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ABOUT A BREZIS-MERLE PROBLEM IN DIMENSION 2.

SAMY SKANDER BAHOURA

ABSTRACT. On a bounded open setΩ of R
2 with smooth boundary, we consider two sequences

of functions(ui)i and(Vi)i such that,
{

∆ui = Vie
ui in Ω,

ui = 0, on ∂Ω.

With, 0 ≤ a ≤ Vi ≤ b < +∞.

Assume that,
∫

Ω
euidx ≤ C.

If,

a > 0,

or,

a = 0 and Vi → V in C0(Ω̄).

We have,

||ui||L∞(Ω̄) ≤ c(a, b, C, Ω).

1. INTRODUCTION AND RESULTS.

We set∆ = −∂11 − ∂22 the geometric Laplacian onR2.

On an open setΩ of R
2, with a smooth boundary, we consider the following problem:

(P )

{

∆u = V eu in Ω,

u = 0 on ∂Ω.

The previous equation is called, the Prescribed Scalar Curvature, in relation with conformal
change of metrics. The functionV is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem.

Equations of the previous type were studied by many authors.We can see in [B-M], different
results for the solutions of those type of equations with or without boundaries conditions and,
with minimal conditions onV , for example we supposeV ≥ 0 andV ∈ Lp(Ω) or V eu ∈ Lp(Ω)
with p ∈ [1, +∞].

We can see in [B-M] the two following important Theorems,

Theorem A(Brezis-Merle).If (ui)i and (Vi)i are two sequences of functions relatively to the
problem (P ) with, 0 ≤ Vi ≤ b < +∞ and

∫

Ω
euidx ≤ C, then, for all compact set K of Ω,

sup
K

ui ≤ c = c(a, b, C, K, Ω)

Theorem B(Brezis-Merle).If (ui)i and (Vi)i are two sequences of functions relatively to the
problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then, for all compact set K of Ω,
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sup
K

ui ≤ c = c(a, b, K, Ω).

If, we assumeV with more regularity, we can have another type of estimates,sup+ inf. It
was proved, by Shafrir, see [S], that, if(ui)i, (Vi)i are two sequences of functions solutions of
the previous equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then
we have the following interior estimate:

C(a/b) sup
K

ui + inf
Ω

ui ≤ c = c(a, b, K, Ω).

We can see in [C-L], an explicit value ofC(a/b) =

√

a

b
.

Now, if we suppose(Vi)i uniformly Lipschitzian withA the Lipschitz constant, then,C(a/b) =
1 andc = c(a, b, A, K, Ω), see Brézis-Li-Shafrir [B-L-S]. This result was extendedfor Hölderian
sequences(Vi)i by Chen-Lin, see [C-L]. Also, we can see in [L], an extension of the Brezis-
Li-Shafrir to compact Riemann surface without boundary. Wecan see in [L-S] explicit form,
(8πm, m ∈ N

∗ exactly), for the numbers in front of the Dirac masses, when the solutions blow-
up.

The questions of Brezis-Merle :

Question 1:

In their paper Brezis-Merle, asked the following question,see [B-M]:

Let us consider a sequence of functions(ui)i solutions of the problem(P ) relatively to(Vi)i

with,

{

0 < a ≤ Vi ≤ b < +∞
∫

Ω
euidx ≤ C′.

Is it possible to have,

||ui||L∞(Ω) ≤ c′ = c′(a, b, C′, Ω)?

Question 2:

In their paper Brezis-Merle, asked the following question,see [B-M]:

Let us consider a sequence of functions(ui)i solutions of the problem(P ) relatively to(Vi)i

with,











0 ≤ Vi ≤ b < +∞

Vi → V ∈ C0(Ω̄)
∫

Ω
euidx ≤ C′.

Is it possible to have,

||ui||L∞(Ω) ≤ c′ = c′(a, b, C′, Ω)?

We can find some results which concerning this question. It was proved by Chen-Li, that if
we supposea = 0 and||∇Vi||L∞(Ω) ≤ A, then, we a have a positive answer to the question, see
[C-Li].

Also, if we assumea > 0 and ||∇Vi||L∞(Ω) ≤ A, the answer to the question is positive
without the assumption oneui was given by Ma-Wei, see [M-W].

Here, we have,
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Theorem 1. Let us consider three positive numbers a, b, C, and, two sequences of functions,
(ui)i and (Vi)i, relatively to the problem (P ) with the following conditions:

{

0 < a ≤ Vi ≤ b < +∞
∫

Ω
euidx ≤ C, ∀ i

Then, there is a positive constant c = c(a, b, C, Ω) such that,

||ui||L∞(Ω) ≤ c.

Theorem 2. Let us consider two positive numbers a, b, and, two sequences of functions, (ui)i

and (Vi)i, relatively to the problem (P ) with the following condition:











0 ≤ Vi ≤ b < +∞

Vi → V ∈ C0(Ω̄)
∫

Ω euidx ≤ C.

Then, there is a positive constant c = c(a, b, C, Ω) such that,

||ui||L∞(Ω) ≤ c, ∀ i.

Proof of the Theorem 1 and 2.

Lemma 1:

There is a subsequence(uj)j of (ui)i and a measurable functionu such that:

1) u ≥ 0 a.e inΩ.

2)
∫

Ω
eudx < +∞.

3) uj → u a.e inΩ.

4) uj → u weakly inW 1,q
0 (Ω) for all q ∈ [1, 2[.

5) uj → u in L∞
loc(Ω).

Proof of the Lemma 1:

We have,
{

∆ui = Vie
ui in Ω,

ui = 0 on ∂Ω.

We know that,
∫

Ω

euidx ≤ C′.

We can use Boccardo-Gallouet Theorem, see [B-G], to have:

||∇ui||Lq(Ω) ≤ c(q, b, C′, Ω).

We use the Rellich-Kondrachov embedding, to extract from(ui) a subsequence(ut) which
converge in someLr(Ω), r > 1 to some functionu, we know that, we can have a weakly conver-
gence for a subsequence(us) of (ut). From a strong convergence of(us) in Lr(Ω), r > 1, we
can extract a subsequence(um) which converge tou almost everywhere onΩ, we can see that
u ≥ 0 almost everywhere. We can use the Fatou lemma foreum to haveeu ∈ L1(Ω).

Now, we can take a subsequence of exponentqn → 2, qn < 2 and, we use the diagonal
process, to extract from(um) a subsequence(un) which converge tou (Ω is bounded), weakly
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in W 1,q
0 (Ω), 1 ≤ q < 2, almost everywhere and in someLh for someh > 1 large enough. Thus,

1), 2), 3) and 4) are true.

If we use a corollary of Theorem 3 of the Brezis-Merle paper, see [B-M], we can say that(um)
is in L∞

loc(Ω).

First, we consider an exhaustive sequence of compact sets ofΩ, (Kl) , we use the diagonal
process, to have a subsequence(uj) of (un) which converge inL∞(Kl) to a functionuKl

for
every compactKl, but(uj) converge almost everywhere tou and we can conclude thatuKl

= u
a.e. Thus,(uj) converge on all compact setK of Ω to u. Thus, 5) is true.

Here, we denoteD(Ω) the set of smooth functions with compact support inΩ. We write
supp(ϕ) the support ofϕ ∈ D(Ω).

1) Regularity of u.

Case 1:Vi → V in C0(Ω̄)

We write:
∫

Ω

< ∇ui|∇ϕ > dx =

∫

Ω

Vie
uiϕ, ∀ ϕ ∈ D(Ω).

Becausesupp(ϕ) ⊂⊂ Ω, andui → u uniformly on all compact sets ofΩ, we have:
∫

Ω

< ∇u|∇ϕ > dx =

∫

Ω

V euϕdx, ∀ ϕ ∈ D(Ω).

We know thatu ∈ W 1,q
0 ∩ Lp(Ω), ∀ p > 1 and

∫

Ω
eudx < +∞. We can use the corollary 1

of [B-M] to have
∫

Ω
ekudx < +∞, and, by the elliptic regularity, we haveu ∈ C1(Ω̄).

We know that, the regularity of(ui)i and(ui)i imply that on each compact set,(∇ui)i con-
verge to a function, but we know that(ui)i converge weakly tou in W 1,q

0 , q > 1, by the diagonal
process and the uniqueness of the weak limit, we can say that(∇ui)i converge uniformly to∇u
on each compact set ofΩ.

Case 2:0 < a ≤ a ≤ Vi ≤ b

We know that(Vi) is in L∞(Ω), we can use the *-weak topology and the (*-weakly compact-
ness) Alaoglu-Banach Theorem to have a subsequence(Vi) andV ∈ L∞(Ω) such that,

∫

Ω

Vivdx →

∫

Ω

V vdx, ∀ v ∈ L1(Ω).

A consequence of the previous result is thatV ≥ a almost everywhere inΩ. To see this, it is
sufficient to consider the functionsv = 1{g≥a} and afterv = 1{g≤a}. Also, we haveg ≤ b

Let ϕ ∈ D(Ω), we can use the corollary theorem 3 of [B-M], to have the uniform convrgence
of (ui)i on every compact, also, we use the same arguments as in the previous case 1, the ”limit
equation ” is :

∫

Ω

< ∇u|∇ϕ > dx =

∫

Ω

V euϕ, ∀ ϕ ∈ D(Ω).

with 0 < a ≤ V ≤ b. We obtain the same results as in the previous case 1. The function
u ∈ C1(Ω̄).

2) The local convergence 1.

Goal

In this part we want to prove that there is a finite number of point x̄1, . . . , x̄m ∈ ∂Ω, such that
ui converge inC1,θ

loc (Ω̄ − {x̄1, . . . , x̄m) to u .
4



We have,

∫

∂Ω

∂νuidσ ≤ C. (∗)

Then, according to the Riesz Theorem ( see [R]), there is a bounded Radon measureµ such
that,

∫

∂Ω

∂νuiϕdσ →

∫

∂Ω

ϕdµ, ∀ ϕ ∈ C(∂Ω).

We callx0 a non regular point for the measureµ if,

µ({x0}) ≥ 4π.

According to(∗) there is a finite number of non regular points forµ. We denotēx1, . . . , x̄m

all the non regular points.

Without loss of , we can suppose the local piece of curve around a pointx is an interval of
type[−a, a], also, we dnoteµL the usual measure on∂Ω and we can writedσ = dµL.

Let x0 be a regular point forµ, then,µ({x0}) < 4π. Consider the family of arcsIǫ =
]x0 − ǫ, x0 + ǫ[∈ ∂Ω, we have,

1Iǫ(x) →ǫ→0 1{x0}(x), 1Iǫ ≤ 1 and ∂Ω is compact.

We can use the Lebesgue dominated convergence Theorem forµ to have:

µ(Iǫ) → µ({x0}) if ǫ → 0.

We construct cutoff functionηǫ ∈ D(∂Ω) onIδ, δ = min1≤i6=j≤m{d(x̄i, x̄j)/2} ( we can use
charts), as:























ηǫ ≡ 1, on IIǫ , 0 < ǫ < δ/2,

ηǫ ≡ 0, outside I2ǫ,

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I2ǫ) ≤
C0(Ω, x0)

ǫ
.

ηǫ ≡ 1 on IIǫ and ηǫ ≡ 0 on ∂Ω − I2ǫ.

We extendηǫ to a functionη̃ǫ on Ω̄ as,

{

∆η̃ǫ = 0, in Ω

η̃ǫ = ηǫ, on ∂Ω.

Key 1: We can extendηǫ to a functionη̄ǫ explicitly, we takeηǫ and we translate it with respect
to the normal vector inxo, after we regulise it like forηǫ betweenǫ and2ǫ on [−a, a] ⊂ ∂Ω..

We know from strong maximum principal and the elliptic regularity,( becausēηǫ − ǫ̃ ∈ C1
0 (Ω̄)

l’ensemble des fonctionsC1 nulle au bord, see [J] and [G-T] for example:







0 < η̃ǫ ≤ 1,

||∇η̃ǫ||L∞(Ω̄) ≤
C1

ǫ
, C1 depends only on Ω and x0.

Those estimates are easy obtained, because we use theKey1, the functions̄ηǫ or constant in
t, becausēηǫ(t, x) = ηǫ(x) in the most important part of the new subdomain ofΩ̄, also on the
corners where we have the estimate of typec/ǫ, c > 0.

Now, we write:

∆[(ui − u)ηǫ] = (Vie
ui − V eu)η̃ǫ − 2 < ∇(ui − u)|∇η̃ǫ > . (∗∗)

Here we want to prove that forǫ > 0 small enough,
5



∫

Ω

|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0/2. (1)

whereǫ0 > 0 small enough.

Remark: To ontain our estimate, it is sufficient to choose and to redius theI2ǫ. In fact we
want to findǫ̃ > 0, and a ranki′ = i′(ǫ′) ∈ N sush we have an uniform estimate for the sequence
(ui)i on a domain which the boundary in∂Ω is Iǫ′ .

Here we do not search to tendǫ to 0 to have an estimate, but only reduce it to have a local
uniform estimate.

Step 1: Estimate of the integral of the first term of the right hand side of (∗∗).

We have,
{

∆u = V eu in Ω

u = 0, on ∂Ω,

and,
{

∆η̃ǫ = 0 in Ω

η̃ǫ = ηǫ, on ∂Ω,

We use the Green formula betweenη̃ǫ andu, we obtain,
∫

Ω

V euη̃ǫdx =

∫

∂Ω

∂νuηǫ ≤ 4ǫ||∂νu||L∞ = Cǫ (∗′)

We have,
{

∆ui = Vie
ui in Ω

ui = 0, on ∂Ω,

We use the Green formula betweenui andηǫ to have:

∫

Ω

Vie
ui η̃ǫdx =

∫

∂Ω

∂νuiηǫdσ →i→+∞ µ(ηǫ) ≤ µ(I2ǫ) ≤ 4π − ǫ0, ǫ0 > 0 (∗′′)

From(∗′) et (∗′′) we have for allǫ > 0 there isi0 = i0(ǫ) such that, fori ≥ i0,
∫

Ω

|(Vie
ui − V eu)η̃ǫ|dx ≤ 4π − ǫ0 + Cǫ (∗′′′)

Remark: In fact, we reduce the intervalIǫ and we conserve the fact that the integral is strictly
smaller than4π. The fact thatǫ > 0 is small for the interval is not a problem, because our goal
is to find anǫ for which the estimate of the integral in(∗∗) is strictly smaller than4π.

Step 2:Estimate of integral of the second term of the right hand sideof (∗∗).

Let Σǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ2}, ǫ > 0. Then, forǫ small enough,Σǫ is hypersurface.

We can construct another hypersurface, more easly. We know thatΩ is a regular 2-manifold
with boundary, we use the definition of 2-manifolds with boundary, and, around the boundary,
after using the conpactness, we can couver the boundary by a finite number of open set of charts,
we work locally on open sets ofR2

+ and we construct step by step a 2-manifoldΩǫ2 contained
in Ω with a smooth boundary. (The only problem is to have regularity of the boundary between
each two charts).

The measure ofΩ − Ωǫ2 is k2 ≤ µL(Ω − Ωǫ2) ≤ k1ǫ
2.

Remark: for the unit ballB̄(0, 1), our new manifold isB̄(0, 1 − ǫ2).

We write,
6



∫

Ω

| < ∇(ui−u)|∇η̃ǫ > |dx =

∫

Ωǫ′

| < ∇(ui−u)|∇η̃ǫ > |dx+

∫

Ω−Ωǫ′

< ∇(ui−u)|∇η̃ǫ > |dx. (∗∗∗)

Step 2.1: Estimate of
∫

Ω−Ωǫ2
| < ∇(ui − u)|∇η̃ǫ > |dx.

First, we know from the elliptic estimates that||∇η̃ǫ||L∞ ≤ C1/ǫ, C1 depends onΩ

We know that(|∇ui|)i is bounded inLq, 1 < q < 2, we can extract from this sequence a
subsequence which converge weakly toh ∈ Lq. But, we know that we have locally the uniform
convergence to|∇u|, then,h = |∇u| a.e.

If we takef = 1Ω−Ωǫ2
, we have:

for ǫ > 0 ∃ i1 = i1(ǫ) ∈ N, i ≥ i1

∫

Ω−Ωǫ2

|∇ui| ≤

∫

Ω−Ωǫ2

|∇u| + ǫ2.

Then, fori ≥ i1(ǫ),

∫

Ω−Ωǫ2

|∇ui| ≤ mes(Ω − Ωǫ2)||∇u||L∞ + ǫ2 = ǫ2(k1||∇u||L∞ + 1).

Thus,

∫

Ω−Ωǫ2

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ||∇η̃ǫ||∞

(

∫

Ω−Ωǫ2

|∇ui| + |∇u|

)

≤

≤ ǫC1(k1||∇u||L∞ + 1) + C1

∫

Ω−Ωǫ2

|∇u| ≤ ǫC1(2k1||∇u||L∞ + 1)

Finaly, we have,

∫

Ω−Ωǫ2

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 1) (∗̄)

The constantC1 do not depend onǫ but onΩ, in its definition.

Step 2.2: Estimate of
∫

Ωǫ2
| < ∇(ui − u)|∇η̃ǫ > |dx.

We know that,Ωǫ ⊂⊂ Ω, andui → u in C1(Ωǫ2)
We have,

||∇(ui − u)||L∞(Ωǫ2 )|| ≤ ǫ2, for i ≥ i3 = i3(ǫ),

We write,

∫

Ωǫ2

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ || < ∇(ui − u)||L∞(Ωǫ2 )||∇η̃ǫ||L∞ ≤ C1ǫ for i ≥ i3,

For ǫ > 0, we have fori ∈ N, i ≥ max{i1, i2, i3},

∫

Ω

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 2) (∗′′′′)

From(∗′′′) and(∗′′′′), we have, forǫ > 0, there isi3 = i3(ǫ) ∈ N, i3 = max{i0, i1, i2} such
that,

∫

Ω

|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇u||L∞ + 2 + C) (∗̂)

We chooseǫ > 0 small enough, we have(1).

We have:
7



{

∆[(ui − u)η̃ǫ] = gi,ǫ in Ω,

(ui − u)η̃ǫ = 0 on ∂Ω.

With ||gi,ǫ||L1(Ω) ≤ 4π − ǫ0.

We can use the theorem 1 of [B-M] to conclude that there isq > 1 such that:

∫

Vǫ(x0)

eq(ui−u)dx ≤

∫

Ω

eq(ui−u)η̃ǫdx ≤ C(ǫ, Ω).

where,Vǫ(x0) is a neighberhooh ofx0 in Ω̄.

Thus, for eachx0 ∈ ∂Ω − {x̄1, . . . , x̄m} there isǫx0
> 0, qx0

> 1 such that:

∫

B(x0,ǫx0
)

eqx0
uidx ≤ C, ∀ i.

Now, we consider a cutoff functionη ∈ C∞(R2) such that:

η ≡ 1 on B(x0, ǫx0
/2) and η ≡ 0 on R

2 − B(x0, 2ǫx0
/3).

We write,

∆(uiη) = Vie
uiη − 2 < ∇ui|∇η > +ui∆η.

It is easy to see that the right hand side of the previous equation is uniformly inLq1(Ω) for
q1 = inf{qx0

, 2}. Thus, we can use the elliptic estimates to have(uiη)i uniformly bounded in
W 2,q1(Ω) and by the Sobolev embedding, we have(uiη)i uniformly bounded inC1(Ω̄), and if
we repit the previous procedure, we can say that(uiη)i is uniformly bounded inC1,θ(Ω̄) for
someθ ∈]0, 1[.

Finaly, we have, for someǫ > 0 small enough,

||ui||C1,θ [B(x0,ǫ)] ≤ c3 ∀ i.

Finaly we have proved that, there is a finite number of pointsx̄1, . . . , x̄m such that the squence
(ui)i is uniformly bounded in̄Ω − {x̄1, . . . , x̄m}.

We know that, becauseui = 0 on∂Ω and∆ui ≥ 0 :

max
Ω

ui = ui(xi), xi ∈ Ω.

,
Without loss of generality can assume thatxi → x̄1.

3) Comparison of the measures.

Here we want to compare the usual measuredσ = dµL on∂Ω with the new measureµ.

Step 1:

Here, we want to prove that:

∫

∂Ω

∂νuϕdσ +

m
∑

k=1

µ̄kϕ(x̄k) =

∫

∂Ω

ϕdµ, (2)

here,µ̄i = µ({x̄i}).

Proof. It follows from the uniform convergence of our sequence on every compact set(obtianed
by the diagonal process).

Step 2:
8



Next, to simplify our computations, we assume that the pieceof curve of∂Ω are as intervals
with the usual Lebesgue measure denotedµL. We also writedx = dµL andx̄k = k − 1, k =
1, . . . , m.

Without loss of , we can suppose the local piece of curve around0 is an interval of type[−a, a],
also, we dnoteµL the usual measure on∂Ω and we can writedσ = dµL.

We want to prove that around every blow-up pointk ∈ {0, . . . , m},

dσ = hkdµ with h ≥ 0, h ∈ L1([−ak, ak], dµ) (3)

whereak > 0 is such that,

Vi ≥ αk > 0 on [−ak, ak] (4)

Fundamental remark: (relation between the fact 0 ≤ a ≤ Vi ≤ b and Vi → V in C0(Ω̄) ):
To prove localy a realtion between the two measures, we need acondition as in(4), it is the case
when we assume0 ≤ a ≤ Vi ≤ b. Now we look to the condition,Vi → V in C0(Ω̄).

We know that0 is a blow-up of(∂νui)i. We take a continuous functionϕǫ with compact
support on[−a, a] such that:

0 ≤ ϕǫ ≤ 1, ϕǫ ≡ 1 on [−b, b] with 2b < a.

ϕǫ vanish outside[−2b, 2b].
{

∆ϕ̄ǫ = 0 dansΩ

ϕ̄ǫ = ϕǫ.

Now, we can use the Green formula betweenϕ̄ǫ etui to obtain,
∫

Ω

Vie
uiϕ̄ǫdx =

∫

∂Ω

∂νuiϕǫdσ → µ(ϕǫ) ≥ µ({0}) = µ1 > 0

The maximum principle imply that0 = minΩ̄ ≤ ϕ̄ǫ ≤ ϕ̄ǫ ≤ maxΩ̄ ϕ̄ǫ = 1.

If V (0) = 0, thus,

∀ ǫ′ > 0 ∃ δ > 0 such that 0 ≤ V (x) ≤ ǫ′ on [−δ, δ]

But, Vi → V in C0(Ω̄), then,

∀ x ∈ [−δ′, δ′] ∀ i ≥ i0 0 ≤ Vi(x) ≤ 2ǫ′

with δ′ = inf{δ, b}.

If we use the fact that
∫

Ω euidx ≤ C, we have,

0 < µ1 ≤ 2Cǫ′ ∀ ǫ′ > 0,

It is a contradiction if we takeǫ′ → 0.

Finaly,

V (0) > 0. (5)

The fact thatVi → V in C0(Ω̄), imply that,

∃ a′, α0 > 0 suchthat Vi(x) ≥ α0 > 0 on[−a′, a′]

Now, we want to prove(3).

we try to prove that the measuredµ is absolutly continous todσ :

We want to prove,

µ(A) = 0 ⇒ µL(A) = 0.
9



Without loss of , we can suppose the piece of curve is an interval [−a, a], also, we dnoteµL

the usual measure on∂Ω and we can writedσ = dµL.

Let A ⊂ [−a, a] such thatµ(A) = 0. The measureµ is regular and we have,

0 = µ(A) = sup{µ(U), U open set A ⊂ U}.

∀ ǫ > 0, ∃ Uǫ open set of[−a, a] such thatµ(Uǫ) ≤ ǫ.

We considerωǫ ⊂ Uǫ such thatµL(Uǫ − ωǫ) ≤ ǫ. (It is possible by an exhaustiv sequence of
compact sets ofUǫ).

We take a continuous functionϕǫ with compact support onUǫ such that:

0 ≤ ϕǫ ≤ 1, ϕǫ ≡ 1 on ωǫ.

Consider the following system:
{

∆ϕ̄ǫ = 0 dansΩ

ϕ̄ǫ = ϕǫ.

Now, we can use the Green formula betweenϕ̄ǫ etui to obtain,
∫

Ω

Vie
uiϕ̄ǫdx =

∫

∂Ω

∂νuiϕǫdσ → µ(ϕǫ) ≤ µ(Uǫ) ≤ ǫ.

Let G be the Green function of the Laplacian onΩ. We can write:

ϕ̄ǫ(x) =

∫

∂Ω

∂ν,yG(x, y)ϕǫdσ.

We can write,
∫

Ω

Vie
uiϕ̄ǫdx ≥ a

∫

Ω

Vie
ui

∫

∂Ω

∂ν,yG(x, y)ϕǫdσdx.

Then,
∫

Ω

Vie
uiϕ̄ǫdx ≥ a

∫

{x,d(x,∂Ω)≥α0

∫

∂Ω

∂ν,yG(x, y)ϕǫdσdx.

With 0 < α0 ≤
1

2
sup{d(x, y), x, y ∈ Ω̄}.

We use the definition of the Green function,

∆G(x, y) = δx, G(x, y) = 0 on ∂Ω.

Let,

E1 = {x, d(x, ∂Ω) ≥ α0 > 0} and E2 = {y, d(y, ∂Ω) ≤ α0/2}.

We haveE1 ∩ E2 = {∅} and by the strong maximum principle, we have,

∂ν,yG(x, y) ≥ β0 > 0 ∀ x ∈ E1, y ∈ E2.

Then,
∫

Ω

Vie
ui ϕ̄ǫdx ≥ m0µL(ωǫ).

We can write,

m0µL(ωǫ) = m0[µL(U) − ǫ] ≤ µ(Uǫ) + ǫ ≤ 2ǫ.

Then,

µL(A) ≤ µL(Uǫ) ≤
(2 + m0)ǫ

m0
.

Finaly,
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µL(A) = 0.

If we use the Radon-Nikodym theorem we obtain(3).

4) The Local convergence 2

Next, to simplify our computations, we assume that the pieceof curve of∂Ω are as intervals
with the usual Lebesgue measure denotedµL. We also writedx = dµL andx̄k = k − 1, k =
1, . . . , m.

Without loss of , we can suppose the local piece of curve around x0 = 0 is an interval of type
[−a, a], also, we dnoteµL the usual measure on∂Ω and we can writedσ = dµL.

We follow the method of the ”local convergence 1”, we choose other type of functionηǫ.







































ηǫ(x) =

(

|x|

ǫ

)2/3

, on |x| ≤ ǫ, 0 < ǫ < δ/2,

ηǫ ≡ 1, on [ǫ, 2ǫ]

ηǫ = −
x

ǫ
+ 3, on [ǫ, 2ǫ]

ηǫ ≡ 0, outside [3ǫ, a],

0 ≤ ηǫ ≤ 1,

A computation gave:

||η′
ǫ||W 1,5/2([−3ǫ,3ǫ]) ≤ C1ǫ

−α, α > 0 (6)

Remark about the exponent 5/2, here our functionsηǫ are notC1, but inW 1,5/2 with 5/2 >
2, and when we use the Hölder inequality in
∫

Ω
< ∇(ui − u)|η̃ǫ we can use many argument to have this quantity small.

We extendηǫ to a functionη̃ǫ on Ω̄ as,

{

∆η̃ǫ = 0, in Ω

η̃ǫ = ηǫ, on ∂Ω.

As in ”The local convrgence 1” we have the:

Key 2: We can extendηǫ to a functionη̄ǫ explicitly, we takeηǫ and we translate it with respect
to the normal vector inxo, after we regulise it like forηǫ betweenǫ and2ǫ on [−a, a] ⊂ ∂Ω..

We know from strong maximum principal and the elliptic regularity,( becausēηǫ−η̃ǫ ∈ C1
0 (Ω̄)

l’ensemble des fonctionsC1 nulle au bord, see [J] and [G-T] for example:






0 < η̃ǫ ≤ 1,

||∇η̃ǫ||L1,5/2(Ω) ≤
C1

ǫβ
, , β > 0 C1 depends only on Ω and x0 (7).

Those estimates are easy obtained, because we use theKey2, the functions̄ηǫ or constant in
t, becausēηǫ(t, x) = ηǫ(x) in the most important part of the new subdomain ofΩ̄, also on the
corners where we have the estimate of typec/ǫs, s > 0, c > 0.

Now, we write:

∆[(ui − u)ηǫ] = (Vie
ui − V eu)η̃ǫ − 2 < ∇(ui − u)|∇η̃ǫ > . (8)

Here we want to prove that forǫ > 0 small enough,

∫

Ω

|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0/2. (9)

whereǫ0 > 0 small enough.
11



Remark: To ontain our estimate, it is sufficient to choose and to redius theI2ǫ. In fact we
want to findǫ̃ > 0, and a ranki′ = i′(ǫ′) ∈ N sush we have an uniform estimate for the sequence
(ui)i on a domain which the boundary in∂Ω is Iǫ′ .

Here we do not search to tendǫ to 0 to have an estimate, but only reduce it to have a local
uniform estimate.

We can use the(1) and(2) to have,

∫ 3ǫ

−3ǫ

(∂νui)ηǫ(x)dx →

∫ 3ǫ

−3ǫ

ηǫ(x)dµ =

∫ 3ǫ

−3ǫ

(∂νu)ηǫ(x) ≤ 6ǫ||∂νu||L∞ .

Step 1: Estimate of the integral of the first term of the right hand side of (9).

We have,
{

∆u = V eu in Ω

u = 0, on ∂Ω,

and,
{

∆η̃ǫ = 0 in Ω

η̃ǫ = ηǫ, on ∂Ω,

We use the Green formula betweenη̃ǫ andu, we obtain,
∫

Ω

V euη̃ǫdx =

∫

∂Ω

∂νuηǫ ≤ 4ǫ||∂νu||L∞ = Cǫ (∗′)

We have,
{

∆ui = Vie
ui in Ω

ui = 0, on ∂Ω,

We use the Green formula betweenui andηǫ to have:

∫

Ω

Vie
ui η̃ǫdx =

∫

∂Ω

∂νuiηǫdσ →i→+∞ µ(ηǫ) =

∫ 3ǫ

−3ǫ

ηǫ(x)dµ =

∫ 3ǫ

−3ǫ

(∂νu)ηǫ(x) ≤ 6ǫ||∂νu||L∞ .(∗′′)

From(∗′) et (∗′′) we have for allǫ > 0 there isi0 = i0(ǫ) such that, fori ≥ i0,
∫

Ω

|(Vie
ui − V eu)η̃ǫ|dx ≤ 4π − ǫ0 + Cǫ (∗′′′)

Remark: In fact, we reduce the intervalIǫ and we conserve the fact that the integral is strictly
smaller than4π. The fact thatǫ > 0 is small for the interval is not a problem, because our goal
is to find anǫ for which the estimate of the integral in(∗∗) is strictly smaller than4π.

Step 2:Estimate of the integral of the second term of the right hand side of (8).

Let Σǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ2}, ǫ > 0. Then, forǫ small enough,Σǫ is hypersurface.

We can construct another hypersurface, more easly. We know thatΩ is a regular 2-manifold
with boundary, we use the definition of 2-manifolds with boundary, and, around the boundary,
after using the conpactness, we can couver the boundary by a finite number of open set of charts,
we work locally on open sets ofR2

+ and we construct step by step a 2-manifoldΩǫ contained
in Ω with a smooth boundary. (The only problem is to have regularity of the boundary between
each two charts).

The measure ofΩ − Ωǫ2 is µL(Ω − Ωǫ) ≤ k1ǫ
γ .

Key 3: The choice ofγ is linked toβ, we choose it later where apearµL(Ω − Ωǫ) andǫ−β.

We write,
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∫

Ω

| < ∇(ui−u)|∇η̃ǫ > |dx =

∫

Ωǫ′

| < ∇(ui−u)|∇η̃ǫ > |dx+

∫

Ω−Ωǫ′

< ∇(ui−u)|∇η̃ǫ > |dx. (∗∗∗)

Step 2.1: Estimate of
∫

Ω−Ωǫ2
| < ∇(ui − u)|∇η̃ǫ > |dx.

First, we know from the elliptic estimates that||∇η̃ǫ||L5/2 ≤ C1/ǫβ, C1 depends onΩ

We know that(|∇ui|5/3)i is bounded inL3/2, 1 < 3/2 < 2, we can extract from this sequence
a subsequence which converge weakly toh ∈ Lq. But, we know that we have locally the uniform
convergence to|∇u|, then,h = |∇u|5/3 a.e.

If we takef = 1Ω−Ωǫ2
, we have:

for ǫ > 0 ∃ i1 = i1(ǫ) ∈ N, i ≥ i1

∫

Ω−Ωǫ

|∇ui|
5/3 ≤

∫

Ω−Ωǫ

|∇u|5/3+ǫγ ≤ (1+||∇u||
5/3
L∞)ǫγ .

If we use the Hölder inequality we have,

∫

Ω−Ωǫ2

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ||∇η̃ǫ||L5/2 ×

[
∫

Ω−Ωǫ

(|∇ui| + |∇u|)5/3dx

]3/5

≤

The Minkowski give,

∫

Ω−Ωǫ2

| < ∇(ui−u)|∇η̃ǫ > |dx ≤ C2ǫ
−β

[

(
∫

Ω−Ωǫ

(|∇ui|
5/3

)3/5

+

(
∫

Ω−Ωǫ

|∇u|)5/3dx

)3/5
]

Thus,
∫

Ω−Ωǫ2

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ C3ǫ
5/3γ−β

Il suffit de prendre5/3γ−β > 0 pour avoir une estimation negligeable de l’intégrale
∫

Ω−Ωǫ2
| <

∇(ui − u)|∇η̃ǫ > |dx
Step 2.2: Estimate of

∫

Ωǫ2
| < ∇(ui − u)|∇η̃ǫ > |dx.

We know that,Ωǫ ⊂⊂ Ω, andui → u in C1(Ωǫ2)
We have,

||∇(ui − u)||L∞(Ωǫ2 )|| ≤ ǫβ+1, for i ≥ i3 = i3(ǫ),

We write,

∫

Ωǫ2

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ || < ∇(ui − u)||L∞(Ωǫ2 )||∇η̃ǫ||L∞ ≤ C1ǫ for i ≥ i3,

For ǫ > 0, we have fori ∈ N, i ≥ max{i1, i2, i3},
∫

Ω

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 2) (∗′′′′)

From(∗′′′) and(∗′′′′), we have, forǫ > 0, there isi3 = i3(ǫ) ∈ N, i3 = max{i0, i1, i2} such
that,

∫

Ω

|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇u||L∞ + 2 + C) (∗̂)

≤ ǫC1(k1||∇u||L∞ + 1) + C1

∫

Ω−Ωǫ2

|∇u| ≤ ǫC1(2k1||∇u||L∞ + 1)

Finaly, we have,
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∫

Ω−Ωǫ2

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 1) (∗̄)

The constantC1 do not depend onǫ but onΩ, in its definition.
For ǫ > 0, we have fori ∈ N, i ≥ max{i1, i2},

∫

Ω

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 2) (∗′′′′)

From(∗′′′) and(∗′′′′), we have, forǫ > 0, there isi3 = i3(ǫ) ∈ N, i3 = max{i0, i1, i2} such
that,

∫

Ω

|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇u||L∞ + 2 + C) (∗̂)

We chooseǫ > 0 small enough, we have(1).

We have:
{

∆[(ui − u)η̃ǫ] = gi,ǫ in Ω,

(ui − u)η̃ǫ = 0 on ∂Ω.

With ||gi,ǫ||L1(Ω) ≤ 4π − ǫ0.

We can use the theorem 1 of [B-M] to conclude that there isq > 1 such that:
∫

Vǫ(x0)

eq(ui−u)ηǫdx ≤

∫

Ω

eq(ui−u)η̃ǫdx ≤ C(ǫ, Ω).

where,Vǫ(x0) = B(x0, ǫ) ∩ Ω is a neighberhood ofx0 in Ω̄.

We have,
∫

B(x0,ǫx0
)

eqx0
(ui−u)ηǫǫdx ≤ C, ∀ i.

Now, we consider a functionη ∈ C∞(R2) such that:

∆(uiη) = Vie
uiη − 2 < ∇ui|∇η > +ui∆η.

It is easy to see that the right hand side of the previous equation is uniformly inLq1(Ω) for
q1 = inf qx0

, 2. Thus, we can use the elliptic estimates to have(uiηǫ)i uniformly bounded in
W 2,q1(Ω) and by the Sobolev embedding, we have(uiηǫ)i uniformly bounded inC1(Ω̄), and if
we repit the previous procedure, we can say that(uiηǫ)i is uniformly bounded inC1,θ(Ω̄) for
someθ ∈]0, 1[.

Finaly, we have, for someǫ > 0 small enough,

||uiηǫ||C1,θ [B(x0,ǫ)] ≤ c3 ∀ i.

We know that, becauseui = 0 on∂Ω and∆ui ≥ 0 :

max
Ω

ui = ui(xi), xi ∈ Ω.

,
Without loss of generality can assume thatxi → x̄1.

We take the conventionx0 = 0. We have:
{

∆[(ui − u)η̃ǫ] = gi,ǫ in Ω,

(ui − u)η̃ǫ = 0 on ∂Ω.

With ||gi,ǫ||L1(Ω) ≤ 4π − ǫ0.

We can use the theorem 1 of [B-M] to conclude that there isq > 1 such that:
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∫

Vǫ(x0)

eq(ui−u)η̃ǫdx ≤

∫

Ω

eq(ui−u)η̃ǫdx ≤ C(ǫ, Ω).

where,Vǫ(x0) is a neighberhooh ofx0 in Ω̄.

There isǫx0
> 0, qx0

> 1 such that:
∫

B(x0,ǫx0
)

eqx0
uiηǫdx ≤ C, ∀ i.

Now, we consider a cutoff functionη ∈ C∞
0 (R2) (smooth functions with compact support)

such that:

∆(uiη) = Vie
uiη − 2 < ∇ui|∇η > +ui∆η.

It is easy to see that the right hand side of the previous equation is uniformly inLq1(Ω) for
q1 = inf{qx0

, 2}. Thus, we can use the elliptic estimates to have(uiη)i uniformly bounded in
W 2,q1(Ω) and by the Sobolev embedding, we have(uiη)i uniformly bounded inC1(Ω̄), and if
we repit the previous procedure, we can say that(uiη)i is uniformly bounded inC1,θ(Ω̄) for
someθ ∈]0, 1[.

Finaly, we have, for someǫ > 0 small enough,

||uiη̃ǫ||C1,θ [B̄(x0,ǫ)] ≤ c3 ∀ i.

On Iǫ = [−ǫ, ǫ], becauseui = 0 on Iǫ,

For y ∈ Ω |∇(uiηǫ)(y)| = |∇ui(x)ηǫ(y) + ui(y)∇ηǫ(y)| ≤ c3

If we tendy → x ∈ Iǫ − {0}, ( η̃ǫ(x) → ηǫ(x), x 6= 0 andui(x) = 0) we obtain,

|∇ui(x)| = ∂νui(x) ≤ c4|x|
−2/3, on[−ǫ, ǫ]− {0}

Thus,
∫ ǫ

−ǫ

[∂νui(x)]4/3dx ≤ c5 ∀ i ≥ i4, i4 ∈ N

But,

∂νui → ∂νu, µL.a.e.

After a subsequence,∂νui converge weakly to∂νu, thus,
∫ ǫ

−ǫ

∂νuiϕdx →

∫ ǫ

−ǫ

∂νuϕ, ∀ϕ ∈ Cc([−ǫ, ǫ])

Where,Cc([−ǫ, ǫ]) is a set of continuous function with compact support.

But, we know,
∫

∂Ω

∂νuiϕdx =

∫ ǫ

−ǫ

∂νuiϕdx → ϕdµ.

Also, we know that,

dx = hdµ,

Then,
∫ ǫ

−ǫ

[(∂νu)h − 1]dµϕ = 0dx, ∀ϕ ∈ Cc([−ǫ, ǫ])

We conclude that,

(∂νu)h = 1. µ.a.e

It means thta,
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µ1 = 0 and h(0).

It is a contradiction.
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