ABOUT BREZIS-MERLE PROBLEM WITH LIPSCHITZ CONDITION.

SAMY SKANDER BAHOURA

ABSTRACT. We give blow-up analysis for a Brezis and Merle’s problem with Dirichlet condition. As an application we have a proof of a compactness result under Lipschitz condition on the prescribed scalar curvature and a weaker assumption on the regularity of the domain (smooth domain or $C^{2,\alpha}$ domain, $1 \geq \alpha > 0$).

Mathematics Subject Classification: 35J60 35B45 35B50

Keywords: blow-up, boundary, Dirichlet condition, a priori estimate, Lipschitz condition, smooth or $C^{2,\alpha}$ domain.

1. INTRODUCTION AND MAIN RESULTS

We set $\Delta = -(\partial_{11} + \partial_{22})$ on open set Ω of \mathbb{R}^2 with a smooth (or $C^{2,\alpha}$, $\alpha > 0$) boundary.

We consider the following equation:

$$(P) \begin{cases}
\Delta u = V e^u & \text{in } \Omega \subset \mathbb{R}^2, \\
0 & \text{in } \partial\Omega.
\end{cases}$$

Here, we assume that:

$$0 \leq V \leq b < +\infty, \quad e^u \in L^1(\Omega) \quad \text{and} \quad u \in W^{1,1}_0(\Omega).$$

We can see in [7] a nice formulation of this problem (P) in the sense of the distributions. This Problem arises from geometrical and physical problems see for example [1, 2, 18, 19]. The above equation was studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see [1-19], where one can find some existence and compactness results. In [6] we have the following important Theorem,

Theorem A (Brezis-Merle [6]). For $(u_i)_i$ and $(V_i)_i$, two sequences of functions relative to (P) with,

$$0 < a \leq V_i \leq b < +\infty$$

then, for all compact subset K of Ω it holds,

$$\sup_K u_i \leq c,$$

with c depending on a, b, K and Ω.

One can find in [6] an interior estimate if we assume $a = 0$, but we need an assumption on the integral of e^{u_i}, namely, we have:
Theorem B (Brezis-Merle [6]). For \((u_i)\), and \((V_i)\), two sequences of functions relative to the problem \((P)\) with,

\[
0 \leq V_i \leq b < +\infty \text{ and } \int_{\Omega} e^{u_i} \, dy \leq C,
\]

then, for all compact subset \(K\) of \(\Omega\) it holds:

\[
\sup_K u_i \leq c,
\]

with \(c\) depending on \(b, C, K\) and \(\Omega\).

We look to the uniform boundedness on all \(\Omega\) of sequences of solutions of the Problem \((P)\). Remark that, when \(a = 0\) the boundedness of \(\int_{\Omega} e^{u_i}\) is a necessary condition in the problem \((P)\) as showed in [6] by the following counterexample.

Theorem C (Brezis-Merle [6]). There are two sequences \((u_i)\), and \((V_i)\), of the problem \((P)\) with,

\[
0 \leq V_i \leq b < +\infty \text{ and } \int_{\Omega} e^{u_i} \, dy \leq C,
\]

such that,

\[
\sup_{\Omega} u_i \to +\infty.
\]

To obtain the two first previous results (Theorems A and B) Brezis and Merle used an inequality (Theorem 1 of [6]) obtained by an approximation argument with the Fatou’s lemma and they applied the maximum principle in \(W^{1,1}(\Omega)\) which arises from Kato’s inequality. Also this weak form of the maximum principle is used to prove the local uniform boundedness result by comparing a certain function and the Newtonian potential. We refer to [5] for a topic about the weak form of the maximum principle.

Remarks:

1) Theorem 1 of [6], can be obtained by the usual maximum principle and Agmon regularity theorem which require \(C^2\) regularity on the domain.

2) The duality Theorem which we use require \(C^2\) regularity on the domain, see Gilbarg-Trudinger books.

Note that for the problem \((P)\), by using the Pohozaev identity, we can prove that \(\int_{\Omega} e^{u_i}\) is uniformly bounded when \(0 < a \leq V_i \leq b < +\infty\) and \(\|\nabla V_i\|_{L^\infty} \leq A\) and \(\Omega\) starshaped, when \(a = 0\) and \(\nabla \log V_i\) is uniformly bounded, we can bound uniformly \(\int_{\Omega} V_i e^{u_i}\). In [16] Ma-Wei have proved that those results stay true for all open sets not necessarily starshaped.

In [9] Chen-Li have proved that if \(a = 0\) and \(\nabla \log V_i\) is uniformly bounded, then the functions are uniformly bounded near the boundary.

In [9] Chen-Li have proved that if \(a = 0\) and \(\int_{\Omega} e^{u_i}\) is uniformly bounded and \(\nabla \log V_i\) is uniformly bounded, then we have the compactness result directly. Ma-Wei in [16], extend this result in the case where \(a > 0\).

If we assume \(V\) more regular, we can have another type of estimates called \(\sup + \inf\) type inequalities. It was proved by Shafrir see [17] that, if \((u_i), (V_i)\), are two sequences of functions solutions of the previous
equation without assumption on the boundary and, \(0 < a \leq V_i \leq b < +\infty\), then we have the following interior estimate:

\[
C \left(\frac{a}{b} \right) \sup_K u_i + \inf_{\Omega} u_i \leq c = c(a, b, K, \Omega).
\]

One can see in [10] an explicit value of \(C \left(\frac{a}{b} \right) = \sqrt{\frac{a}{b}}\). In his proof Shafrir has used a blow-up function, the Stokes formula and an isoperimetric inequality see [2]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose \((V_i)_i\) uniformly Lipschitzian with \(A\) its Lipschitz constant then \(C(a/b) = 1\) and \(c = c(a, b, A, K, \Omega)\) see Brezis-Li-Shafrir [4]. This result was extended for Hölderian sequences \((V_i)_i\) by Chen-Lin, see [10]. Also, one can see in [14] an extension of the Brezis-Li-Shafrir result to compact Riemannian surfaces without boundary. One can see in [15] explicit form, \((8\pi m, m \in \mathbb{N}^*\) exactly), for the numbers in front of the Dirac masses when the solutions blow-up. Here, the notion of isolated blow-up point is used.

In [8] we have some a priori estimates on the 2 and 3-spheres \(S_2, S_3\).

Here we give the behavior of the blow-up points on the boundary and a proof of Brezis-Merle Problem with Lipschitz condition.

The Brezis-Merle Problem (see [6]) is:

Problem. Suppose that \(V_i \to V \in C^0(\bar{\Omega})\) with \(0 \leq V_i\). Also, we consider a sequence of solutions \((u_i)\) of \((P)\) relative to \((V_i)\) such that,

\[
\int_{\Omega} e^{u_i} dx \leq C,
\]

is it possible to have:

\[
||u_i||_{L^\infty} \leq C?
\]

Here, we give a caracterization of the behavior of the blow-up points on the boundary and also, in particular we extend Chen-Li theorems, indeed, the result of Chen-Li holds for analytic domains and our result holds for smooth of \(C^{2,\alpha}\) domains. For the behavior of the blow-up points on the boundary, the following condition is enough,

\(0 \leq V_i \leq b\).

The condition \(V_i \to V \in C^0(\bar{\Omega})\) is not necessary, but for the proof of the compactness for the Brezis-Merle problem we assume that:

\[
||\nabla V_i||_{L^\infty} \leq A.
\]

Our main results are:

Theorem 1.1. Assume that \(\max_{\Omega} u_i \to +\infty\), where \((u_i)\) are solutions of the problem \((P)\) with:
\[0 \leq V_i \leq b \quad \text{and} \quad \int_{\Omega} e^{u_i} \, dx \leq C, \quad \forall \ i, \]

then, after passing to a subsequence, there is a function \(u \), there is a number \(N \in \mathbb{N} \) and there are \(N \) points \(x_1, \ldots, x_N \in \partial \Omega \), such that,

\[\partial_{\nu} u_i \to \partial_{\nu} u + \sum_{j=1}^{N} \alpha_j \delta_{x_j}, \quad \alpha_j \geq 4\pi, \quad \text{in the sense of measures on } \partial \Omega. \]

\[u_i \to u \quad \text{in } C^1_{\text{loc}}(\bar{\Omega} - \{x_1, \ldots, x_N\}). \]

Theorem 1.2. Assume that \((u_i) \) are solutions of \((P)\) relative to \((V_i) \) with the following conditions:

\[0 \leq V_i \leq b, \quad ||\nabla V_i||_{L^\infty} \leq A \quad \text{and} \quad \int_{\Omega} e^{u_i} \leq C, \]

we have,

\[||u_i||_{L^\infty} \leq c(b, A, C, \Omega). \]

In the previous theorem we have a proof of the global a priori estimate which concern the problem \((P)\).

The proof of Chen-Li and Ma-Wei \([9,16]\), use the moving-plane method for the case \(\nabla \log V_i \) uniformly bounded near the boundary (and \(C^{2,\alpha} \) domain, \(1 \geq \alpha > 0 \)) and for analytic domain for the case \(\nabla V_i \) uniformly bounded.

To prove Theorem 1.2, we argue by contradiction and use Theorem 1.1.

2. **Proof of the theorems**

Proof of theorem 1.1:

We have:

\[u_i \in W^{1,1}_0(\Omega). \]

Since \(e^{u_i} \in L^1(\Omega) \) by the corollary 1 of Brezis-Merle’s paper (see \([6]\)) we have \(e^{u_i} \in L^k(\Omega) \) for all \(k > 2 \) and the elliptic estimates of Agmon and the Sobolev embedding (see \([1]\)) imply that:

\[u_i \in W^{2,1}(\Omega) \cap C^{1,\epsilon}(\Omega). \]

We denote by \(\partial_{\nu} u_i \) the inner normal derivative. By the maximum principle we have, \(\partial_{\nu} u_i \geq 0 \).

By the Stokes formula we have,

\[\int_{\partial \Omega} \partial_{\nu} u_i \, d\sigma \leq C, \]

where \(4 \).
We use the weak convergence in the space of Radon measures to have the existence of a nonnegative Radon measure μ such that,

$$\int_{\partial \Omega} \partial_{\nu} u_i \varphi \, d\sigma \to \mu(\varphi), \quad \forall \varphi \in C^0(\partial \Omega).$$

We take an $x_0 \in \partial \Omega$ such that, $\mu(x_0) < 4\pi$. For $\epsilon > 0$ small enough set $I_{\epsilon} = B(x_0, \epsilon) \cap \partial \Omega$. We choose a function η such that,

$$\begin{cases}
\eta \equiv 1, & \text{on } I_{\epsilon}, \ 0 < \epsilon < \delta/2, \\
\eta \equiv 0, & \text{outside } I_{2\epsilon}, \\
0 \leq \eta \leq 1, \\
||\nabla \eta||_{L^\infty(I_{2\epsilon})} \leq \frac{C_0(\Omega, x_0)}{\epsilon}.
\end{cases}$$

We take a \(\tilde{\eta} \) such that,

$$\begin{cases}
\Delta \tilde{\eta} = 0 & \text{in } \Omega \subset \mathbb{R}^2, \\
\tilde{\eta} = \eta & \text{in } \partial \Omega.
\end{cases}$$

Remark: We use the following steps in the construction of η:

1- We set $\eta_0(x) = \eta_0(\|x - x_0\|/\epsilon)$ in the case of the unit disk it is sufficient.

2- Or, in the general case: we use a chart $(f, \tilde{\Omega} = f(B_r(0)))$, for $r > 0$ small enough and $f(0) = x_0$ and we take $\mu_\epsilon(x) = \eta_0(f(\|x\|/\epsilon))$ to have connected sets I_ϵ and we take $\eta(x) = \mu_\epsilon(f^{-1}(y))$. Because f, f^{-1} are Lipschitz, $|f(x) - x_0| < k_2|x| \leq 1$ for $|x| \leq 1/k_2$ and $|f(x) - x_0| \geq k_1|x| \geq 2$ for $|x| \geq 2/k_1 > 1/k_2$, the support of η is in $I_{(2/k_1)x}$.

$$\begin{cases}
\eta \equiv 1, & \text{on } f(I_{(1/k_1)x}), \ 0 < \epsilon < \delta/2, \\
\eta \equiv 0, & \text{outside } f(I_{(2/k_1)x}), \\
0 \leq \eta \leq 1, \\
||\nabla \eta||_{L^\infty(I_{(2/k_1)x})} \leq \frac{C_0(\Omega, x_0)}{\epsilon}.
\end{cases}$$

3- Also, we can take: $\mu_\epsilon(x) = \eta_0(|x|/\epsilon)$ and $\eta(x) = \mu_\epsilon(f^{-1}(y))$, we extend it by 0 outside $f(B_1(0))$. We have $f(B_1(0)) = D_1(x_0), f(B_2(0)) = D_1(x_0)$ and $f(B_2^+ = D_1^+(x_0)$ with f and f^{-1} smooth diffeomorphism.

$$\begin{cases}
\eta \equiv 1, & \text{on the connected set } J_\epsilon = f(I_{\epsilon}), \ 0 < \epsilon < \delta/2, \\
\eta \equiv 0, & \text{outside } J_\epsilon = f(I_{2\epsilon}), \\
0 \leq \eta \leq 1, \\
||\nabla \eta||_{L^\infty(J_\epsilon')} \leq \frac{C_0(\Omega, x_0)}{\epsilon}.
\end{cases}$$

And, $H_1(J_{\epsilon}) \leq C_1 H_1(I_{2\epsilon}) = C_1 4\epsilon$, because f is Lipschitz. Here H_1 is the Hausdorff measure.
We solve the Dirichlet Problem:

\[
\begin{align*}
\Delta \bar{\eta}_e &= \Delta \eta_e \quad \text{in } \Omega \subset \mathbb{R}^2, \\
\bar{\eta}_e &= 0 \quad \text{in } \partial \Omega.
\end{align*}
\]

and finally we set \(\tilde{\eta}_e = -\bar{\eta}_e + \eta_e \). Also, by the maximum principle and the elliptic estimates we have:

\[
||\nabla \tilde{\eta}_e||_{L^\infty} \leq C \frac{1}{\epsilon^2} (||\eta_e||_{L^\infty} + ||\nabla \eta_e||_{L^\infty} + ||\Delta \eta_e||_{L^\infty}) \leq C_1 \epsilon^2,
\]

with \(C_1 \) depends on \(\Omega \).

We use the following estimate, see [3, 7, 19],

\[
||\nabla u_i||_{L^q} \leq C_q, \quad \forall \ i \text{ and } 1 < q < 2.
\]

We deduce from the last estimate that, \((u_i)\) converge weakly in \(W^{1,q}_0(\Omega) \), almost everywhere to a function \(u \geq 0 \) and \(\int_{\Omega} e^{u} < +\infty \) (by Fatou’s lemma). Also, \(V_i \) weakly converge to a nonnegative function \(V \) in \(L^\infty \).

The function \(u \) is in \(W^{1,q}_0(\Omega) \) solution of:

\[
\begin{align*}
\Delta u &= V e^u \in L^1(\Omega) \quad \text{in } \Omega \subset \mathbb{R}^2, \\
u &= 0 \quad \text{in } \partial \Omega.
\end{align*}
\]

According to the corollary 1 of Brezis-Merle result, see [6], we have \(e^{k u} \in L^1(\Omega), k > 1 \). By the elliptic estimates, we have \(u \in C^1(\Omega) \).

For two vectors \(v, w \) of \(\mathbb{R}^2 \) we denote by \(v \cdot w \) the inner product of \(v \) and \(w \).

We can write,

\[
\Delta((u_i - u) \tilde{\eta}_e) = (V_i e^{u_i} - V e^u) \tilde{\eta}_e - 2 \nabla (u_i - u) \cdot \nabla \tilde{\eta}_e.
\]

(1)

We use the interior estimate of Brezis-Merle, see [6],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between \(\tilde{\eta}_e \) and \(u_i \), we obtain,

\[
\int_{\Omega} V e^u \tilde{\eta}_e dx = \int_{\partial \Omega} \partial_n \tilde{\eta}_e \leq C' ||\nabla \tilde{\eta}_e||_{L^\infty} = C \epsilon
\]

(2)

We have,

\[
\begin{align*}
\Delta u_i &= V_i e^{u_i} \quad \text{in } \Omega \subset \mathbb{R}^2, \\
u_i &= 0 \quad \text{in } \partial \Omega.
\end{align*}
\]

We use the Green formula between \(u_i \) and \(\tilde{\eta}_e \) to have:
\[
\int_{\Omega} V_i e^{\alpha i} \hat{\eta}_k dx = \int_{\partial \Omega} \partial_v u_i \hat{\eta}_k d\sigma \to \mu(\eta_k) \leq \mu(J^\prime) \leq 4\pi - \epsilon_0, \quad \epsilon_0 > 0 \tag{3}
\]

From (2) and (3) we have for all \(\epsilon > 0 \) there is \(i_0 = i_0(\epsilon) \) such that, for \(i \geq i_0, \)

\[
\int_{\Omega} |(V_i e^{\alpha i} - V e^{\alpha}) \hat{\eta}_k| dx \leq 4\pi - \epsilon_0 + C\epsilon \tag{4}
\]

Step 2: Estimate of integral of the second term of the right hand side of (1).

Let \(\Sigma = \{ x \in \Omega, d(x, \partial \Omega) = \epsilon^3 \} \) and \(\Omega_{\epsilon^3} = \{ x \in \Omega, d(x, \partial \Omega) \geq \epsilon^3 \}, \epsilon > 0 \). Then, for \(\epsilon \) small enough, \(\Sigma_\epsilon \) is a manifold.

The measure of \(\Omega - \Omega_{\epsilon^3} \) is \(k_2 \text{meas}(\Omega - \Omega_{\epsilon^3}) = \mu_L(\Omega - \Omega_{\epsilon^3}) \leq k_1 \epsilon^3 \). Here \(\mu_L \) is the Lebesgue measure.

Remark: for the unit ball \(\bar{B}(0, 1) \), our new manifold is \(\bar{B}(0, 1 - \epsilon^3) \).

(Proof of this fact; let’s consider \(d(x, \partial \Omega) = d(x, z_0), z_0 \in \partial \Omega \), this imply that \((d(x, z_0))^2 \leq (d(x, z))^2 \) for all \(z \in \partial \Omega \) which it is equivalent to \((z - z_0) \cdot (2x - z - z_0) \leq 0 \) for all \(z \in \partial \Omega \), let’s consider a chart around \(z_0 \) and a curve in \(\partial \Omega \), we have;

\[
(\gamma(t) - \gamma(t_0) \cdot (2x - \gamma(t) - \gamma(t_0)) \leq 0 \text{ and it is clear that, } (t_0) \cdot (x - \gamma(t_0)) = 0, \text{ which imply that } x = z - snu_0 \text{ where } u_0 \text{ is the outward normal of } \partial \Omega \text{ at } z_0) \]

With this fact, we can say that \(S = \{ x, d(x, \partial \Omega) \leq \epsilon \} = \{ x = z_0 - snu_0, z_0 \in \partial \Omega, -\epsilon \leq s \leq \epsilon \} \). It is sufficient to work on \(\partial \Omega \). Let’s consider a charts \((z, D = B(z, 4\epsilon), \gamma_z) \) with \(z \in \partial \Omega \) such that \(\cup_k B(z, \epsilon_k) \) is cover of \(\partial \Omega \). One can extract a finite cover \((B(z_k, \epsilon_k)), k = 1, ..., m, \) by the area formula the measure of \(S \cap B(z_k, \epsilon_k) \) is less than a \(k\epsilon \) (a \(\epsilon \)-rectangle). For the reverse inequality, it is sufficient to consider one chart around one point on the boundary.

We write,

\[
\int_{\Omega} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_k| dx = \int_{\Omega_{\alpha^3}} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_k| dx + \int_{\Omega - \Omega_{\epsilon^3}} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_k| dx. \tag{5}
\]

Step 2.1: Estimate of \(\int_{\Omega - \Omega_{\epsilon^3}} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_k| dx \).

First, we know from the elliptic estimates that \(||\nabla \hat{\eta}_k||_{L^\infty} \leq C_1/\epsilon^2, C_1 \) depends on \(\Omega \)

We know that \((||\nabla u_i||_1) \) is bounded in \(L^q, 1 < q < 2 \), we can extract from this sequence a subsequence which converge weakly to \(h \in L^q \). But, we know that we have locally the uniform convergence to \(|\nabla u| \) (by Brezis-Merle’s theorem), then, \(h = |\nabla u| \) a.e. Let \(q' \) be the conjugate of \(q \).

We have, \(\forall f \in L^{q'}(\Omega) \)

\[
\int |\nabla u_i| f dx \to \int |\nabla u| f dx
\]

If we take \(f = 1_{\Omega - \Omega_{\epsilon^3}} \), we have:
for $\epsilon > 0 \exists i_1 = i_1(\epsilon) \in \mathbb{N}$, $i \geq i_1$, \(\int_{\Omega_{\epsilon}^3} |\nabla u_i| \leq \int_{\Omega_{\epsilon}^3} |\nabla u| + \epsilon^3 \).

Then, for $i \geq i_1(\epsilon)$,

\[\int_{\Omega_{\epsilon}^3} |\nabla u_i| \leq \text{meas}(\Omega - \Omega_{\epsilon})||\nabla u||_{L^\infty} + \epsilon^3 = \epsilon^3(k_1||\nabla u||_{L^\infty} + 1). \]

Thus, we obtain,

\[\int_{\Omega_{\epsilon}^3} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_\epsilon| \, dx \leq \epsilon C_1(2k_1||\nabla u||_{L^\infty} + 1) \quad (6) \]

The constant C_1 does not depend on ϵ but on Ω.

Step 2.2: Estimate of $\int_{\Omega_{\epsilon}^3} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_\epsilon| \, dx$.

We know that, $\Omega_{\epsilon} \subset \subset \Omega$, and (because of Brezis-Merle’s interior estimates) $u_i \to u$ in $C^1(\Omega_{\epsilon}^3)$. We have,

\[||\nabla(u_i - u)||_{L^\infty(\Omega_{\epsilon}^3)} \leq \epsilon^3, \text{ for } i \geq i_3 = i_3(\epsilon). \]

We write,

\[\int_{\Omega_{\epsilon}^3} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_\epsilon| \, dx \leq \epsilon ||\nabla(u_i - u)||_{L^\infty(\Omega_{\epsilon}^3)}||\nabla \hat{\eta}_\epsilon||_{L^\infty} \leq C_1 \epsilon \text{ for } i \geq i_3, \quad (7) \]

For $\epsilon > 0$, we have for $i \in \mathbb{N}$, $i \geq \max\{i_1, i_2, i_3\}$,

\[\int_{\Omega} |\nabla(u_i - u) \cdot \nabla \hat{\eta}_\epsilon| \, dx \leq \epsilon C_1(2k_1||\nabla u||_{L^\infty} + 2) \quad (7) \]

From (4) and (7), we have, for $\epsilon > 0$, there is $i_3 = i_3(\epsilon) \in \mathbb{N}$, $i_3 = \max\{i_0, i_1, i_2\}$ such that,

\[\int_{\Omega} |\Delta[(u_i - u)\hat{\eta}_\epsilon]| \, dx \leq 4\pi - \epsilon_0 + \epsilon^3 + 2C_1(2k_1||\nabla u||_{L^\infty} + 2 + C) \quad (8) \]

We choose $\epsilon > 0$ small enough to have a good estimate of (1).

Indeed, we have:

\[\begin{align*}
\Delta[(u_i - u)\hat{\eta}_\epsilon] &= g_{i,\epsilon} & \text{in } \Omega \subset \mathbb{R}^2, \\
(u_i - u)\hat{\eta}_\epsilon &= 0 & \text{in } \partial\Omega.
\end{align*}\]

with $||g_{i,\epsilon}||_{L^1(\Omega)} \leq 4\pi - \epsilon_0/2$.

We can use Theorem 1 of [6] to conclude that there is $q \geq \tilde{q} > 1$ such that:
\[\int_{V_{\epsilon}(x_0)} e^{\tilde{q}_{x_0} u_i} dx \leq \int_{\Omega} e^{\|u_i-u\|_{U_0}} dx \leq C(\epsilon, \Omega). \]

where, \(V_{\epsilon}(x_0) \) is a neighborhood of \(x_0 \) in \(\bar{\Omega} \). Here we have used that in a neighborhood of \(x_0 \) by the elliptic estimates, \(1 - C \epsilon \leq \tilde{\eta}_0 \leq 1 \). (We can take, \(f(B_{\epsilon}(0)) \) and we have \(B_{k_2 \epsilon^3}(x_0) \subset f(B_{\epsilon^3}(0)) \subset B_{k_1 \epsilon^3}(x_0) \) for a chart \((f, B_{1}(0)) \) around \(x_0 \)).

Thus, for each \(x_0 \in \partial \Omega - \{ \bar{x}_1, \ldots, \bar{x}_m \} \) there is \(\epsilon_{x_0} > 0, q_{x_0} > 1 \) such that:

\[\int_{B(x_0, \epsilon_{x_0})} e^{q_{x_0} u_i} dx \leq C, \quad \forall \ i. \quad (9) \]

By the elliptic estimates (see [13]) \((u_i)_i \) is uniformly bounded in \(W^{2,q_1}(V_{\epsilon}(x_0)) \) and also, in \(C^{1}(V_{\epsilon}(x_0)) \).

Finally, we have, for some \(\epsilon > 0 \) small enough,

\[\|u_i\|_{C^{1,\theta}(B(x_0, \epsilon))} \leq c_3 \quad \forall \ i. \]

We have proved that, there is a finite number of points \(\bar{x}_1, \ldots, \bar{x}_m \) such that the sequence \((u_i)_i \) is locally uniformly bounded (in \(C^{1,\theta}, \theta > 0 \)) in \(\bar{\Omega} - \{ \bar{x}_1, \ldots, \bar{x}_m \} \).

Proof of theorem 1.2:

We know that:

\[u_i \in W^{2,k}(\Omega) \cap C^{1,\epsilon}(\bar{\Omega}). \]

We can do integration by parts. The first Pohozaev identity applied around each blow-up point see for example [16] gives:

\[\int_{\partial \Omega_{x_k}} [(\partial_{\nu} u_i) \nabla u_i - \frac{1}{2} \|u_i\|^2_{\nu}] dx = \int_{\Omega_{x_k}} \nabla V_{\epsilon} u_i - \int_{\partial \Omega_{x_k}} V_{\epsilon} u_i \nu, \quad (10) \]

Here \(\Omega_{x_k} \) is a neighborhood of \(x_k \) on which we can use the integration by part obtained by a chart around \(x_k \).

We use the boundary condition on \(\Omega \) and the boundedness of \(u_i \) and \(\partial_j u_i \) outside the \(x_k \), to have:

\[\int_{\partial \Omega} (\partial_{\nu} u_i)^2 dx \leq c_0(b, A, C, \Omega). \quad (11) \]

Thus we can use the weak convergence in \(L^2(\partial \Omega) \) to have a subsequence \(\partial_{\nu} u_i \), such that:

\[\int_{\partial \Omega} \partial_{\nu} u_i \varphi dx \rightarrow \int_{\partial \Omega} \partial_{\nu} u \varphi dx, \quad \forall \ \varphi \in L^2(\partial \Omega), \quad (12) \]

Thus, \(\alpha_j = 0, j = 1, \ldots, N \) and \((u_i) \) is uniformly bounded.

Acknowledgement.
The work was supported by YY. Li’s Grant and Pr Jiguang Bao. The author would like to thank Pr. YY.Li for his support.

REFERENCES

E-mail address: samybahoura@gmail.com, samybahoura@yahoo.fr