in the general case: we use a chart (f, Ω = f (B r (0))), for r > 0 small enough and f (0) = x 0 and we take µ ǫ (x) = η 0 (f (|x|/ǫ)) to have connected sets I ǫ and we take η ǫ (y

) = µ ǫ (f -1 (y)). Because f, f -1 are Lipschitz, |f (x) -x 0 | ≤ k 2 |x| ≤ 1 for |x| ≤ 1/k 2 and |f (x) -x 0 | ≥ k 1 |x| ≥ 2 for |x| ≥ 2/k 1 > 1/k 2 , the support of η is in I (2/k 1 )ǫ .            η ǫ ≡ 1, on f (I (1/k 2 )ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside f (I (2/k 1 )ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I (2/k 1 )ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
3-Also, we can take:

µ ǫ (x) = η 0 (|x|/ǫ) and η ǫ (y) = µ ǫ (f -1 (y)), we extend it by 0 outside f (B 1 (0)). We have f (B 1 (0)) = D 1 (x 0 ), f (B ǫ (0)) = D ǫ (x 0 ) and f (B + ǫ ) = D + ǫ (x 0 ) with f and f -1 smooth diffeo- morphism.            η ǫ ≡ 1, on the connected set J ǫ = f (I ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside J ′ ǫ = f (I 2ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (J ′ ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
And,

H 1 (J ′ ǫ ) ≤ C 1 H 1 (I 2ǫ ) = C 1 4ǫ, because f is Lipschitz.
Here H 1 is the Hausdorff measure.

We solve the Dirichlet Problem:

∆η ǫ = ∆η ǫ in Ω ⊂ R 2 , ηǫ = 0 in ∂Ω.
and finaly we set ηǫ = -η ǫ + η ǫ . Also, by the maximum principle and the elliptic estimates we have :

||∇η ǫ || L ∞ ≤ C(||η ǫ || L ∞ + ||∇η ǫ || L ∞ + ||∆η ǫ || L ∞ ) ≤ C 1 ǫ 2 ,
with C 1 depends on Ω.

We use the following estimate, see [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Tarantello | Multiple condensate solutions for the Chern-Simons-Higgs theory[END_REF],

||∇u i || L q ≤ C q , ∀ i and 1 < q < 2.
We deduce from the last estimate that, (u i ) converge weakly in W 1,q 0 (Ω), almost everywhere to a function u ≥ 0 and Ω e u < +∞ (by Fatou's lemma). Also, V i weakly converge to a nonnegative function V in L ∞ . The function u is in W 1,q 0 (Ω) solution of :

∆u = V e u ∈ L 1 (Ω) in Ω ⊂ R 2 , u = 0 in ∂Ω.
According to the corollary 1 of Brezis-Merle result, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], we have e ku ∈ L 1 (Ω), k > 1. By the elliptic estimates, we have u ∈ C 1 ( Ω).

For two vectors v, w of R 2 we denote by v • w the inner product of v and w.

We can write,

∆((u i -u)η ǫ ) = (V i e u i -V e u )η ǫ -2∇(u i -u) • ∇η ǫ . (1) 
We use the interior esimate of Brezis-Merle, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between ηǫ and u, we obtain,

Ω V e u ηǫ dx = ∂Ω ∂ ν uη ǫ ≤ C ′ ǫ||∂ ν u|| L ∞ = Cǫ (2)
We have,

∆u i = V i e u i in Ω ⊂ R 2 , u i = 0 in ∂Ω.
We use the Green formula between u i and ηǫ to have:

Ω V i e u i ηǫ dx = ∂Ω ∂ ν u i η ǫ dσ → µ(η ǫ ) ≤ µ(J ′ ǫ ) ≤ 4π -ǫ 0 , ǫ 0 > 0 (3) 
From (2) and (3) we have for all ǫ > 0 there is i 0 = i 0 (ǫ) such that, for i ≥ i 0 ,

Ω |(V i e u i -V e u )η ǫ |dx ≤ 4π -ǫ 0 + Cǫ (4) 
Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σ ǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ 3 } and Ω ǫ 3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ 3 }, ǫ > 0. Then, for ǫ small enough, Σ ǫ is a manifold. The measure of Ω -Ω ǫ 3 is k ǫ 3 ≤ meas(Ω -Ω ǫ 3 ) = µ L (Ω -Ω ǫ 3 ) ≤ k 1 ǫ 3 .
Here µ L is the Lebesgue measure.

Remark: for the unit ball B(0, 1), our new manifold is B(0, 1 -ǫ 3 ).

( Proof of this fact; let's consider d(x, ∂Ω) = d(x, z 0 ), z 0 ∈ ∂Ω, this imply that (d(x, z 0 )) 2 ≤ (d(x, z)) 2 for all z ∈ ∂Ω which it is equivalent to (z -z 0 ) • (2x -z -z 0 )
≤ 0 for all z ∈ ∂Ω, let's consider a chart around z 0 and γ(t) a curve in ∂Ω, we have;

(γ(t) -γ(t 0 ) • (2x -γ(t) -γ(t 0 )) ≤ 0 and it is clear that, γ ′ (t 0 ) • (x -γ(t 0 )) = 0, which imply that x = z 0 -sν 0 where ν 0 is the outward normal of ∂Ω at z 0 ))
With this fact, we can say that S = {x, d(x, ∂Ω) ≤ ǫ} = {x = z 0 -sν z 0 , z 0 ∈ ∂Ω, -ǫ ≤ s ≤ ǫ}. It is sufficient to work on ∂Ω. Let's consider a charts (z, D = B(z, 4ǫ z ), γ z ) with z ∈ ∂Ω such that ∪ z B(z, ǫ z ) is cover of ∂Ω . One can extract a finite cover (B(z k , ǫ k )), k = 1, ..., m, by the area formula the measure of S ∩ B(z k , ǫ k ) is less than a kǫ (a ǫ-rectangle). For the reverse inequality, it is sufficient to consider one chart around one point on the boundary).

We write,

Ω |∇(u i -u) • ∇η ǫ |dx = Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx + Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
(5)

Step 2.1:

Estimate of Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
First, we know from the elliptic estimates that

||∇η ǫ || L ∞ ≤ C 1 /ǫ 2 , C 1 depends on Ω
We know that (|∇u i |) i is bounded in L q , 1 < q < 2, we can extract from this sequence a subsequence which converge weakly to h ∈ L q . But, we know that we have locally the uniform convergence to |∇u| (by Brezis-Merle's theorem), then, h = |∇u| a.e. Let q ′ be the conjugate of q.

We have, ∀f ∈ L q ′ (Ω)

Ω |∇u i |f dx → Ω |∇u|f dx
If we take f = 1 Ω-Ω ǫ 3 , we have:

for ǫ > 0 ∃ i 1 = i 1 (ǫ) ∈ N, i ≥ i 1 , Ω-Ω ǫ 3 |∇u i | ≤ Ω-Ω ǫ 3 |∇u| + ǫ 3 . Then, for i ≥ i 1 (ǫ), Ω-Ω ǫ 3 |∇u i | ≤ meas(Ω -Ω ǫ 3 )||∇u|| L ∞ + ǫ 3 = ǫ 3 (k 1 ||∇u|| L ∞ + 1).
Thus, we obtain,

Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 1) (6) 
The constant C 1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of

Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
We know that, Ω ǫ ⊂⊂ Ω, and ( because of Brezis-Merle's interior estimates)

u i → u in C 1 (Ω ǫ 3 ). We have, ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ≤ ǫ 3 , for i ≥ i 3 = i 3 (ǫ).
We write,

Ω ǫ3 |∇(u i -u) • ∇η ǫ |dx ≤ ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ||∇η ǫ || L ∞ ≤ C 1 ǫ for i ≥ i 3 , For ǫ > 0, we have for i ∈ N, i ≥ max{i 1 , i 2 , i 3 }, Ω |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 2) (7) 
From (4) and (7), we have, for ǫ > 0, there is i

3 = i 3 (ǫ) ∈ N, i 3 = max{i 0 , i 1 , i 2 } such that, Ω |∆[(u i -u)η ǫ ]|dx ≤ 4π -ǫ 0 + ǫ2C 1 (2k 1 ||∇u|| L ∞ + 2 + C) (8) 
We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

∆[(u i -u)η ǫ ] = g i,ǫ in Ω ⊂ R 2 , (u i -u)η ǫ = 0 in ∂Ω. with ||g i,ǫ || L 1 (Ω) ≤ 4π -ǫ 0 /2.
We can use Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] to conclude that there is q ≥ q > 1 such that:

Vǫ(x 0 ) e q|u i -u| dx ≤ Ω e q|u i -u|ηǫ dx ≤ C(ǫ, Ω).
where, V ǫ (x 0 ) is a neighberhooh of x 0 in Ω. Here we have used that in a neighborhood of x 0 by the elliptic estimates, 1 -Cǫ ≤ ηǫ ≤ 1. (We can take, f (B ǫ 3 (0)) and we have

B k 2 ǫ 3 (x 0 ) ⊂ f (B ǫ 3 (0)) ⊂ B k 1 ǫ 3 (x 0 ) for a chart (f, B 1 (0)) around x 0 ).
Thus, for each x 0 ∈ ∂Ω -{x 1 , . . . , xm } there is ǫ x 0 > 0, q x 0 > 1 such that:

B(x 0 ,ǫx 0 ) e qx 0 u i dx ≤ C, ∀ i. (9) 
By the elliptic estimates (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second order[END_REF]) (u i ) i is uniformly bounded in W 2,q 1 (V ǫ (x 0 )) and also, in C 1 (V ǫ (x 0 )). Finaly, we have, for some ǫ > 0 small enough,

||u i || C 1,θ [B(x 0 ,ǫ)] ≤ c 3 ∀ i.
We have proved that, there is a finite number of points x1 , . . . , xm such that the squence (u i ) i is locally uniformly bounded (in C 1,θ , θ > 0) in Ω -{x 1 , . . . , xm }.

Proof of theorem 1.2:

We know that:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
We can do integration by parts. The first Pohozaev identity applied around each blow-up point see for example [START_REF] Ma | Convergence for a Liouville equation[END_REF] gives :

∂Ωx k [(∂ ν u i )∇u i - 1 2 ||∇u i | 2 ν]dx = Ωx k ∇V i e u i - ∂Ωx k V i e u i ν, (10) 
Here Ω x k is a neighborhood of x k on which we can use the integration by part obtained by a chart around x k .

We use the boundary condition on Ω and the boundedness of u i and ∂ j u i outside the x k , to have:

∂Ω (∂ ν u i ) 2 dx ≤ c 0 (b, A, C, Ω). ( 11 
)
Thus we can use the weak convergence in L 2 (∂Ω) to have a subsequence ∂ ν u i , such that:

∂Ω ∂ ν u i ϕdx → ∂Ω ∂ ν uϕdx, ∀ ϕ ∈ L 2 (∂Ω), (12) 
Thus, α j = 0, j = 1, . . . , N and (u i ) is uniformly bounded.
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