N

N
N

HAL

open science

About Brézis-Merle Problem in dimension 2.

Samy Skander Bahoura

» To cite this version:

‘ Samy Skander Bahoura. About Brézis-Merle Problem in dimension 2.. 2007. hal-00149613v1

HAL Id: hal-00149613
https://hal.science/hal-00149613v1
Preprint submitted on 28 May 2007 (v1), last revised 3 Aug 2020 (v9)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00149613v1
https://hal.archives-ouvertes.fr

hal-00149613, version 1 - 28 May 2007

ABOUT A BREZISMERLE PROBLEM IN DIMENSION 2.

SAMY SKANDER BAHOURA

ABSTRACT. On a bounded open s@tof R? with smooth boundary, we consider two sequences
of functions(u; ); and(V;); such that,

Au; = Vie™i in Q,
u; =0, on 9.
With,0 < a <V; <b < +oo.

Assume that,
/ e%idr < C.
Q

a >0,
or,

a=0and V; -V in C%Q).
We have,

HUZHLOO(Q) < C(“‘v b,C, Q)

1. INTRODUCTION AND RESULTS.

We setA = —9;; — 01 the geometric Laplacian dR?.
On an open se& of R?, with a smooth boundary, we consider the following problem:

Au="Ve" in Q,
(P) 7
u =0 on 0N.

The previous equation is called, the Prescribed Scalaraum, in relation with conformal
change of metrics. The functidniis the prescribed curvature.

Here, we try to find some a priori estimates for sequencesegbtévious problem.

Equations of the previous type were studied by many autiescan see in [B-M], different
results for the solutions of those type of equations with @heut boundaries conditions and,
with minimal conditions oV, for example we suppodé > 0 andV € LP(2) or Ve* € LP(Q)
with p € [1, +o0].

We can see in [B-M] the two following important Theorems,

Theorem A(Brezis-Merle).If (u;); and (V;); are two sequences of functions relatively to the
problem (P) with, 0 < V; < b < 400 and [, e“/dx < C, then, for all compact set K of 2,

supu; < ¢ =c¢(a,b,C,K,Q)
K

Theorem B(Brezis-Merle).If (u;); and (V;); are two sequences of functions relatively to the
problem (P) with, 0 < a < V; < b < 400, then, for all compact set K of (2,

Date: 2007, January, 27.



supu; < ¢ =c(a,b, K,Q).
K

If, we assumé&/ with more regularity, we can have another type of estimatgs;+ inf. It
was proved, by Shafrir, see [S], that,(if;);, (V;); are two sequences of functions solutions of
the previous equation without assumption on the boundady@r: ¢ < V; < b < +0o0, then
we have the following interior estimate:

C(a/b)supu; + igfui <c=cla, b, K,Q).
K
We can see in [C-L], an explicit value 6f(a/b) = \/%.

Now, if we supposé€V;); uniformly Lipschitzian withA the Lipschitz constant, thet(a/b) =
landc = ¢(a,b, A, K, Q), see Brézis-Li-Shafrir [B-L-S]. This result was extendedHolderian
sequencesV;); by Chen-Lin, see [C-L]. Also, we can see in [L], an extensibnhe Brezis-
Li-Shafrir to compact Riemann surface without boundary. &&a see in [L-S] explicit form,
(87m, m € N* exactly), for the numbers in front of the Dirac masses, wihersblutions blow-
up.

The questions of Brezis-Merle:

Question 1.

In their paper Brezis-Merle, asked the following questiee [B-M]:

Let us consider a sequence of functigng); solutions of the probleriP) relatively to(V;);
with,

0<a<V,<b< +c0
fQ etidy < C'.
Is it possible to have,

[|uillLoo (@) < ¢ = ¢ (a,b,C",Q)?
In their paper Brezis-Merle, asked the following questisee [B-M]:

Let us consider a sequence of functigns); solutions of the problerqP) relatively to(V;);
with,

0<V,<b<+x
V; =V e Q)
Joetide < C".

Is it possible to have,

[[uill L) < ¢ = (a,b,C",Q)?
We can find some results which concerning this question. # praved by Chen-Li, that if
we suppose = 0 and||VV;|[z~q) < A, then, we a have a positive answer to the question, see

[C-Li.

Also, if we assumer > 0 and|[VVi|| =) < A, the answer to the question is positive
without the assumption o#t*: was given by Ma-Wei, see [M-W].

Here, we have,



Theorem 1. Let us consider three positive numbers a, b, C, and, two sequences of functions,
(u;); and (V;);, relatively to the problem (P) with the following conditions:

0<a<V,<b<+x
Joetide < C, Vi
Then, there is a positive constant ¢ = ¢(a, b, C, ) such that,

||’U,Z||Loo(Q) S C.

Theorem 2. Let us consider two positive numbers a, b, and, two sequences of functions, (u;);
and (V;);, relatively to the problem ( P) with the following condition:

0<V,<b< 4+
V; =V e 0%Q)
Joetidr < C.

Then, there is a positive constant ¢ = ¢(a, b, C, ) such that,

||u1||Lco(Q) S C, V 7.

Proof of the Theorem 1 and 2.

Lemma 1:
There is a subsequenge; ), of (u;); and a measurable functiensuch that:

Du>0a.einf.

2) [, e dr < +oc.

3)u; — ua.ein.

4)u; — uweakly inW, () forall ¢ € [1,2].
5)u; — win L2 (Q).

Proof of the Lemma 1:

We have,

Au; = Vie® in Q,
u; =0 on 0.
We know that,

/ eidr < C'.
Q
We can use Boccardo-Gallouet Theorem, see [B-G], to have:

IVuil[La) < clg,b,C", Q).

We use the Rellich-Kondrachov embedding, to extract fam) a subsequencg:;) which
converge in somé&” (2), r > 1 to some function:, we know that, we can have a weakly conver-
gence for a subsequenge;) of (u:). From a strong convergence @f,) in L™(Q),r > 1, we
can extract a subsequengs,,) which converge ta; almost everywhere oft, we can see that
u > 0 almost everywhere. We can use the Fatou lemma‘forto havee® € L().

Now, we can take a subsequence of exporgnt— 2 ¢, < 2 and, we use the diagonal
process, to extract frorfu,,,) a subsequende:,,) which converge ta: (2 is bounded), weakly
3



in Wol’q(Q), 1 < g < 2, almost everywhere and in sonié for someh > 1 large enough. Thus,
1), 2), 3) and 4) are true.

If we use a corollary of Theorem 3 of the Brezis-Merle papee, [8-M], we can say thdt,,,)
isinL;s ().

First, we consider an exhaustive sequence of compact séts(df;) , we use the diagonal
process, to have a subsequefeg) of (u,) which converge inL>°(kK;) to a functionug, for
every compaclk;, but(u;) converge almost everywheredmnd we can conclude that, = u
a.e. Thus(u,) converge on all compact sét of Q2 to u. Thus, 5) is true.

Here, we denotd(Q2) the set of smooth functions with compact supportin We write
supp(p) the support ofp € D(92).

1) Regularity of w.

Case 1V; — V. in C°(9Q)

We write:

/ < Vu;|Vo > dx = / VieYip, ¥V ¢ € D(Q).
Q Q

Becauseupp(y) CC £, andu; — u uniformly on all compact sets 61, we have:

/ < Vu|Ve > dr = / Velpdr, ¥ ¢ € D(Q).
Q Q

We know thatw € Wy'? N LP(Q2), ¥ p > 1 and [, e“dz < +oo. We can use the corollary 1
of [B-M] to have [, e*“dz < +00, and, by the elliptic regularity, we havee C*(Q).

We know that, the regularity ofu;); and(u;); imply that on each compact sé¥/«;); con-
verge to a function, but we know th@t;); converge weakly ta in Wol’q, q > 1, by the diagonal
process and the uniqueness of the weak limit, we can sayWhap, converge uniformly tovu
on each compact set o

Case20<a<a<V;<b

We know that(V;) is in L*°(Q2), we can use the *-weak topology and the (*-weakly compact-
ness) Alaoglu-Banach Theorem to have a subsequéntendV € L>°(2) such that,

/Vivdx—> / Vodr, ¥ ve LY(Q).
Q Q

A consequence of the previous result is that a almost everywhere if2. To see this, it is
sufficient to consider the functions= 1;,>,, and after = 1;,<,,. Also, we have; < b

Letp € D(Q), we can use the corollary theorem 3 of [B-M], to have the umifeonvrgence
of (u;); on every compact, also, we use the same arguments as in theysrease 1, the "limit
equation " is :

/<Vu|V<p>d$:/ Vetyp, ¥V p e D(Q).
Q Q

with 0 < a < V < b. We obtain the same results as in the previous case 1. Théduanc
u € CHQ).

2) Thelocal convergence 1.

Goal

In this part we want to prove that there is a finite number ohp®, . . ., z,, € 012, such that
u; converge inC% (9 — {z1,...,&m) tOu.



We have,

Oy u;do < C. (%)
o0
Then, according to the Riesz Theorem ( see [R]), there is adediRadon measugesuch

that,

/ O u;pdo —>/ wdp, Ve C(090).
o0 a0

We callxg a non regular point for the measyrséf,

p({wo}) = 4.
According to(x) there is a finite number of non regular points forWe denotety, ..., Z,,
all the non regular points.

Without loss of , we can suppose the local piece of curve at@upointz is an interval of
type[—a, a], also, we dnote, the usual measure @2 and we can writelo = dyy,.

Let 2y be a regular point fop, then, u({zo}) < 4n. Consider the family of arcg, =
Jzo — €, o + €[€ 09, we have,

17, (z) —eo Ligpy(x), 17, <1 and 9N is compact.
We can use the Lebesgue dominated convergence Theorgmddrave:

ple) = p({wo}) if € — 0.
We construct cutoff function. € D(0S2) onls, § = mini<;zj<m{d(Z;, z;)/2} (we can use
charts), as:

ne=1, on I;,, 0 <e<d/2,
ne =0, outside Ig,
0<n <1,

Co (2, x0)

[IV7el| oo (1) < —

ne=1on I;, and ne =0 on 0N} — Ia.
We extend, to a functioni. onQ as,

AR =0, in Q
e =N, 0N OF.

Key 1: We can extend. to a functionsj. explicitly, we taken. and we translate it with respect
to the normal vector in,,, after we regulise it like for). betweere and2e on[—a, a] C 99..

We know from strong maximum principal and the elliptic reayitly,( becausg. — € € C}(Q)
I'ensemble des fonctionS* nulle au bord, see [J] and [G-T] for example:

0<n <1,
C

Vel oo () < =L, depends only on Q and .
€

Those estimates are easy obtained, because we ubgefik the functionsj. or constantin
t, because (t, ) = n.(z) in the most important part of the new subdomairf®falso on the
corners where we have the estimate of type ¢ > 0.

Now, we write:

Al(u; —uw)ne] = (Vie" = Ve“)ie — 2 < V(u; — u)|Vije > . ()
Here we want to prove that fer> 0 small enough,
5



/ [Al(u; — w)fe]lde < 4w — e /2. (1)
Q
whereey > 0 small enough.

Remark: To ontain our estimate, it is sufficient to choose and to redne/,.. In fact we
want to findé > 0, and arank’ = ¢’(¢’) € N sush we have an uniform estimate for the sequence
(u;); on a domain which the boundary &2 is ..

Here we do not search to termdo O to have an estimate, but only reduce it to have a local
uniform estimate.

Sep 1: Estimate of the integral of the first term of the right handesddi ().

We have,
Au=Ve*in N
u =0, on of,
and,
Afe =0in Q
e = Ne, 0N OLY,

We use the Green formula betwegnandu, we obtain,

/ Ve iedx :/ Ayune < 4e||Oyul|p~ = Ce (+")
Q 00

We have,

Au; = Vie™ in Q
u; = 0, on 01,
We use the Green formula betwegnandr. to have:

/ Vie“ifjedr = Dpuinedo —iyoo p(ne) < p(lae) < 4m—eg, €0 >0  (x")
Q o0

From(«') et (x") we have for alk > 0 there isig = i (€) such that, for > i,

/ |(Vie"t — Ve )e|dx < 47 — eg + Ce (")
Q

Remark: In fact, we reduce the intervdl and we conserve the fact that the integral is strictly
smaller thandw. The fact thak > 0 is small for the interval is not a problem, because our goal
is to find ane for which the estimate of the integral {mx) is strictly smaller thad.

Step 2:Estimate of integral of the second term of the right hand efdex).
LetX, = {z € Q,d(z,09Q) = €}, e > 0. Then, fore small enoughy, is hypersurface.

We can construct another hypersurface, more easly. We kmatftis a regular 2-manifold
with boundary, we use the definition of 2-manifolds with bdary, and, around the boundary,
after using the conpactness, we can couver the boundary byearfumber of open set of charts,
we work locally on open sets @2 and we construct step by step a 2-maniffld contained
in ©Q with a smooth boundary. (The only problem is to have regiylafi the boundary between
each two charts).

The measure d — Q2 iska < pr(Q — Qe2) < kye?.
Remark: for the unit ball3(0, 1), our new manifold is3(0, 1 — €2).

We wrrite,



/ | < V(u;—u)|V7je > |dx :/ | < V(u;—u)| Ve > |dz+/ < V(u;—u)| Ve > |dz.
Q , Q-

Step 2.1: Estimate off,_(, . | < V(u; —u)|Vije > |dz.
First, we know from the elliptic estimates tH&¥7.|| .~ < C1/¢, C; depends o

We know that(|Vu;|); is bounded inL?,1 < ¢ < 2, we can extract from this sequence a
subsequence which converge weakly:te L?. But, we know that we have locally the uniform
convergence ttVu/|, then,h = |Vu| a.e.

If we take f = lo-q_,, we have:

for e >0 3 i1 =1i1(e) €N, izz’l/ |Vui|§/ |Vu| + €.
Q-0 0-Q.

Then, fori > i1 (e),

/ |Vu;| < mes(Q — Qe)||Vul| o + €2 = (k1 ||Vul| g~ + 1).
Q-0

Thus,

2

/ |<v<uz—u>|vm>|dzs||vm||oo</ |Vuz-|+|w|>§
Q-0 Q-0

< eCh(k1||Vullpe +1) + Cl/ [Vu| < eCq(2k1]|Vu||p~ + 1)
0-Q,

€

Finaly, we have,

/ | < V(u; —u)|Vije > |dz < €01 (2k1||[Vu||p= + 1) (¥)
Q—Q o
The constan€’; do not depend oabut on(2, in its definition.

Step 2.2: Estimate off, | < V(u; — u)[Vije > |da.

We know thatQ. CC Q, andu; — uin C1(Q.2)
We have,

[V (u; — u)||Loo(Q€2)|| < €%, for i > iz = iz(e),
We write,

/ | < V(ui —u)|Vije > |[dz < || < V(u; — u)||poe(0,0)[| Vil < Cre for i > i3,
Q,

Fore > 0, we have fori € N, ¢ > max{i1, is, i3},
/ | < V(u; —u)|Vije > |dx < eCy(2k1||Vul|Le + 2) ("""
Q

From(«"") and(«"""), we have, fok > 0, there isis = i3(e) € N, i3 = max{ip, 41,42} such
that,

/ |[Al(u; — w)fe]|de < 4w — eg + €2C1(2k1||Vul|n~ + 2+ C) (%)
Q
We choose > 0 small enough, we havd).

We have:

(k)



A[(uz - u)ﬁe] = i, In Q,
(u; —u)e =0 on 0.

With ||gi,€||L1(Q) < 4 — €0-

We can use the theorem 1 of [B-M] to conclude that thekgiis1 such that:

/ Ui —w) gy < / ed(ui—w)ie g < C(e, Q).
Ve (z0) Q
where,V,(z¢) is a neighberhooh aof in €.

Thus, for eachry € 90 — {Z4, ..., %y} thereise,, > 0, ¢, > 1 such that:

/ elzo%idey < C, V i.
B(wo,emo)

Now, we consider a cutoff functiopn € C°°(R?) such that:

n=1 on B(zg,ez/2) and n =0 on R? — B(xq,2¢,,/3).
We write,

A(un) = Vie'in — 2 < Vu;|Vn > 4u; An.

It is easy to see that the right hand side of the previous exui uniformly in L% (Q2) for
q1 = inf{q.,,2}. Thus, we can use the elliptic estimates to havg)); uniformly bounded in
W24 (Q) and by the Sobolev embedding, we hdugn); uniformly bounded inC'*(Q2), and if
we repit the previous procedure, we can say that); is uniformly bounded inC'*-?(Q) for
somef €]0,1[.

Finaly, we have, for some> 0 small enough,

uillor.o(B(zo,e) < €3 Vi
Finaly we have proved that, there is a finite number of paints. ., Z,, such that the squence
(u;); is uniformly bounded if) — {Z1, ..., Zm }.
We know that, becausg = 0 on9Q andAw; > 0:

mgzlixui = ul(xl), z; € Q.

Without loss of generality can assume that— ;.

3) Comparison of the measures.

Here we want to compare the usual measlsre= dur, on 952 with the new measure.

Step 1:

Here, we want to prove that:

/ Oyupdo + Z Arp(Tr) = / wdp, (2)
o0 1 oQ
here,i; = p({Z;}).

Proof. It follows from the uniform convergence of our sequence@rgcompact set(obtianed
by the diagonal process).

Step 2:



Next, to simplify our computations, we assume that the p@airve ofof2 are as intervals
with the usual Lebesgue measure dengtgd We also writedx = duy, andz, = k — 1,k =
1,...,m.

Withoutloss of , we can suppose the local piece of curve atousan interval of typg—a, al,
also, we dnote:;, the usual measure @if) and we can writélo = dy ..
We want to prove that around every blow-up pding {0, ..., m},

do = hxdp with h >0, h € L'([—ax,ax], du) (3)
wherea;, > 0 is such that,

Vi > ap > 0 on [7(1]6,(1]6] (4)
Fundamental remark: (relation between thefact0 < a < V; < band V; — VinC%(Q) ):
To prove localy a realtion between the two measures, we needdition as in(4), itis the case
when we assume < a < V; < b. Now we look to the conditionl; — V in CY(2).

We know that0 is a blow-up of(d,u;);. We take a continuous functiop. with compact
support orf{—a, a] such that:

0<¢e<1, v =1 on [—b,b] with 2b < a.
e vanish outsidé—2b, 2b].

Ap. = 0 dansQ2
Pe = Pe-
Now, we can use the Green formula betwegret u,; to obtain,

/ Vie"' pedz = Duipedo — p(pe) > p({0}) = p1 >0
Q oN

The maximum principle imply that = ming < ¢, < @, < maxg @. = 1.
If V(0) =0, thus,

Ve >036>0such that 0 < V(x) <€ on [-4,]
But, V; — V in C°(Q), then,

Vaze[-8,0Vi>ip 0<Vi(z) <2¢
with &’ = inf{§, b}.

If we use the fact than e"dr < C, we have,

0<pu <206 Ve >0,
It is a contradiction if we take’ — 0.

Finaly,

V(0)>0. (5
The fact tha/; — V in C°(€2), imply that,

Ja’, a9 > 0 suchthat V;(z) > ag > 0 on[—d’, d’]

Now, we want to prové3).

we try to prove that the measudg is absolutly continous tdo :
We want to prove,

H(A) = 0 = i (4) = 0.
9



Without loss of , we can suppose the piece of curve is an iatgra, o, also, we dnote:y,
the usual measure @) and we can writélo = du..

Let A C [—a,a] such thaju(A) = 0. The measurg is regular and we have,

0= u(A) =sup{p(U),U open set A C U}.
Ve >0, 3 U. open set of—a, a] such thap(U.) < e.
We considet, C U, such thaiu;, (U, — w.) < e. (Itis possible by an exhaustiv sequence of
compact sets df/,).

We take a continuous functian with compact support off. such that:

0< <1, pc =1 on we.
Consider the following system:

Ag. = 0 dan$?
Pe = Pe.
Now, we can use the Green formula betwegretw; to obtain,

/ Vie" i gedx = Opuipedo — p(pe) < p(Ue) <e.
Q o0

Let G be the Green function of the Laplacian @nWe can write:

Pe(x) = 0v,yG(z,y)pedo.
e}
We can write,

/X/ie“igﬁedxza/ Vie“i/ 0u.yG (2, y)pedode.
Q Q 90
Then,

/ Vie"" gdx > a/ 0v.yG(z,y)pedodz.
Q {z,d(z,00Q)>ag J I

. 1 _
With 0 < ap < 5 sup{d(z,y),z,y € Q}.
We use the definition of the Green function,

AG(z,y) = 6z, G(z,y) =0 on ON.
Let,

Ey ={z,d(z,00) > ap > 0} and E; = {y,d(y,09) < ap/2}.
We haveFE; N By = {(} and by the strong maximum principle, we have,

O yG(z,y) > Po >0V z € Ey, y € Es.
Then,

/ Vie"i pedx > mopr (we).
Q

We can write,

mopr(we) = molpL(U) — €] < u(Ue) + € < 2e.
Then,

u(4) < uy (U) < BEmo)e
mo

Finaly,
10



pr(A) =0.
If we use the Radon-Nikodym theorem we obtégi.

4) The Local convergence 2

Next, to simplify our computations, we assume that the peaurve ofof2 are as intervals
with the usual Lebesgue measure dengtgd We also writedx = duy, andz, = k — 1,k =
1,...,m.

Without loss of , we can suppose the local piece of curve atayn= 0 is an interval of type
[—a, a], also, we dnote:, the usual measure d@if2 and we can writelo = du;,.
We follow the method of the "local convergence 1", we choageotype of functiom..

|:L'| 2/3
Ne(x) = <?) ,onz]<e 0<e<d/2,
ne =1, on [e, 2¢]
Ne = *% + 3, on [, 2¢]
ne =0, outside [3e,al,
0<mn <1,

A computation gave:

[nllws/2(—zese) < Cre™®, a>0 (6)

Remark about the exponent 5/2, here our functions, are notC'!, butinW*-5/2 with 5/2 >
2, and when we use the Holder inequality in
Jo < V(u; —u)|7 we can use many argument to have this quantity small.

We extend, to a functioni. on(Q as,

AR =0, in Q
e =N, 0N O

As in "The local convrgence 1" we have the:

Key 2: We can extend. to a functionij. explicitly, we taken. and we translate it with respect
to the normal vector in,,, after we regulise it like for). betweere and2e on[—a, a] C 09).. B
We know from strong maximum principal and the elliptic remitly,(becausg. —7j. € CL(Q)
I'ensemble des fonctionS® nulle au bord, see [J] and [G-T] for example:
0<ne <1,
C
VTl L1572y < e—ﬁl,,ﬁ > 0 C; depends only on Q and zg (7).

Those estimates are easy obtained, because we ubgel, the functionsj, or constant in
t, becausey, (t, z) = n.(z) in the most important part of the new subdomairfpfalso on the
corners where we have the estimate of type, s > 0, ¢ > 0.

Now, we write:

Al(u; —u)n] = (Vie" —=Ve") e — 2 < V(u; —u)|Vije > . (8)
Here we want to prove that fer> 0 small enough,

/Q [Al(u; — w)fe]lde < 4w — e /2. (9)

whereey > 0 small enough.
11



Remark: To ontain our estimate, it is sufficient to choose and to redne .. In fact we
want to findé > 0, and arank’ = #’(¢’) € N sush we have an uniform estimate for the sequence
(u;); on a domain which the boundarydf2 is ...

Here we do not search to termdo O to have an estimate, but only reduce it to have a local
uniform estimate.

We can use thél) and(2) to have,

3¢ 3e ~3€
| @un@ae— [ n@dn= [ @unia) < oo

—3e —3e

Sep 1. Estimate of the integral of the first term of the right handesidi(9).

We have,
Au=Ve* in N
u =20, onof,
and,
Afe =01in Q
e = Ne, 0N OLY,

We use the Green formula betwegnandu, we obtain,

/ Ve'qedx :/ Oyune < 4e||O,ul|p~ = Ce (+)
Q 09

We have,

Au; = Vie™ in Q
u; = 0, on 09,
We use the Green formula betwegnandr. to have:

. . 3¢ 3e
/ Vie“iiede = | Oyuinedo —iyoo plne) = / e () dps = / (Byu)e(x) < 6|yl . (+")
Q oN —3e —3e

From(«') et (+") we have for alk > 0 there isig = i (€) such that, for > i,

/ [(Vie" — Ve')iielde < dm — o+ Ce  (+")
Q

Remark: In fact, we reduce the intervédl and we conserve the fact that the integral is strictly
smaller thandw. The fact thak > 0 is small for the interval is not a problem, because our goal
is to find ane for which the estimate of the integral {n«) is strictly smaller tharir.

Step 2:Estimate of the integral of the second term of the right hadel of (8).
LetX, = {z € Q,d(x,09Q) = €}, ¢ > 0. Then, fore small enoughy. is hypersurface.

We can construct another hypersurface, more easly. We kmatftis a regular 2-manifold
with boundary, we use the definition of 2-manifolds with bdary, and, around the boundary,
after using the conpactness, we can couver the boundary byearfumber of open set of charts,
we work locally on open sets @2 and we construct step by step a 2-manif|dcontained
in © with a smooth boundary. (The only problem is to have regiylafithe boundary between
each two charts).

The measure d — Q.2 is pu, (2 — Q) < k€.
Key 3: The choice ofy is linked to3, we choose it later where apeag (Q — ) ande*.

We write,
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/ | < V(u;—u)|V7je > |dx :/ | < V(u;—u)| Ve > |dz+/ < V(u;—u)|Vije > |dz.
Q Q. a-q.

Step 2.1: Estimate off, ¢, _ | < V(u; — u)|Vije > |dz.

First, we know from the elliptic estimates tH&¥ || .5/ < C; /€%, C; depends o

We know that(|Vu;|%/3); is bounded in.?/2,1 < 3/2 < 2, we can extract from this sequence
a subsequence which converge weaklj to L?. But, we know that we have locally the uniform
convergence toVu|, then,h = |Vu|*/? a.e.

If we take f = lo-q,.,, we have:

for e > 03 iy —is(e) €N, i > il/ IV 3 g/ VPP < (14]|Vaul P26,
Q—Q, Q—Q,

If we use the Hodlder inequality we have,

3/5
(V] + |vu|>5/3d4 <

€

/ | < V(ui —u)|V7e > |dx < ||Vie||ps/2 X {/
Q-0

The Minkowski give,

/ | < V(ui—u)|Vije > |dz < Cye™?
0-Q.

3/5 3/5
([ 5u) " () o) |
Q—Q. Q-0

/ | < V(u; —w)|Vije > |dz < C3e®/377F
Q-Q.

Thus,

Il suffit de prendré /3v— /3 > 0 pour avoir une estimation negligeable de l'integrfle ., 1<
V(u; —uw)|Vne > |dz
Sep 2.2: Estimate of [, | < V(u; — u)|V7je > |d.
€2

We know thatQ). cC €, andu; — uin C1(£,,)
We have,

[V (ui — u)||Le )|l < €ps1, for i > iz =iz(e),
We write,

/ | < V(u; —u)|Vije > |de < || < V(u; — U)||LOO(QE2)||V77€||LOO < Cqe for i > i3,
€2

Fore > 0, we have fori € N, ¢ > max{i1, is, i3},

| < V(u; —u)|Vije > |dx < eCy(2k1||Vul|Le + 2) ("""
Q
From («”") and(+"""), we have, for > 0, there isis = i3(¢) € N, i3 = max{io, i1, 42} such
that,

/ Al — w)idlde < 47 — eo + €2C1 (k|| Vullpe +24C)  (3)
Q

< €Cy (k|| Vul | + 1) + 01/ V| < €Oy (2k: ||Vl g + 1)
Q-Q.

Finaly, we have,
13
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/ | < V(u; —u)|Vije > |dz < €01 (2k1||[Vu||p= + 1) (¥)
0-9,

The constan€; do not depend onbut on(, in its definition.
Fore > 0, we have fori € N, ¢ > max{i1,i2},

/ | < V(ui — )| Vije > |dz < eCy (28 || V|~ +2) (")
Q

From(«"") and(«"""), we have, fok > 0, there isis = i3(e) € N, i3 = max{io, 41,42} such
that,

/ Al(s — w)ii]|de < 47 — e + €21 (2| [Vul[se +2+C)  (3)
Q
We choose > 0 small enough, we havd).

We have:

Al(u; — u)ije] = gie in Q,
(u; — u)e =0 on 0.
With ||gi1€||L1(Q) S 4 — €0.

We can use the theorem 1 of [B-M] to conclude that theggsis1 such that:

/ ed(Wi—w)ne 1. < / ed(Wi—w)Te g < C(e, Q).
Ve(l'o) Q
where,V,(zo) = B(zo,€) N is a neighberhood afy in (2.

We have,

/ efro(Wimunec gy < OV 4.
B(zmﬁmo)
Now, we consider a function € C>°(R?) such that:

A(um) = Vie'in — 2 < Vu;|Vn > 4u; An.

It is easy to see that the right hand side of the previous exui uniformly in L2 (Q2) for
¢1 = inf¢,,,2. Thus, we can use the elliptic estimates to havg).); uniformly bounded in
W24 (Q) and by the Sobolev embedding, we haue, ); uniformly bounded irC* (€2), and if
we repit the previous procedure, we can say that.); is uniformly bounded irC*?(Q) for
somef €]0, 1.

Finaly, we have, for some> 0 small enough,
[[winellcr.o1B(ze,e) < €3 Vi
We know that, becausg = 0 on9Q andAw; > 0:
maxu; = wi(x;), x; € Q.
Without loss of generality can assume that— z;.

We take the conventiony, = 0. We have:

A[(uz - u)ﬁe] = gi,e in Q,
(u; —u)ne =0 on ON.

With ||gi1€||L1(Q) S 4 — €0.

We can use the theorem 1 of [B-M] to conclude that thegesis1 such that:
14



/ ed(Wi—u)Tie 1. < / ed(wi=u)ie o < C(e, Q)
Ve(ﬂCo) Q

where,V,(z¢) is a neighberhooh aof in €.

There ise,, > 0, g, > 1 such that:

/ edzo¥illedy < C, V 1.
B(zo,emo)

Now, we consider a cutoff function € C5°(R?) (smooth functions with compact support)
such that:

A(um) = Vie'in — 2 < Vu,;|Vn > 4u; An.

It is easy to see that the right hand side of the previous equat uniformly in L9 (Q2) for
¢1 = inf{q.,,2}. Thus, we can use the elliptic estimates to havg); uniformly bounded in
W24 (Q) and by the Sobolev embedding, we hdugn); uniformly bounded inC'*(Q2), and if
we repit the previous procedure, we can say that); is uniformly bounded inC'*-?(Q) for
somef €]0,1[.

Finaly, we have, for some> 0 small enough,

[wiflel| 1.0 [B(zo,e) < €3 Vi
OnI. = [—¢, €], because,; = 0 on 1,

For y € Q |V(uine)(y)| = [Vui(z)ne(y) + ui(y)Vne (y)| < ¢s
If we tendy — = € I. — {0}, (7(z) — ne(z), z # 0 andu;(z) = 0) we obtain,

V()| = dyui(x) < calz[ 7>/, on]—e, €] — {0}
Thus,

/ [8yui(x)]4/3dx <ecs Vi>ig, ig €N

—€

But,

Oyu; — Oyu, pr.a.e.
After a subsequencé, u; converge weakly t@,u, thus,

/ Oyuspdr — Oup, Yo € Co([—¢,€)

—€

Where,C.([—¢, €]) is a set of continuous function with compact support.

But, we know,

€
Oyuspdr = Oyuipdr — @du.
o0 —€
Also, we know that,

dx = hdp,
Then,

/€ [(Dyu)h — 1]dpe = 0dz, VYo € C.([—¢,€])

—€

We conclude that,

(Opu)h =1. p.a.e

It means thta,
15



1 =0 and h(0).
Itis a contradiction.
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