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ABOUT BREZIS-MERLE PROBLEM WITH LIPSCHITZ CONDITION.

SAMY SKANDER BAHOURA

ABSTRACT. We give blow-up analysis for a Brezis and Merle’s problem with Dirichlet condition. As an

application we have a proof of a compactness result under Lipschitz condition on the prescribed scalar curvature

and a weaker assumption on the regularity of the domain (smooth domain or C2,α domain, 1 ≥ α > 0).

Mathematics Subject Classification: 35J60 35B45 35B50

Keywords: blow-up, boundary, Dirichlet condition, a priori estimate, Lipschitz condition, smooth or C2,α domain.

1. INTRODUCTION AND MAIN RESULTS

We set ∆ = −(∂11 + ∂22) on open set Ω of R2 with a smooth (or C2,α, α > 0) boundary.

We consider the following equation:

(P )

{

∆u = V eu in Ω ⊂ R
2,

u = 0 in ∂Ω.

Here, we assume that:

0 ≤ V ≤ b < +∞, eu ∈ L1(Ω) and u ∈ W 1,1
0 (Ω).

We can see in [7] a nice formulation of this problem (P ) in the sense of the distributions. This Problem

arises from geometrical and physical problems see for example [1, 2, 18, 19]. The above equation was

studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see [1-

19], where one can find some existence and compactness results. In [6] we have the following important

Theorem,

Theorem A(Brezis-Merle [6]).For (ui)i and (Vi)i two sequences of functions relative to (P ) with,

0 < a ≤ Vi ≤ b < +∞

then, for all compact subset K of Ω it holds,

sup
K

ui ≤ c,

with c depending on a, b,K and Ω.

One can find in [6] an interior estimate if we assume a = 0, but we need an assumption on the integral of

eui , namely, we have:
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Theorem B(Brezis-Merle [6]).For (ui)i and (Vi)i two sequences of functions relative to the problem (P )
with,

0 ≤ Vi ≤ b < +∞ and

∫

Ω
euidy ≤ C,

then, for all compact subset K of Ω it holds;

sup
K

ui ≤ c,

with c depending on b, C,K and Ω.

We look to the uniform boundedness on all Ω̄ of sequences of solutions of the Problem (P ). Remark that,

when a = 0 the boundedness of
∫

Ω eui is a necessary condition in the problem (P ) as showed in [6] by the

following counterexample.

Theorem C(Brezis-Merle [6]).There are two sequences (ui)i and (Vi)i of the problem (P ) with,

0 ≤ Vi ≤ b < +∞ and

∫

Ω
euidy ≤ C,

such that,

sup
Ω

ui → +∞.

To obtain the two first previous results (Theorems A and B) Brezis and Merle used an inequality (Theorem

1 of [6]) obtained by an approximation argument with the Fatou’s lemma and they applied the maximum

principle in W 1,1
0 (Ω) which arises from Kato’s inequality. Also this weak form of the maximum principle

is used to prove the local uniform boundedness result by comparing a certain function and the Newtonian

potential. We refer to [5] for a topic about the weak form of the maximum principle.

Remarks: 1) Theorem 1 of [6], can be obtained by the usual maximum principle and Agmon regularity

theorem which require C2 regularity on the domain.

2) The duality Theorem which we use require C2 regularity on the domain, see Gilbarg-Trudinger books.

Note that for the problem (P ), by using the Pohozaev identity, we can prove that
∫

Ω eui is uniformly

bounded when 0 < a ≤ Vi ≤ b < +∞ and ||∇Vi||L∞ ≤ A and Ω starshaped, when a = 0 and ∇ log Vi is

uniformly bounded, we can bound uniformly
∫

Ω Vie
ui . In [16] Ma-Wei have proved that those results stay

true for all open sets not necessarily starshaped.

In [9] Chen-Li have proved that if a = 0 and ∇ log Vi is uniformly bounded, then the functions are

uniformly bounded near the boundary.

In [9] Chen-Li have proved that if a = 0 and
∫

Ω eui is uniformly bounded and ∇ log Vi is uniformly

bounded, then we have the compactness result directly. Ma-Wei in [16], extend this result in the case where

a > 0.

If we assume V more regular, we can have another type of estimates called sup+ inf type inequalities. It

was proved by Shafrir see [17] that, if (ui)i, (Vi)i are two sequences of functions solutions of the previous
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equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then we have the following

interior estimate:

C
(a

b

)

sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

One can see in [10] an explicit value of C
(a

b

)

=

√

a

b
. In his proof Shafrir has used a blow-up function,

the Stokes formula and an isoperimetric inequality see [2]. For Chen-Lin, they have used the blow-up

analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (Vi)i uniformly Lipschitzian with A its Lipschitz constant then C(a/b) = 1 and

c = c(a, b,A,K,Ω) see Brezis-Li-Shafrir [4]. This result was extended for Hölderian sequences (Vi)i
by Chen-Lin, see [10]. Also, one can see in [14] an extension of the Brezis-Li-Shafrir result to compact

Riemannian surfaces without boundary. One can see in [15] explicit form, (8πm,m ∈ N
∗ exactly), for the

numbers in front of the Dirac masses when the solutions blow-up. Here, the notion of isolated blow-up point

is used.

In [8] we have some a priori estimates on the 2 and 3-spheres S2, S3.

Here we give the behavior of the blow-up points on the boundary and a proof of Brezis-Merle Problem

with Lipschitz condition.

The Brezis-Merle Problem (see [6]) is:

Problem. Suppose that Vi → V in C0(Ω̄) with 0 ≤ Vi. Also, we consider a sequence of solutions (ui) of

(P ) relative to (Vi) such that,

∫

Ω
euidx ≤ C,

is it possible to have:

||ui||L∞ ≤ C?

Here, we give a caracterization of the behavior of the blow-up points on the boundary and also, in partic-

ular we extend Chen-Li theorems, indeed, the result of Chen-Li holds for analytic domains and our result

holds for smooth of C2,α domains. For the behavior of the blow-up points on the boundary, the following

condition is enough,

0 ≤ Vi ≤ b.

The condition Vi → V in C0(Ω̄) is not necessary, but for the proof of the compactness for the Brezis-

Merle problem we assume that:

||∇Vi||L∞ ≤ A.

Our main results are:

Theorem 1.1. Assume that maxΩ ui → +∞, where (ui) are solutions of the problem (P ) with:
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0 ≤ Vi ≤ b and

∫

Ω
euidx ≤ C, ∀ i,

then, after passing to a subsequence, there is a function u, there is a number N ∈ N and there are N
points x1, . . . , xN ∈ ∂Ω, such that,

∂νui → ∂νu+
N
∑

j=1

αjδxj , αj ≥ 4π, in the sense of measures on ∂Ω.

ui → u in C1
loc(Ω̄− {x1, . . . , xN}).

Theorem 1.2. Assume that (ui) are solutions of (P ) relative to (Vi) with the following conditions:

0 ≤ Vi ≤ b, ||∇Vi||L∞ ≤ A and

∫

Ω
eui ≤ C,

we have,

||ui||L∞ ≤ c(b,A,C,Ω).

In the previous theorem we have a proof of the global a priori estimate which concern the problem (P ).
The proof of Chen-Li and Ma-Wei [9,16], use the moving-plane method for the case ∇ log Vi uniformly

bounded near the boundary (and C2,α domain, 1 ≥ α > 0) and for analytic domain for the case ∇Vi

uniformly bounded.

To prove Theorem 1.2, we argue by contradiction and use Theorem 1.1.

2. PROOF OF THE THEOREMS

Proof of theorem 1.1:

We have:

ui ∈ W 1,1
0 (Ω).

Since eui ∈ L1(Ω) by the corollary 1 of Brezis-Merle’s paper (see [6]) we have eui ∈ Lk(Ω) for all k > 2
and the elliptic estimates of Agmon and the Sobolev embedding (see [1]) imply that:

ui ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄).

We denote by ∂νui the inner normal derivative. By the maximum principle we have, ∂νui ≥ 0.

By the Stokes formula we have,

∫

∂Ω
∂νuidσ ≤ C,
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We use the weak convergence in the space of Radon measures to have the existence of a nonnegative

Radon measure µ such that,

∫

∂Ω
∂νuiϕdσ → µ(ϕ), ∀ ϕ ∈ C0(∂Ω).

We take an x0 ∈ ∂Ω such that, µ(x0) < 4π. For ǫ > 0 small enough set Iǫ = B(x0, ǫ) ∩ ∂Ω. We choose

a function ηǫ such that,























ηǫ ≡ 1, on Iǫ, 0 < ǫ < δ/2,

ηǫ ≡ 0, outside I2ǫ,

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I2ǫ) ≤
C0(Ω, x0)

ǫ
.

We take a η̃ǫ such that,

{

∆η̃ǫ = 0 in Ω ⊂ R
2,

η̃ǫ = ηǫ in ∂Ω.

Remark: We use the following steps in the construction of ηǫ:

We take a cutoff function η0 in B(0, 2) or B(x0, 2):

1- We set ηǫ(x) = η0(|x− x0|/ǫ) in the case of the unit disk it is sufficient.

2- Or, in the general case: we use a chart (f, Ω̃ = f(Br(0))), for r > 0 small enough and f(0) = x0 and

we take µǫ(x) = η0(f(|x|/ǫ)) to have connected sets Iǫ and we take ηǫ(y) = µǫ(f
−1(y)). Because f, f−1

are Lipschitz, |f(x)−x0| ≤ k2|x| ≤ 1 for |x| ≤ 1/k2 and |f(x)−x0| ≥ k1|x| ≥ 2 for |x| ≥ 2/k1 > 1/k2,

the support of η is in I(2/k1)ǫ.























ηǫ ≡ 1, on f(I(1/k2)ǫ), 0 < ǫ < δ/2,

ηǫ ≡ 0, outside f(I(2/k1)ǫ),

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I(2/k1)ǫ)
≤

C0(Ω, x0)

ǫ
.

3- Also, we can take: µǫ(x) = η0(|x|/ǫ) and ηǫ(y) = µǫ(f
−1(y)), we extend it by 0 outside f(B1(0)).

We have f(B1(0)) = D1(x0), f(Bǫ(0)) = Dǫ(x0) and f(B+
ǫ ) = D+

ǫ (x0) with f and f−1 smooth diffeo-

morphism.























ηǫ ≡ 1, on the connected set Jǫ = f(Iǫ), 0 < ǫ < δ/2,

ηǫ ≡ 0, outside J ′
ǫ = f(I2ǫ),

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(J ′

ǫ)
≤

C0(Ω, x0)

ǫ
.

And, H1(J
′
ǫ) ≤ C1H1(I2ǫ) = C14ǫ, because f is Lipschitz. Here H1 is the Hausdorff measure.
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We solve the Dirichlet Problem:

{

∆η̄ǫ = ∆ηǫ in Ω ⊂ R
2,

η̄ǫ = 0 in ∂Ω.

and finaly we set η̃ǫ = −η̄ǫ + ηǫ. Also, by the maximum principle and the elliptic estimates we have :

||∇η̃ǫ||L∞ ≤ C(||ηǫ||L∞ + ||∇ηǫ||L∞ + ||∆ηǫ||L∞) ≤
C1

ǫ2
,

with C1 depends on Ω.

We use the following estimate, see [3, 7, 19],

||∇ui||Lq ≤ Cq, ∀ i and 1 < q < 2.

We deduce from the last estimate that, (ui) converge weakly in W 1,q
0 (Ω), almost everywhere to a function

u ≥ 0 and
∫

Ω eu < +∞ (by Fatou’s lemma). Also, Vi weakly converge to a nonnegative function V in L∞.

The function u is in W 1,q
0 (Ω) solution of :

{

∆u = V eu ∈ L1(Ω) in Ω ⊂ R
2,

u = 0 in ∂Ω.

According to the corollary 1 of Brezis-Merle result, see [6], we have eku ∈ L1(Ω), k > 1. By the elliptic

estimates, we have u ∈ C1(Ω̄).

For two vectors v,w of R2 we denote by v · w the inner product of v and w.

We can write,

∆((ui − u)η̃ǫ) = (Vie
ui − V eu)η̃ǫ − 2∇(ui − u) · ∇η̃ǫ. (1)

We use the interior esimate of Brezis-Merle, see [6],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between η̃ǫ and u, we obtain,

∫

Ω
V euη̃ǫdx =

∫

∂Ω
∂νuηǫ ≤ C ′ǫ||∂νu||L∞ = Cǫ (2)

We have,

{

∆ui = Vie
ui in Ω ⊂ R

2,

ui = 0 in ∂Ω.

We use the Green formula between ui and η̃ǫ to have:
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∫

Ω
Vie

ui η̃ǫdx =

∫

∂Ω
∂νuiηǫdσ → µ(ηǫ) ≤ µ(J ′

ǫ) ≤ 4π − ǫ0, ǫ0 > 0 (3)

From (2) and (3) we have for all ǫ > 0 there is i0 = i0(ǫ) such that, for i ≥ i0,

∫

Ω
|(Vie

ui − V eu)η̃ǫ|dx ≤ 4π − ǫ0 + Cǫ (4)

Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ3} and Ωǫ3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ3}, ǫ > 0. Then, for ǫ small enough,

Σǫ is a manifold.

The measure of Ω − Ωǫ3 is k2ǫ
3 ≤ meas(Ω − Ωǫ3) = µL(Ω − Ωǫ3) ≤ k1ǫ

3. Here µL is the Lebesgue

measure.

Remark: for the unit ball B̄(0, 1), our new manifold is B̄(0, 1 − ǫ3).

( Proof of this fact; let’s consider d(x, ∂Ω) = d(x, z0), z0 ∈ ∂Ω, this imply that (d(x, z0))
2 ≤ (d(x, z))2

for all z ∈ ∂Ω which it is equivalent to (z − z0) · (2x − z − z0) ≤ 0 for all z ∈ ∂Ω, let’s consider a chart

around z0 and γ(t) a curve in ∂Ω, we have;

(γ(t) − γ(t0) · (2x − γ(t) − γ(t0)) ≤ 0 and it is clear that, γ′(t0) · (x − γ(t0)) = 0, which imply that

x = z0 − sν0 where ν0 is the outward normal of ∂Ω at z0))

With this fact, we can say that S = {x, d(x, ∂Ω) ≤ ǫ} = {x = z0 − sνz0 , z0 ∈ ∂Ω, −ǫ ≤ s ≤ ǫ}. It is

sufficient to work on ∂Ω. Let’s consider a charts (z,D = B(z, 4ǫz), γz) with z ∈ ∂Ω such that ∪zB(z, ǫz)
is cover of ∂Ω . One can extract a finite cover (B(zk, ǫk)), k = 1, ...,m, by the area formula the measure

of S ∩ B(zk, ǫk) is less than a kǫ (a ǫ-rectangle). For the reverse inequality, it is sufficient to consider one

chart around one point on the boundary).

We write,

∫

Ω
|∇(ui − u) · ∇η̃ǫ|dx =

∫

Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx+

∫

Ω−Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx. (5)

Step 2.1: Estimate of
∫

Ω−Ωǫ3
|∇(ui − u) · ∇η̃ǫ|dx.

First, we know from the elliptic estimates that ||∇η̃ǫ||L∞ ≤ C1/ǫ
2, C1 depends on Ω

We know that (|∇ui|)i is bounded in Lq, 1 < q < 2, we can extract from this sequence a subsequence

which converge weakly to h ∈ Lq. But, we know that we have locally the uniform convergence to |∇u| (by

Brezis-Merle’s theorem), then, h = |∇u| a.e. Let q′ be the conjugate of q.

We have, ∀f ∈ Lq′(Ω)

∫

Ω
|∇ui|fdx →

∫

Ω
|∇u|fdx

If we take f = 1Ω−Ωǫ3
, we have:
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for ǫ > 0 ∃ i1 = i1(ǫ) ∈ N, i ≥ i1,

∫

Ω−Ωǫ3

|∇ui| ≤

∫

Ω−Ωǫ3

|∇u|+ ǫ3.

Then, for i ≥ i1(ǫ),

∫

Ω−Ωǫ3

|∇ui| ≤ meas(Ω− Ωǫ3)||∇u||L∞ + ǫ3 = ǫ3(k1||∇u||L∞ + 1).

Thus, we obtain,

∫

Ω−Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx ≤ ǫC1(2k1||∇u||L∞ + 1) (6)

The constant C1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of
∫

Ωǫ3
|∇(ui − u) · ∇η̃ǫ|dx.

We know that, Ωǫ ⊂⊂ Ω, and ( because of Brezis-Merle’s interior estimates) ui → u in C1(Ωǫ3). We

have,

||∇(ui − u)||L∞(Ωǫ3 )
≤ ǫ3, for i ≥ i3 = i3(ǫ).

We write,

∫

Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx ≤ ||∇(ui − u)||L∞(Ωǫ3 )
||∇η̃ǫ||L∞ ≤ C1ǫ for i ≥ i3,

For ǫ > 0, we have for i ∈ N, i ≥ max{i1, i2, i3},

∫

Ω
|∇(ui − u) · ∇η̃ǫ|dx ≤ ǫC1(2k1||∇u||L∞ + 2) (7)

From (4) and (7), we have, for ǫ > 0, there is i3 = i3(ǫ) ∈ N, i3 = max{i0, i1, i2} such that,

∫

Ω
|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇u||L∞ + 2 + C) (8)

We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

{

∆[(ui − u)η̃ǫ] = gi,ǫ in Ω ⊂ R
2,

(ui − u)η̃ǫ = 0 in ∂Ω.

with ||gi,ǫ||L1(Ω) ≤ 4π − ǫ0/2.

We can use Theorem 1 of [6] to conclude that there is q ≥ q̃ > 1 such that:
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∫

Vǫ(x0)
eq̃|ui−u|dx ≤

∫

Ω
eq|ui−u|η̃ǫdx ≤ C(ǫ,Ω).

where, Vǫ(x0) is a neighberhooh of x0 in Ω̄. Here we have used that in a neighborhood of x0 by the elliptic

estimates, 1 − Cǫ ≤ η̃ǫ ≤ 1. (We can take, f(Bǫ3(0)) and we have Bk2ǫ3(x0) ⊂ f(Bǫ3(0)) ⊂ Bk1ǫ3(x0)
for a chart (f,B1(0)) around x0).

Thus, for each x0 ∈ ∂Ω− {x̄1, . . . , x̄m} there is ǫx0 > 0, qx0 > 1 such that:

∫

B(x0,ǫx0)
eqx0uidx ≤ C, ∀ i. (9)

By the elliptic estimates (see [13]) (ui)i is uniformly bounded in W 2,q1(Vǫ(x0)) and also, in C1(Vǫ(x0)).
Finaly, we have, for some ǫ > 0 small enough,

||ui||C1,θ [B(x0,ǫ)] ≤ c3 ∀ i.

We have proved that, there is a finite number of points x̄1, . . . , x̄m such that the squence (ui)i is locally

uniformly bounded (in C1,θ, θ > 0) in Ω̄− {x̄1, . . . , x̄m}.

Proof of theorem 1.2:

We know that:

ui ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄).

We can do integration by parts. The first Pohozaev identity applied around each blow-up point see for

example [16] gives :

∫

∂Ωxk

[(∂νui)∇ui −
1

2
||∇ui|

2ν]dx =

∫

Ωxk

∇Vie
ui −

∫

∂Ωxk

Vie
uiν, (10)

Here Ωxk
is a neighborhood of xk on which we can use the integration by part obtained by a chart around

xk.

We use the boundary condition on Ω and the boundedness of ui and ∂jui outside the xk, to have:

∫

∂Ω
(∂νui)

2dx ≤ c0(b,A,C,Ω). (11)

Thus we can use the weak convergence in L2(∂Ω) to have a subsequence ∂νui, such that:

∫

∂Ω
∂νuiϕdx →

∫

∂Ω
∂νuϕdx, ∀ ϕ ∈ L2(∂Ω), (12)

Thus, αj = 0, j = 1, . . . , N and (ui) is uniformly bounded.
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