The Sensible Graph Theories of Lambda Calculus

Antonio Bucciarelli, Antonino Salibra

To cite this version:

Antonio Bucciarelli, Antonino Salibra. The Sensible Graph Theories of Lambda Calculus. Logic in Computer Science, 2004, Turku, Finland. pp.276-285. hal-00149558

HAL Id: hal-00149558

https://hal.science/hal-00149558

Submitted on 26 May 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Sensible Graph Theories of Lambda Calculus

A. Bucciarelli

A. Salibra

Equipe PPS
Université Paris 7
Paris, France

Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Venezia, Italia

Abstract

Sensible λ-theories are equational extensions of the untyped lambda calculus that equate all the unsolvable λ terms and are closed under derivation. The least sensible λ-theory is the λ-theory \mathcal{H} (generated by equating all the unsolvable terms), while the greatest sensible λ-theory is the λ-theory \mathcal{H}^{*} (generated by equating terms with the same Böhm tree up to possibly infinite η-equivalence). A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is the least sensible λ-theory \mathcal{H}. A related question is whether, given a class of models, there exist a minimal and maximal sensible λ-theory represented by it. In this paper we give a positive answer to this question for the semantics of lambda calculus given in terms of graph models. We conjecture that the least sensible graph theory, where "graph theory" means " λ-theory of a graph model", is equal to \mathcal{H}, while in the main result of the paper we characterize the greatest sensible graph theory as the λ-theory \mathcal{B} generated by equating λ-terms with the same Böhm tree. This result is a consequence of the fact that all the equations between solvable λ-terms, which have different Böhm trees, fail in every graph model. Further results of the paper are: (i) the existence of a continuum of different sensible graph theories strictly included in \mathcal{B} (this result positively answers Question 2 in [7, Section 6.3]); (ii) the non-existence of a graph model whose equational theory is exactly the minimal lambda theory $\lambda \beta$ (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models).

1. Introduction

Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. They arise by syntactical or semantic considerations. Indeed, a λ-theory may correspond to a possible operational (observational) semantics of the lambda calculus, as well as it may be induced by a model of lambda calculus through the kernel congruence relation of the interpretation function.

Although researchers have mainly focused their interest on a limited number of them, the class of λ-theories constitutes a very rich and complex structure (see e.g. [4, 7]). Syntactical techniques are usually difficult to use in the study of λ-theories. Therefore, semantic methods have been extensively investigated.

Topology is at the center of the known approaches to giving models of the untyped lambda calculus. The first model, found by Scott in 1969 in the category of complete lattices and Scott continuous functions, was successfully used to show that all the unsolvable λ-terms can be consistently equated. After Scott, a large number of mathematical models for lambda calculus, arising from syntax-free constructions, have been introduced in various categories of domains and were classified into semantics according to the nature of their representable functions, see e.g. [1, 4, 7, 21]. Scott's continuous semantics [24] is given in the category whose objects are complete partial orders and morphisms are Scott continuous functions. The stable semantics introduced by Berry [8] and the strongly stable semantics introduced by Bucciarelli-Ehrhard [9] are a strengthening of the continuous semantics, introduced to capture the "sequential" Scott continuous functions. All these semantics are structurally and equationally rich in the sense that it is possible to build up $2^{\aleph_{0}}$ models in each of them inducing pairwise distinct λ-theories [18, 19].

Although a rich host of different λ-theories have a "fully abstract" syntax-free model (i.e., a model which induces precisely those identities which hold in the given theory), the above denotational semantics are equationally incomplete: they do not even match all the possible operational semantics of lambda calculus. The problem of the equational incompleteness was positively solved by HonsellRonchi della Rocca [16] for the continuous semantics, and by Bastonero-Gouy [15, 6] for the stable semantics. Salibra $[22,23]$ has recently shown in a uniform way that all the semantics, which involve monotonicity with respect to some partial order and have a bottom element, fail to induce a continuum of λ-theories. From this it follows the incompleteness of the strongly stable semantics, which had been
conjectured by Bastonero-Gouy [6] and by Berline [7].
If a semantics is incomplete, then there exists a λ-theory T that is not induced by any model in the semantics. In such a case we say that the semantics omits the λ-theory T. More generally, a semantics omits (forces, respectively) an equation if the equation fails (holds) in every model of the semantics. The set of equations 'forced' by a semantics \mathcal{C} constitutes a λ-theory. It is the minimal λ-theory of \mathcal{C} if it is induced by a model of \mathcal{C}.

The following natural question arises (see Berline [7]): given a class of models in a semantics \mathcal{C}, is there a minimal λ-theory represented in it? Di Gianantonio et al. [14] have shown that the above question admits a positive answer for Scott's continuous semantics, at least if we restrict to extensional models. However, the proofs of [14] use logical relations, and since logical relations do not allow to distinguish terms with the same applicative behavior, the proofs do not carry out to non-extensional models. The authors [10] have recently shown that the same question admits a positive answer for the graph semantics, that is, the semantics of lambda calculus given in terms of graph models. These models, isolated in the seventies by Plotkin, Scott and Engeler [4] within the continuous semantics, have been proved useful for giving proofs of consistency of extensions of lambda calculus and for studying operational features of lambda calculus. For example, the simplest graph model, namely Engeler-Plotkin's model, has been used to give concise proofs of the head-normalization theorem and of the left-normalization theorem of lambda calculus (see [7]), while a semantical proof of the "easiness" of $(\lambda x . x x)(\lambda x . x x)$ was obtained by Baeten and Boerboom in [3]. Kerth has recently shown in [18] that there exists a continuum of different (sensible) graph theories (where "graph theory" means " λ-theory of a graph model"). However, it is well known that the graph semantics is incomplete, since it trivially omits the axiom of extensionality (i.e., the equation $\lambda x . x=\lambda x y . x y$).

Sensible λ-theories are equational extensions of the untyped lambda calculus that equate all the unsolvable λ terms and are closed under derivation. The least sensible λ theory is the λ-theory \mathcal{H} (generated by equating all the unsolvable terms), while the greatest sensible λ-theory is the λ-theory \mathcal{H}^{*} (generated by equating λ-terms with the same Böhm tree up to possibly infinite η-equivalence). A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is the least sensible λ-theory \mathcal{H}. A related question is whether, given a class of models, there is a minimal and maximal sensible λ-theory represented by it. In this paper we give a positive answer to this question for the graph semantics. Two further questions arise: what equations between λ-terms are equated by the least sensible graph theory? And by the greatest one? The answer to
the first difficult question is still unknown; we conjecture that the right answer is the least sensible λ-theory \mathcal{H}. In this paper we positively answer the second question: the λ-theory \mathcal{B} (generated by equating λ-terms with the same Böhm tree) is the greatest sensible graph theory. This result is a consequence of the fact that the graph semantics omits all the equations between solvable λ-terms that have different Böhm trees. More formally, we show that the graph semantics omits all the equations $M=N$ satisfying the following conditions:

$$
\begin{equation*}
\mathcal{H}^{*} \vdash M=N \text { and } \mathcal{B} \nvdash M=N . \tag{1}
\end{equation*}
$$

The following are other consequences of the main result of the paper.
(i) There exists a continuum of different sensible graph theories strictly included in \mathcal{B} (this result positively answers Question 2 in [7, Section 6.3]);
(ii) For every closed term P, the λ-theory generated by $(\lambda x . x x)(\lambda x . x x)=P$ contains no equation satisfying condition (1).

A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is equal to the least lambda theory $\lambda \beta$. In this paper we show that this model cannot be found within graph semantics (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models). From the above result it follows that graph semantics forces equations between non-β-equivalent λ-terms and that the least graph theory, whose existence was shown in [10], is not equal to $\lambda \beta$.

The paper is organized as follows. In Section 2 we review the basic definitions of lambda calculus and graph models. In particular, we recall the formal definition of the Engeler completion of a partial pair. The proof of the existence of a minimal sensible graph theory is presented in Section 3, while Sections 4 and 5 are devoted to the characterization of the maximal sensible graph theory.

2. Preliminaries

To keep this article self-contained, we summarize some definitions and results concerning lambda calculus and graph models that we need in the subsequent part of the paper. With regard to the lambda calculus we follow the notation and terminology of [4].

2.1 Lambda calculus

The set Λ_{I} of λ-terms of lambda calculus over an infinite set I of variables is constructed as usual: every variable $x \in I$ is a λ-term; if t and s are λ-terms, then so are (st)
and λx.t for each variable $x \in I$. The symbol \equiv denotes syntactic equality. The following are some well-known λ terms:

$$
\begin{gathered}
\Omega \equiv(\lambda x . x x)(\lambda x . x x) ; \quad \Omega_{3} \equiv(\lambda x . x x x)(\lambda x . x x x) \\
\mathbf{i} \equiv \lambda x . x ; \quad \mathbf{k} \equiv \lambda x y . x ; \quad \mathbf{1} \equiv \lambda x y . x y
\end{gathered}
$$

A compatible λ-relation T is any set of equations between λ-terms that is closed under the following two rules:
(i) If $t_{1}=u_{1} \in T$ and $t_{2}=u_{2} \in T$, then $t_{1} t_{2}=u_{1} u_{2} \in$ T;
(ii) If $t=u \in T$ then $\lambda x . t=\lambda x . u \in T$ for every variable $x \in I$.

We will write either $T \vdash t=s$ or $t={ }_{T} s$ for $t=s \in T$.
A λ-theory T is any compatible λ-relation which is an equivalence relation and includes (α) - and (β)-conversion. The set of all λ-theories is naturally equipped with a lattice structure, with meet defined as set theoretical intersection. The join of two λ-theories T and S is the least equivalence relation including $T \cup S . \lambda \beta$ denotes the minimal λ-theory, while $\lambda \beta \eta$ denotes the minimal extensional λ-theory (axiomatized by $\mathbf{i}=1$).

The λ-theory \mathcal{H}, generated by equating all the unsolvable λ-terms, is consistent by [4, Thm. 16.1.3] and admits a unique maximal consistent extension \mathcal{H}^{*} [4, Thm. 16.2.6]. A λ-theory T is called sensible [4, Def. 4.1.7(ii)] if $\mathcal{H} \subseteq T$. The set of all sensible λ-theories is naturally equipped with a structure of bounded lattice. \mathcal{H} is the least sensible λ theory, while \mathcal{H}^{*} is the greatest one. \mathcal{H}^{*} is an extensional λ-theory.

2.2 Böhm trees

The λ-theory \mathcal{B}, generated by equating λ-terms with the same Böhm tree, is sensible and non-extensional. \mathcal{B} is distinct from \mathcal{H} and \mathcal{H}^{*}, so that $\mathcal{H} \subset \mathcal{B} \subset \mathcal{H}^{*}$. Notice that not all the λ-theories T satisfying the condition $\mathcal{B} \subset T \subset \mathcal{H}^{*}$ are extensional (see Prop. 4.3 below).

In the remaining part of this subsection we characterize the λ-theory \mathcal{H}^{*} in terms of Böhm trees.

The Böhm tree of a λ-term M will be denoted by $B T(M)$.

For all λ-terms M and N, we write $M \leq_{\eta} N$ if $B T(N)$ is a (possibly infinite) η-expansion of $B T(M)$ (see [4, Def. 10.2.10]). For example, let $J \equiv$ $\Theta(\lambda j x y . x(j y))$, where Θ is the Curry's fixpoint combinator $(\lambda x y \cdot y(x x y))(\lambda x y \cdot y(x x y))$. Then, $x \leq_{\eta} J x$ (see [4, Example 10.2.9]), since

$$
J x={ }_{\lambda \beta} \lambda z_{0} \cdot x\left(J z_{0}\right)={ }_{\lambda \beta} \lambda z_{0} \cdot x\left(\lambda z_{1} \cdot z_{0}\left(J z_{1}\right)\right)={ }_{\lambda \beta} \ldots
$$

and

$$
B T(J x)=\lambda z_{0} \cdot x\left(\lambda z_{1} \cdot z_{0}\left(\lambda z_{2} \cdot z_{1}\left(\lambda z_{3} \cdot z_{2}(\ldots)\right)\right)\right)
$$

We write $N={ }_{\eta} M$ if there exists a Böhm-like tree A such that $B T(M) \leq_{\eta} A$ and $B T(N) \leq_{\eta} A$ (see [4, Def. 10.2.25, Thm. 10.2.31]). It is well known that

$$
M=\mathcal{H}^{*} N \Leftrightarrow M={ }_{\eta} N \quad \text { (see [4, Thm. 19.2.9]). }
$$

2.3 Graph models

The class of graph models belongs to Scott's continuous semantics. Historically, the first graph model was Plotkin and Scott's P_{ω}, which is also known in the literature as "the graph model". "Graph" referred to the fact that the continuous functions were encoded in the model via (a sufficient fragment of) their graph.

As a matter of notation, for every set D, D^{*} is the set of all finite subsets of D, while $\mathcal{P}(D)$ is the powerset of D. If C is a complete partial ordering (cpo, for short), then $[C \rightarrow$ $C]$ denotes the cpo of all the Scott continuous functions from C into C.

Definition 2.1 A graph model is a pair (D, p), where D is an infinite set and $p: D^{*} \times D \rightarrow D$ is an injective total function.

As a matter of notation, we write $a \rightarrow_{p} \alpha$, or also simply $a \rightarrow \alpha$, for $p(a, \alpha)$. When parenthesis are omitted, then association to the right is assumed. For example, $a \rightarrow b \rightarrow$ α stands for $p(a, p(b, \alpha))$. If $\bar{a}=a_{1} \ldots a_{n}$ is a sequence of finite subsets of D, then we write $\bar{a}_{n} \rightarrow \alpha$ for $a_{1} \rightarrow a_{2} \rightarrow$ $\cdots \rightarrow a_{n} \rightarrow \alpha$.

The function p is useful to encode a fragment of the graph of a Scott continuous function $f: \mathcal{P}(D) \rightarrow \mathcal{P}(D)$ as a subset $G(f)$ of D :

$$
\begin{equation*}
G(f)=\left\{a \rightarrow_{p} \alpha \mid \alpha \in f(a) \text { and } a \in D^{*}\right\} . \tag{2}
\end{equation*}
$$

Any graph model (D, p) is used to define a model of lambda calculus through the reflexive cpo $(\mathcal{P}(D), \subseteq)$ determined by two Scott continuous mappings $G:[\mathcal{P}(D) \rightarrow$ $\mathcal{P}(D)] \rightarrow \mathcal{P}(D)$ and $F: \mathcal{P}(D) \rightarrow[\mathcal{P}(D) \rightarrow \mathcal{P}(D)]$. The function G is defined in (2), while F is defined as follows:

$$
F(X)(Y)=\left\{\alpha \in D:(\exists a \subseteq Y) a \rightarrow_{p} \alpha \in X\right\}
$$

For more details we refer the reader to Berline [7] and to Chapter 5 of Barendregt's book [4].

Let $E n v_{D}$ be the set of D-environments ρ mapping the set of the variables of lambda calculus into $\mathcal{P}(D)$. The interpretation $M^{p}: E n v_{D} \rightarrow \mathcal{P}(D)$ of a λ-term M is defined as follows.

- $x_{\rho}^{p}=\rho(x)$
- $(M N)_{\rho}^{p}=\left\{\alpha \in D:\left(\exists a \subseteq N_{\rho}^{p}\right) a \rightarrow_{p} \alpha \in M_{\rho}^{p}\right\}$
- $(\lambda x . M)_{p}^{p}=\left\{a \rightarrow_{p} \alpha: \alpha \in M_{\rho[x:=a]}^{p}\right\}$

If $\bar{x} \equiv x_{1} \ldots x_{n}$ is a sequence of variables and $\bar{a}=$ $a_{1} \ldots a_{n}$ is a sequence of finite subsets of D, then we have

$$
(\lambda \bar{x} \cdot M)_{\rho}^{p}=\left\{\bar{a}_{n} \rightarrow \alpha: \alpha \in M_{\rho\left[x_{1}:=a_{1}\right] \ldots\left[x_{n}:=a_{n}\right]}^{p}\right\}
$$

Given a graph model (D, p), we have that $M^{p}=N^{p}$ if, and only if, $M_{\rho}^{p}=N_{\rho}^{p}$ for all environments ρ. The λ-theory $T h(D, p)$ induced by (D, p) is defined as

$$
T h(D, p)=\left\{M=N: M^{p}=N^{p}\right\} .
$$

A λ-theory induced by a graph model will be called a graph theory. The graph model (D, p) is called sensible if $T h(D, p)$ is a sensible λ-theory. It is well known that the graph theory $T h(D, p)$ is never extensional because $(\lambda x . x)^{p} \neq(\lambda x y . x y)^{p}$. Di Gianantonio and Honsell [13] have shown that graph models are strictly related to filter models (see Coppo-Dezani [11] and Barendregt et al. [5]), since the class of graph theories is included in the class of λ-theories induced by non-extensional filter models. Alessi et al. [2] have shown that this inclusion is strict, namely there exists an equation between λ-terms which is omitted in graph semantics, whilst it is satisfied in some nonextensional filter model.

A graph theory T is

1. the minimal graph theory if $T \subseteq T h(D, p)$ for all graph models (D, p);
2. the minimal sensible graph theory if T is sensible and $T \subseteq T h(D, p)$ for all sensible graph models (D, p);
3. the maximal sensible graph theory if T is sensible and $T h(D, p) \subseteq T$ for all sensible graph models (D, p).

The completion method for building graph models from "partial pairs" was initiated by Longo in [20] and recently developed on a wide scale by Kerth in [18, 19]. This method is useful to build models satisfying prescribed constraints, such as domain equations and inequations, and it is particularly convenient for dealing with the equational theories of graph models.

Definition 2.2 A partial pair (D, p) is given by an infinite set D and a partial, injective function $p: D^{*} \times D \rightarrow D$.

A partial pair is a graph model if and only if p is total. We always suppose that no element of D is a pair. This is not restrictive because partial pairs can be considered up to isomorphism.

Definition 2.3 Let (D, p) be a partial pair. The Engeler completion of (D, p) is the graph model (E, i) defined as follows:

- $E=\bigcup_{n \in \omega} E_{n}$, where $E_{0}=D, E_{n+1}=E_{n} \cup$ $\left(\left(E_{n}^{*} \times E_{n}\right)-\operatorname{dom}(p)\right)$.
- Given $a \in E^{*}, \alpha \in E$,

$$
i(a, \alpha)= \begin{cases}p(a, \alpha) & \text { if } p(a, \alpha) \text { is defined } \\ (a, \alpha) & \text { otherwise }\end{cases}
$$

It is easy to check that the Engeler completion of a given partial pair (D, p) is actually a graph model. The Engeler completion of a total pair (D, p) is equal to (D, p).

A notion of rank can be naturally defined on the Engeler completion (E, i) of a partial pair (D, p). The elements of D are the elements of rank 0 , while an element $\alpha \in E-D$ has rank n if $\alpha \in E_{n}$ and $\alpha \notin E_{n-1}$.

Classic graph models, such as Plotkin and Scott's P_{ω} [4] and Engeler-Plotkin's $\mathcal{E}_{\boldsymbol{A}}$ (where A is an arbitrary nonempty set) [7], can be viewed as the Engeler completions of suitable partial pairs. In fact, P_{ω} and \mathcal{E}_{A} are respectively isomorphic to the Engeler completions of $(\{0\}, p)$ (with $p(\emptyset, 0)=0$) and (A, \emptyset).

Let $\bar{x}=x_{1} \ldots x_{n}$ be a sequence of variables and ρ be a D-environment such that $\rho\left(x_{i}\right)$ is a finite set. As a matter of notation, we write $\rho\left(\bar{x}_{n}\right) \rightarrow \alpha$ for $\rho\left(x_{1}\right) \rightarrow \rho\left(x_{2}\right) \rightarrow$ $\cdots \rightarrow \rho\left(x_{n}\right) \rightarrow \alpha$.

3. The minimal sensible graph model

In this section we show that the class of sensible graph models has a minimum element, i.e., there exists a graph model whose equational theory is the smallest sensible graph theory.

In [10] a general technique for "gluing together" the elements of a family of graph models is described.

The idea is the following: given a family $\mathcal{M}=$ $\left\{\left(M_{j}, i_{j}\right)\right\}$ of graph models, take the partial pair given by the disjoint union of the M_{j} and of the i_{j}. The key point is that the theory of the Engeler completion of this partial pair, that we call here the canonical product of \mathcal{M}, is smaller than that of all the $\left(M_{j}, i_{j}\right)$'s. This is enough to conclude that the class of graph models has a minimum element (simply take a "complete" family $\left\{\left(M_{j}, i_{j}\right)\right\}$, i.e. a family such that, for any inequation between lambda terms which holds in some graph model, there exists j such that (M_{j}, i_{j}) realises that inequation).

Here we restrict our attention to sensible models; we can use the same technique, starting from a complete family \mathcal{S} of sensible graph models, but we have to be careful: it remains to show that the canonical product of \mathcal{S} is sensible. This is a consequence of the following property of sensible graph models.

Lemma 3.1 If all the closed unsolvable λ-terms have the same interpretation in a graph model, then it must be the empty set.

Proof: Let (D, i) be a graph model and let X be a nonempty subset of D, that is the common interpretation of all closed unsolvables. Since Ω and $\lambda x . \Omega$ are both unsolvables, then we have that

$$
\begin{equation*}
X=(\lambda x . \Omega)^{i}=\left\{a \rightarrow \alpha: \alpha \in \Omega^{i}\right\}=\{a \rightarrow \alpha: \alpha \in X\} . \tag{3}
\end{equation*}
$$

It follows that $a \rightarrow \alpha \in X$ for all finite subsets a of D and all $\alpha \in X$. Let γ be a fixed element of X. Then $a \rightarrow \gamma \in$ $\left(\Omega_{3}\right)^{i}$ by (3), since Ω_{3} is unsolvable and $\left(\Omega_{3}\right)^{i}=X$. From Example 5.3.7 in Kerth's thesis [17] it follows that

$$
a \rightarrow \gamma=b_{1} \rightarrow \ldots \rightarrow b_{k} \rightarrow a \rightarrow \gamma
$$

for suitable finite subsets b_{i} contained in the interpretation of $\lambda x . x x x$. It follows that $b_{1}=a$. By the arbitrariety of a we can conclude that $(\lambda x . x x x)^{i}=D$. This is not possible, because, for example, $\emptyset \rightarrow \beta \notin(\lambda x . x x x)^{i}$.

We state here some definitions and lemmata, sketching the main result of [10]. We need them for proving the main result of this section, Theorem 3.6:

Definition 3.2 Let $\mathcal{F}=\left\{\left(D_{j}, i_{j}\right)\right\}_{j \in J}$ be a family of graph models (without loss of generality, we may assume that $D_{j_{1}} \cap D_{j_{2}}=\emptyset$ for $\left.j_{1} \neq j_{2} \in J\right)$. Consider the partial $\operatorname{pair}\left(D_{J}, q_{J}\right)$ defined by:

$$
D_{J}=\bigcup_{j \in J} D_{j} ; \quad q_{J}=\bigcup_{j \in J} i_{j} .
$$

The canonical product of \mathcal{F} is the Engeler completion of $\left(D_{J}, q_{J}\right)$.

In the following, we denote by (D, i) the canonical product of $\mathcal{F}=\left\{\left(D_{j}, i_{j}\right)\right\}_{j \in J}$.

Definition 3.3 Let $j \in J$. We call j-flattening the following function $f_{j}: D \rightarrow D$, defined by induction on the rank of elements of D :
ifrank $(x)=0$ then $f_{j}(x)=x$
ifrank $(x)=n+1$ and $x=\left(\left\{y_{1}, \ldots, y_{k}\right\}, y\right)$ then

$$
f_{j}(x)= \begin{cases}i_{j}\left(d, f_{j}(y)\right) & \text { if } f_{j}(y) \in D_{j} \\ x & \text { otherwise }\end{cases}
$$

where $d=\left\{f_{j}\left(y_{1}\right), \ldots, f_{j}\left(y_{k}\right)\right\} \cap D_{j}$.
Lemma 3.4 For all $x \in D$ there exists a unique $j \in J$ such that $f_{j}(x) \in D_{j}$.

Proposition 3.5 Let M be a closed λ-term and M^{i} (resp. $M^{i_{j}}$) be its interpretation in the canonical product (D, i) (resp. graph model $\left(D_{j}, i_{j}\right)$); then we have for all $j \in J$:
(i) $f_{j}(x) \in M^{i}$ for all $x \in M^{i}$.
(ii) $M^{i} \cap D_{j}=M^{i_{j}}$.

Theorem 3.6 Let $\mathcal{S}=\left\{\left(S_{j}, i_{j}\right)\right\}_{j \in J}$ be a countable and complete ${ }^{1}$ family of sensible graph models, and let (S, i) be the canonical product of \mathcal{S}; then the theory of (S, i) is the least sensible graph theory.

Proof: By the completeness of \mathcal{S} and by Proposition 3.5(ii) we have that $T h(S, i)$ is contained within any sensible graph theory.

In order to prove that (S, i) is sensible, let us suppose that a closed unsolvable term M has a non-empty interpretation in (S, i), i.e., there exists $\alpha \in M^{i}$. By Lemma 3.4 there exists a unique $j \in J$ such that $f_{j}(\alpha) \in S_{j}$. By Proposition 3.5(i) we have that $f_{j}(\alpha) \in M^{i}$, and finally, by Proposition 3.5(ii), that $f_{j}(\alpha) \in M^{i_{j}}$. Since $\left(D_{j}, i_{j}\right)$ is sensible, this is impossible by Lemma 3.1. Hence $M^{i}=\emptyset$ for any closed unsolvable M (and actually for any unsolvable in any environment).

4. Omitting equations and theories

A semantics is incomplete if there exists a λ-theory T that is not induced by any model in the semantics. In such a case we say that the semantics omits the λ-theory T. More generally, a semantics omits (forces, respectively) an equation if it fails (holds) in all the models of the semantics. If a semantics omits an equation $M=N$, then it omits all the λ-theories including $M=N$. It is easy to verify that the set of equations 'forced' by a semantics \mathcal{C} constitutes a λ-theory. It is the minimal λ-theory of \mathcal{C} if it is induced by a model of \mathcal{C}.

The following two theorems are the main results of the paper. The proof of Thm. 4.1 is postponed to the next section.

Theorem 4.1 The graph semantics omits all the equations $M=N$ satisfying the following conditions:

$$
\begin{equation*}
M=\mathcal{H}^{*} N \text { and } M \not \mathcal{F}_{\mathcal{B}} N \tag{4}
\end{equation*}
$$

In other words, graph semantics omits all the equations $M=N$ between λ-terms which do not have the same Böhm tree, but they have the same Böhm tree up to (possibly infinite) η-equivalence (see Section 2.2 and Barendregt [4, Section 10]).

Theorem 4.2 The λ-theory \mathcal{B} is the unique maximal sensible graph theory.

[^0]Proof: \mathcal{B} is the equational theory of the Plotkin-Scott graph model P_{ω} (see Section 19.1 in [4]) and of the Engeler-Plotkin graph model \mathcal{E}_{A} (see [7]). Let T be a sensible graph theory and $M={ }_{T} N$. We have that $M=\mathcal{H}^{*} N$, because \mathcal{H}^{*} is the unique maximal sensible λ-theory. Since graph semantics does not omit the equation $M=N$, then from $M=\mathcal{H}^{*} \quad N$ and from Theorem 4.1 it follows that $M={ }_{\mathcal{B}} N$, so that $T \subseteq \mathcal{B}$.

It is well known that every graph theory is nonextensional (see [7]). In the following proposition we show that Thm 4.2 is not trivial.

Proposition 4.3 There exist non-extensional λ-theories T satisfying the condition $\mathcal{B} \subset T \subset \mathcal{H}^{*}$.

Proof: Let $M \sqsubseteq_{m 1} N$ if, and only if, for all contexts $C[], C[M]$ has a normal form $\Rightarrow C[N]$ has the same normal form. We write $M \sim_{m 1} N$ if $M \sqsubseteq_{m 1} N$ and $N \sqsubseteq_{m 1} M$. The λ-theory $\mathcal{T}_{m 1}=\left\{M=N: M \sim_{m 1} N\right\}$ (see [4, Prop. 16.4.6]) is non-extensional, because \mathbf{i} and $\mathbf{1}$ are distinct normal forms. We get the conclusion of the proposition from [4, Exercize 16.5.5], where it is shown that $\mathcal{B} \subset \mathcal{T}_{m 1} \subset \mathcal{H}^{*}$.

From the above proposition it follows that there exist λ terms M and N, satisfying the condition (4) of Thm. 4.1, such that the λ-theory generated by $\mathcal{B} \cup\{M=N\}$ is not extensional.

Berline [7] asked whether there is a non-syntactic sensible model of lambda calculus whose theory is strictly included in \mathcal{B}. The answer is positive as shown in the following corollary.

Corollary 4.4 There exists a continuum of different sensible graph theories strictly included in \mathcal{B}.

Proof: Based on a result of David [12], Kerth [18] has shown that there exists a continuum of sensible graph theories which distinguish the Turing's fixpoint combinator $Y \equiv \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$ and the Curry's fixpoint combinator $\Theta \equiv(\lambda x y \cdot y(x x y))(\lambda x y \cdot y(x x y))$. Then the conclusion follows from Theorem 4.2, because Y and Θ have the same Böhm tree.

It is well known that the λ-term Ω is easy, that is, it can be consistently equated to every other closed λ-term M. We denote by $(\Omega=M)^{+}$the λ-theory generated by the equation $\Omega=M$.

Corollary 4.5 Let M be an arbitrary closed λ-term. Then we have:

$$
P=\mathcal{H}^{*} Q, P \neq \mathcal{B} \text { } Q \Rightarrow(\Omega=M)^{+} \nvdash P=Q
$$

Proof: By [3] the λ-theory $(\Omega=M)^{+}$is contained within a graph theory. Then the conclusion follows from Theorem 4.1.

A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is equal to the least lambda theory $\lambda \beta$. In the following theorem we show that this model cannot be found within graph semantics (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models).

Theorem 4.6 There exists no graph model whose equational theory is $\lambda \beta$.

Proof: First we show that every graph model satisfies the inequality $\Omega_{3} \leq \lambda x \cdot \Omega_{3} x$. Let (D, p) be an arbitrary graph model and $\alpha \in \Omega_{3}^{p}$. From Example 5.3.7 in Kerth's thesis [17] it follows that there exists a natural number $k \geq$ 1 such that $\alpha=b_{1} \rightarrow_{p} b_{2} \rightarrow_{p} \ldots \rightarrow_{p} b_{k} \rightarrow_{p} \alpha$ for suitable finite subsets b_{i} contained in the interpretation of $\lambda x . x x x$. We have that $\alpha \in\left(\lambda x . \Omega_{3} x\right)^{p}$ (that is, $b_{1} \rightarrow_{p} b_{2} \rightarrow_{p} \ldots \rightarrow_{p}$ $\left.b_{k} \rightarrow_{p} \alpha \in\left(\lambda x \Omega_{3} x\right)^{p}\right)$ iff there exists a finite set d such that $d \rightarrow_{p} b_{2} \rightarrow_{p} \ldots \rightarrow_{p} b_{k} \rightarrow_{p} \alpha \in \Omega_{3}^{p}$ and $d \subseteq b_{1}$. This last relation is true by defining $d \equiv b_{1}$, so that $\alpha \in$ $\left(\lambda x . \Omega_{3} x\right)^{p}$. In conclusion, we get $\Omega_{3}^{p} \subseteq\left(\lambda x . \Omega_{3} x\right)^{p}$.

Assume now that there exists a graph model (D, p) whose equational theory is $\lambda \beta$. By Cor. 2.4 in [25] the denotations of the closed λ-terms in a graph model whose equational theory is $\lambda \beta$ must be pairwise incomparable. Then, for all closed λ-terms M and N such that $M \not \neq \lambda \beta^{N}$, neither $M^{p} \subseteq N^{p}$ nor $N^{p} \subseteq M^{p}$. We get a contradiction because $\Omega_{3}^{p} \subseteq\left(\lambda x \cdot \Omega_{3} x\right)^{p}$ holds.

From the above theorem it follows that graph semantics forces equations between λ-terms which are not β equivalent, and that the least graph theory, whose existence was shown in [10], is not equal to $\lambda \beta$.

5. The proof of the main theorem

In this section we provide the proof of Theorem 4.1.
We recall that a node of a Böhm tree is a sequence of natural numbers and that the level of a node is the length of the sequence. The empty sequence will be denoted by ε.

Let M, N be closed λ-terms such that $M=\mathcal{H}^{*} N$ and $M \neq \mathcal{B} N$. This last condition expresses the fact that the Böhm tree $B T(M)$ of M is different from the corresponding Böhm tree $B T(N)$ of N.

Let us give an informal overview of the proof: we start by picking a node $u=r_{1} \ldots r_{k}$ satisfying the following two conditions: (1) the labels of u in $B T(M)$ and $B T(N)$ are different; (2) the labels of every strict prefix $w=r_{1} \ldots r_{j}(j<k)$ of u in $B T(M)$ and $B T(N)$ are equal. Then we show that the subterms of M and N, whose Böhm trees are the subtrees of $B T(M)$ and $B T(N)$ at root u, respectively, get different interpretations in all graph models. This is done in lemma 5.5. In order to get the conclusion, we have to show that in all graph models
it is possible to propagate upward, towards the roots of $B T(M)$ and $B T(N)$, the difference "created" at node u. This is done in lemma 5.6.

Let us introduce now some notations and definitions needed in the proof.

Let $u=r_{1} \ldots r_{k}$ be a node at least level, where the labels of $B T(M)$ and $B T(N)$ are different. The sequence $\varepsilon, r_{1}, r_{1} r_{2}, r_{1} r_{2} r_{3}, \ldots, r_{1} \ldots r_{k}$ is the sequence of nodes that are in the path from the root ε to u. These nodes will be denoted by $u_{0}, u_{1}, u_{2}, \ldots, u_{k}$. Then, for example, $u_{0}=\varepsilon$, $u_{2}=r_{1} r_{2}$ and $u_{k}=u$. From the hypothesis of minimality of u it follows that
(i) The label of the node $u_{j}(0 \leq j<k)$ in the Böhm tree of M is equal to the corresponding one in the Böhm tree of N;
(ii) The labels of the node u in $B T(M)$ and $B T(N)$ are different.

From the hypothesis $M=\mathcal{H}^{*} N$ and $M \not \mathcal{B}_{\mathcal{B}} N$ it follows that
(iii) The node u is a starting point for a possibly infinite η-expansion in either $B T(M)$ or $B T(N)$, but not in both. Without loss of generality, we assume to have the η-expansion in $B T(N)$.

We define two sequences $M_{u_{j}}$ and $N_{u_{j}}(0 \leq j \leq k)$ of λ terms whose Böhm trees $B T\left(M_{u_{j}}\right)$ and $B T\left(N_{u_{j}}\right)$ are the subtrees of $B T(M)$ and $B T(N)$ at root u_{j}, respectively. Let

$$
M_{u_{0}} \equiv M ; \quad N_{u_{0}} \equiv N
$$

If $k=0$ we have finished. Otherwise, assume by induction hypothesis that we have already defined two λ-terms $M_{u_{j}}$ and $N_{u_{j}}(j<k)$ and that the Böhm trees of $M_{u_{j}}$ and $N_{u_{j}}$ are respectively the subtrees of $B T(M)$ and $B T(N)$ at root u_{j}. Assume that the principal head normal forms (principal hnfs, for short) of $M_{u_{j}}$ and $N_{u_{j}}$ (see [4, Def. 8.3.20]) are respectively

$$
\begin{gather*}
M_{u_{j}}={ }_{\lambda \beta} \lambda x_{1}^{j} \ldots x_{n_{j}}^{j} \cdot z_{j} M_{1}^{j} \ldots M_{s_{j}}^{j} \tag{5}\\
N_{u_{j}}={ }_{\lambda \beta} \lambda x_{1}^{j} \ldots x_{n_{j}}^{j} \cdot z_{j} N_{1}^{j} \ldots N_{s_{j}}^{j} .
\end{gather*}
$$

To abbreviate the notation we will write $M_{u_{j}}$ and $N_{u_{j}}$ as follows:
$M_{u_{j}}={ }_{\lambda \beta} \lambda \bar{x}_{n_{j}}^{j} . z_{j} M_{1}^{j} \ldots M_{s_{j}}^{j} ; N_{u_{j}}={ }_{\lambda \beta} \lambda \bar{x}_{n_{j}}^{j} . z_{j} N_{1}^{j} \ldots N_{s_{j}}^{j}$.
Then the node u_{j} in the Böhm trees of M and N has s_{j} sons. Since $u_{j+1}=u_{j} r_{j+1}$ is a son of u_{j} in the Böhm trees of M and N, then we have $r_{j+1} \leq s_{j}$ and we define

$$
M_{u_{j+1}} \equiv M_{r_{j+1}}^{j} ; N_{u_{j+1}} \equiv N_{r_{j+1}}^{j}
$$

Then the Böhm trees of $M_{u_{j+1}}$ and $N_{u_{j+1}}$ are respectively the subtrees of $B T(M)$ and $B T(N)$ at root u_{j+1}. When we calculate the principal hnfs of $M_{u_{k}}$ and $N_{u_{k}}$ (recall that $u_{k}=u$ is the node where the Böhm trees are different), we get

$$
\begin{gather*}
M_{u_{k}} \equiv M_{r_{k}}^{k-1}={ }_{\lambda \beta} \lambda \bar{x}_{n_{k}}^{k} \cdot z_{k} M_{1}^{k} \ldots M_{s_{k}}^{k} \tag{6}\\
N_{u_{k}} \equiv N_{r_{k}}^{k-1}={ }_{\lambda \beta} \lambda \bar{x}_{n_{k}}^{k} \lambda \bar{y}_{r} \cdot z_{k} N_{1}^{k} \ldots N_{s_{k}}^{k} Q_{1} \ldots Q_{r} \tag{7}
\end{gather*}
$$

where $y_{i} \leq_{\eta} Q_{i}(1 \leq i \leq r)$ (i.e., Q_{i} is a possibly infinite η-expansion of the variable y_{i}), y_{i} does occur neither free nor bound in $N_{j}^{k}\left(1 \leq j \leq s_{k}\right)$ and $Q_{j}(1 \leq j \neq i \leq$ $r)$, and it is distinct from each variable $x_{1}^{k}, \ldots, x_{n_{k}}^{k}, z_{k}$, $y_{1}, \ldots y_{i-1}, y_{i+1}, \ldots, y_{r}$.

Let (D, p) be an arbitrary graph model. First we will show that the terms $N_{u_{k}}$ and $M_{u_{k}}$ have different interpretations in (D, p), that is, there exist an element $\alpha_{k} \in D$ and a D-environment σ_{k} such that $\alpha_{k} \in\left(N_{u_{k}}\right)_{\sigma_{k}}^{p}$, while $\alpha_{k} \notin\left(M_{u_{k}}\right)_{\sigma_{k}}^{p}$. Second we will show that this difference at level k can be propagated upward, that is, there exist elements $\alpha_{i} \in D$ and D-environments $\sigma_{i}(i=1, \ldots, k)$ such that $\alpha_{k} \in\left(N_{u_{k}}\right)_{\sigma_{k}}^{p}$ iff $\alpha_{i} \in\left(N_{u_{i}}\right)_{\sigma_{i}}^{p}$ iff $\alpha_{0} \in N_{\sigma_{0}}^{p}$, and $\alpha_{k} \in\left(M_{u_{k}}\right)_{\sigma_{k}}^{p}$ iff $\alpha_{i} \in\left(M_{u_{i}}\right)_{\sigma_{i}}^{p}$ iff $\alpha_{0} \in M_{\sigma_{0}}^{p}$.

To prove these properties of separability, we have to define the elements α_{i} and the D-environments σ_{i}. The definition of σ_{i} is difficult and technical.

We are going to use families of points of the graph models, which are not only pairwise distinct, but also "functionally incompatible", in the sense expressed by the following definition. Then, in the appendix we show that such families actually exist in all graph models.

Definition 5.1 Let $q>1$ be a natural number. A sequence $\left(\beta_{n} \in D: n \geq 0\right)$ of distinct elements of D is called a q-sequence if the following condition holds:

$$
\begin{equation*}
(\forall i, j)(\forall 0<t<q)\left(\forall \bar{a} \in D^{t}\right) \beta_{j} \neq \bar{a}_{t} \rightarrow \beta_{i} . \tag{8}
\end{equation*}
$$

Recall that, if $\bar{a} \equiv a_{1} \ldots a_{t}$, then $\bar{a}_{t} \rightarrow \beta_{i}$ means $a_{1} \rightarrow$ $a_{2} \rightarrow \cdots \rightarrow a_{t} \rightarrow \beta_{i}$. Notice that i may be equal to j in the above condition (8).

In the appendix it will be shown the following result.
Lemma $5.2 q$-sequences exist for every $q>1$.
Let $\left(\beta_{n}: n \geq 0\right)$ be a q-sequence of elements of D, where

1. $q>\left(\Sigma_{0 \leq j \leq k} n_{j}\right)+\left(\Sigma_{0 \leq j \leq k} s_{j}\right)+r+s ;$
2. n_{j} is the number of external abstractions in the principal hnf of $M_{u_{j}}$ (see (5) above);
3. s_{j} is the number of sons of the node u_{j} in the Böhm tree of M (see (5) above);
4. $r \geq 1$ is the number of η-expansions in $N_{u_{k}}$ (see (7) above);
5. s is the number of external abstractions in the principal hnf of the subterm Q_{r} of $N_{u_{k}}$:

$$
\begin{equation*}
Q_{r}={ }_{\lambda \beta} \lambda \bar{w}_{s} . y_{r} R_{1} \ldots R_{s}(s \geq 0) . \tag{9}
\end{equation*}
$$

We now define a sequence of environments ρ_{j} and two sequences of elements $\delta_{j}, \alpha_{j} \in D(0 \leq j \leq k)$. Next the environments ρ_{j} will be used to define σ_{0} and σ_{k}. We start by defining ρ_{k}, δ_{k} and α_{k}.
(i) $\delta_{k} \equiv \bar{\emptyset}_{s_{k}+r-1} \rightarrow\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}\right\} \rightarrow \beta_{k}$;
(ii) $\rho_{k}\left(z_{k}\right)=\left\{\delta_{k}\right\}$, where z_{k} is the head variable of the principal hnfs of $N_{u_{k}}$ and $M_{u_{k}}$;
(iii) $\rho_{k}\left(y_{r}\right)=\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}, \beta_{k}\right\}$, where y_{r} is the head variable of the principal hnf of Q_{r};
(iv) $\rho_{k}(x)=\emptyset\left(x \not \equiv z_{k}, y_{r}\right)$;
(v) $\alpha_{k} \equiv \rho_{k}\left(\bar{x}_{n_{k}}^{k}\right) \rightarrow \rho_{k}\left(\bar{y}_{r}\right) \rightarrow \beta_{k}$.

Notice that, if $s=0$ (i.e., there are no external abstraction in the principal hnf of Q_{r}), then by definition $\bar{\emptyset}_{0} \rightarrow \beta_{k+1}$ is just β_{k+1}. Moreover, the notation $\rho_{k}\left(\bar{x}_{n_{k}}^{k}\right) \rightarrow \rho_{k}\left(\bar{y}_{r}\right) \rightarrow$ β_{k}, used in the definition of α_{k}, means $\rho_{k}\left(x_{1}^{k}\right) \rightarrow \cdots \rightarrow$ $\rho_{k}\left(x_{n_{k}}^{k}\right) \rightarrow \rho_{k}\left(y_{1}\right) \rightarrow \cdots \rightarrow \rho_{k}\left(y_{r}\right) \rightarrow \beta_{k}$.

Assume we have defined $\delta_{j+1}, \alpha_{j+1}$ and $\rho_{j+1}(j<k)$. We define δ_{j}, α_{j} and ρ_{j} as follows.
(i) $\delta_{j} \equiv \bar{\emptyset}_{r_{j}-1} \rightarrow\left\{\alpha_{j+1}\right\} \rightarrow \bar{\emptyset}_{s_{j}-r_{j}} \rightarrow \beta_{j}$;
(ii) $\rho_{j}\left(z_{j}\right)=\rho_{j+1}\left(z_{j}\right) \cup\left\{\delta_{j}\right\}$, where z_{j} is the head variable of the principal hnfs of $N_{u_{j}}$ and $M_{u_{j}}$;
(iii) $\rho_{j}(x)=\rho_{j+1}(x)\left(x \not \equiv z_{j}\right)$;
(iv) $\alpha_{j} \equiv \rho_{j}\left(\bar{x}_{n_{j}}^{j}\right) \rightarrow \beta_{j}$.

As a matter of notation, if τ and ρ are environments, we write $\tau \leq \rho$ for $\tau(x) \subseteq \rho(x)$ for all variables x.

Lemma 5.3 (a) $\rho_{j} \geq \rho_{j+1}(0 \leq j<k)$.
(b) Let $j<k$ and $\alpha \equiv \bar{c}_{t} \rightarrow \beta_{j}$ for some sequence \bar{c}_{t} of length $t<q$. Then, $\alpha \in \rho_{0}\left(z_{j}\right)$ iff $\alpha \equiv \delta_{j}$.

Proof: (a) trivially follows from the definition of ρ_{j}. (b) By definition of ρ_{0} we have that $\gamma \in \rho_{0}(x)$ for some variable x iff γ is one of the following elements of $D: \delta_{0}, \ldots, \delta_{k}, \beta_{k}$, $\bar{\emptyset}_{s} \rightarrow \beta_{k+1}$. To get the conclusion it is sufficient to apply the definition of q-sequence.

As a matter of notation, for every environment τ, we write

$$
\begin{equation*}
\tau\left[\bar{x}_{n_{j}}^{j}:=\rho_{j}\left(\bar{x}_{n_{j}}^{j}\right)\right] \tag{10}
\end{equation*}
$$

for

$$
\tau\left[x_{1}^{j}:=\rho_{j}\left(x_{1}^{j}\right)\right] \ldots\left[x_{n_{j}}^{j}:=\rho_{j}\left(x_{n_{j}}^{j}\right)\right] .
$$

We now define a sequence $\sigma_{0}, \ldots, \sigma_{k+1}$ of environments as follows:

$$
\begin{equation*}
\sigma_{0}=\rho_{0} ; \quad \sigma_{j+1}=\sigma_{j}\left[\bar{x}_{n_{j}}^{j}:=\rho_{j}\left(\bar{x}_{n_{j}}^{j}\right)\right](0 \leq j \leq k) \tag{11}
\end{equation*}
$$

Lemma 5.4 (a) $\rho_{j} \leq \sigma_{j+1} \leq \rho_{0}$ for every $0 \leq j \leq k$ (in particular, $\left.\sigma_{1}=\rho_{0}\right)$.
(b) $\delta_{j} \in \sigma_{j+1}\left(z_{j}\right)$ for all $0 \leq j \leq k$.

Proof: (a) By definition we have $\sigma_{1}=\rho_{0}$. Assume by induction hypothesis that $\rho_{j-1} \leq \sigma_{j}$. We have to show that $\rho_{j} \leq \sigma_{j+1}$. By definition $\sigma_{j+1}\left(x_{t}^{j}\right)=\rho_{j}\left(x_{t}^{j}\right)$, for every $1 \leq t \leq n_{j}$. If z is a variable distinct from $x_{t}^{j}\left(1 \leq t \leq n_{j}\right)$, then we have $\sigma_{j+1}(z)=\sigma_{j}(z) \supseteq \rho_{j-1}(z) \supseteq \rho_{j}(z)$, by induction hypothesis and by $\rho_{j} \leq \rho_{j-1}$ (see Lemma 5.3).
(b) By definition $\delta_{j} \in \rho_{j}\left(z_{j}\right)$. Then the conclusion follows from $\rho_{j} \leq \sigma_{j+1}$ (see (a)).

Finally, in the following lemma we show that $N_{u_{k}}$ and $M_{u_{k}}$ have different interpretations.
Lemma 5.5 We have $\alpha_{k} \in\left(N_{u_{k}}\right)_{\sigma_{k}}^{p}$ and $\alpha_{k} \notin\left(M_{u_{k}}\right)_{\sigma_{k}}^{p}$.
Proof: Recall that

1. $M_{u_{k}} \equiv \lambda \bar{x}_{n_{k}}^{k} . z_{k} M_{1}^{k} \ldots M_{s_{k}}^{k}$;
2. $N_{u_{k}} \equiv \lambda \bar{x}_{n_{k}}^{k} \lambda \bar{y}_{r} . z_{k} N_{1}^{k} \ldots N_{s_{k}}^{k} Q_{1} \ldots Q_{r}$;
3. $Q_{r} \equiv \lambda \bar{w}_{s} . y_{r} R_{1} \ldots R_{s}$;
4. $\delta_{k} \equiv \bar{\emptyset}_{s_{k}+r-1} \rightarrow\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}\right\} \rightarrow \beta_{k}$;
5. $\alpha_{k} \equiv \rho_{k}\left(\bar{x}_{n_{k}}^{k}\right) \rightarrow \rho_{k}\left(\bar{y}_{r}\right) \rightarrow \beta_{k}$.

As a matter of notation, let

- $\tau \equiv \sigma_{k}\left[\bar{x}_{n_{k}}^{k}:=\rho_{k}\left(\bar{x}_{n_{k}}^{k}\right)\right]\left[\bar{y}_{r}:=\rho_{k}\left(\bar{y}_{r}\right)\right]$;
- $\bar{Q} \equiv Q_{1} \ldots Q_{r}$;
- $\bar{M} \equiv M_{1}^{k} \ldots M_{s_{k}}^{k}$.
- $\bar{N} \equiv N_{1}^{k} \ldots N_{s_{k}}^{k}$.
- $\bar{R} \equiv R_{1} \ldots R_{s}$.

By the definition of σ_{k+1} we immediately get that $\tau=$ $\sigma_{k+1}\left[\bar{y}_{r}:=\rho_{k}\left(\bar{y}_{r}\right)\right]$. Then we have:
$\alpha_{k} \in\left(N_{u_{k}}\right)_{\sigma_{k}}^{p} \quad$ iff $\quad \beta_{k} \in\left(z_{k}\right)_{\tau}^{p} \bar{N}_{\tau}^{p} \bar{Q}_{\tau}^{p}$
iff $\beta_{k} \in\left(z_{k}\right)_{\sigma_{k+1}}^{p} \bar{N}_{\sigma_{k+1}}^{p} \bar{Q}_{\tau}^{p}$,
by $y_{i} \neq z_{k}$ not free in N_{j}^{k} and def. τ
iff $\quad \beta_{k} \in\left\{\delta_{k}\right\} \bar{N}_{\sigma_{k+1}}^{p} \bar{Q}_{\tau}^{p}$,
by $\sigma_{k+1} \leq \rho_{0}$ and Lemma 5.3(b)
iff $\quad \beta_{k} \in\left\{\delta_{k}\right\} \bar{\emptyset}_{s_{k}+r-1}\left(Q_{r}\right)_{\tau}^{p}$,
by def. δ_{k}
iff $\bar{\emptyset}_{s} \rightarrow \beta_{k+1} \in\left(Q_{r}\right)_{\tau}^{p}$.

Finally, we have:

$$
\begin{aligned}
& \left(Q_{r}\right)_{\tau}^{p}=\left(\lambda \bar{w}_{s} . y_{r} R_{1} \ldots R_{s}\right)_{\tau}^{p}, \\
& \text { by def. } Q_{r} \text { (see (9) above) } \\
& =\left(\lambda \bar{w}_{s} \cdot y_{r} \bar{R}\right)_{\tau}^{p} \text {, } \\
& \text { by def. } \bar{R} \\
& =\left\{\bar{c}_{s} \rightarrow \sigma: \sigma \in \tau\left(y_{r}\right) \bar{R}_{\tau\left[\bar{w}_{s}:=\bar{c}_{s}\right]}^{p}\right\}, \\
& \text { by } y_{r} \neq w_{i}(i=1, \ldots, s) \\
& =\left\{\bar{c}_{s} \rightarrow \sigma: \sigma \in \rho_{k}\left(y_{r}\right) \bar{R}_{\tau\left[\bar{w}_{s}:=\bar{c}_{s}\right]}^{p}\right\} \text {, } \\
& \text { by } \tau\left(y_{r}\right)=\rho_{k}\left(y_{r}\right) \\
& =\left\{\bar{c}_{s} \rightarrow \sigma: \sigma \in\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}, \beta_{k}\right\} \bar{R}_{\tau\left[\bar{w}_{s}:=\bar{c}_{s}\right]}^{p}\right\}, \\
& \text { by definition of } \rho_{k}\left(y_{r}\right) \\
& \supseteq\left\{\bar{c}_{s} \rightarrow \sigma: \sigma \in\left\{\bar{\emptyset}^{s} \rightarrow \beta_{k+1}\right\} \bar{R}_{\tau\left[\bar{w}_{s}:=\bar{c}_{s}\right]}^{p}\right\} \\
& =\left\{\bar{c}_{s} \rightarrow \beta_{k+1}: \bar{c}_{s} \in D^{s}\right\} \text {. }
\end{aligned}
$$

Hence $\alpha_{k} \in\left(N_{u_{k}}\right)_{\sigma_{k}}^{p}$, because $\bar{\emptyset}_{s} \rightarrow \beta_{k+1} \in\left(Q_{r}\right)_{\tau}^{p}$.
Recall that by (11) $\sigma_{k+1}=\sigma_{k}\left[\bar{x}^{k}:=\rho_{k}\left(\bar{x}^{k}\right)\right]$.

$$
\begin{aligned}
& \alpha_{k} \in\left(M_{u_{k}}\right)_{\sigma_{k}}^{p} \Leftrightarrow \quad \rho_{k}\left(\bar{y}_{r}\right) \rightarrow \beta_{k} \in\left(z_{k}\right)_{\sigma_{k+1}}^{p}(\bar{M})_{\sigma_{k+1}}^{p} \\
& \Leftrightarrow \quad \rho_{k}\left(\bar{y}_{r}\right) \rightarrow \beta_{k} \in\left\{\delta_{k}\right\}(\bar{M})_{\sigma_{k+1}}^{p}, \\
& \quad \text { by } \sigma_{k+1} \leq \rho_{0} \text { and Lem. 5.3(b) } \\
& \Leftrightarrow \quad \rho_{k}\left(\bar{y}_{r}\right) \rightarrow \beta_{k} \in\left\{\delta_{k}\right\} \bar{\emptyset}_{s_{k}}, \\
& \quad \text { by def. } \delta_{k} \\
& \Leftrightarrow \quad \rho_{k}\left(\bar{y}_{r}\right) \rightarrow \beta_{k}=\bar{\emptyset}_{r-1} \rightarrow\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}\right\} \rightarrow \beta_{k} \\
& \quad \text { by def. } \delta_{k} \\
& \Leftrightarrow \quad \rho_{k}\left(y_{r}\right)=\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}\right\}, \\
& \quad \text { by def. } \rho_{k} \\
& \Leftrightarrow\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}, \beta_{k}\right\}=\left\{\bar{\emptyset}_{s} \rightarrow \beta_{k+1}\right\} .
\end{aligned}
$$

This last relation is false. Hence $\alpha_{k} \notin\left(M_{u_{k}}\right)_{\sigma_{k}}^{p}$.
The different interpretation of $N_{u_{k}}$ and $M_{u_{k}}$ can be propagated upward as shown in the following lemma.

Lemma 5.6 For every $k>j \geq 0$ we have

$$
\alpha_{j} \in\left(N_{u_{j}}\right)_{\sigma_{j}}^{p} \Leftrightarrow \alpha_{j+1} \in\left(N_{u_{j+1}}\right)_{\sigma_{j+1}}^{p}
$$

and

$$
\alpha_{j} \in\left(M_{u_{j}}\right)_{\sigma_{j}}^{p} \Leftrightarrow \alpha_{j+1} \in\left(M_{u_{j+1}}\right)_{\sigma_{j+1}}^{p}
$$

Proof: We prove the result for $N_{u_{j}}$. The corresponding proof for $M_{u_{j}}$ is left to the reader. We recall that $N_{u_{j}}={ }_{\lambda \beta}$ $\lambda \bar{x}_{n_{j}}^{j} . z_{j} N_{1}^{j} \ldots N_{s_{j}}^{j}, N_{u_{j+1}} \equiv N_{r_{j}}^{j}$ and $\alpha_{j} \equiv \rho_{j}\left(\bar{x}_{n_{j}}^{j}\right) \rightarrow$ β_{j}. In the following we will write \bar{N} for $N_{1}^{j} \ldots N_{s_{j}}^{j}$, and

$$
\begin{aligned}
& \sigma_{j}\left[\bar{x}^{j}:=\rho_{j}\left(\bar{x}^{j}\right)\right] \text { for } \sigma_{j}\left[\bar{x}_{n_{j}}^{j}:=\rho_{j}\left(\bar{x}_{n_{j}}^{j}\right)\right] . \\
& \alpha_{j} \in\left(N_{u_{j}}\right)_{\sigma_{j}}^{p} \quad \text { iff } \quad \beta_{j} \in\left(z_{j}\right)_{\sigma_{j}\left[\bar{x}^{j}:=\rho_{j}\left(\bar{x}^{j}\right)\right]}^{p} \bar{N}_{\sigma_{j}\left[\bar{x}^{j}:=\rho_{j}\left(\bar{x}^{j}\right)\right]}^{p}, \\
& \text { by def. } \alpha_{j} \\
& \text { iff } \quad \beta_{j} \in\left(z_{j}\right)_{\sigma_{j+1}}^{p}\left(\bar{N}^{j}\right)_{\sigma_{j+1}}^{p}, \\
& \text { by def. } \sigma_{j+1} \\
& \text { iff } \quad \beta_{j} \in\left\{\delta_{j}\right\}\left(\bar{N}^{j}\right)_{\sigma_{j+1}}^{p} \text {, } \\
& \text { by } \sigma_{j+1} \leq \rho_{0} \text {, Lem. 5.3(b), Lem. 5.4(b) } \\
& \text { iff } \beta_{j} \in\left\{\delta_{j}\right\} \bar{\emptyset}^{r_{j}-1}\left(N_{r_{j}}^{j}\right)_{\sigma_{j+1}}^{p} \bar{\emptyset}^{s_{j}-r_{j}} \text {, } \\
& \text { by def. } \delta_{j} \\
& \text { iff } \quad \alpha_{j+1} \in\left(N_{u_{j+1}}\right)_{\sigma_{j+1}}^{p} \text {, } \\
& \text { by } N_{u_{j+1}} \equiv N_{r_{j}}^{j} \text { and def. } \delta_{j} \text {. }
\end{aligned}
$$

The conclusion of the lemma is now immediate.
Lemma 5.7 We have $\alpha_{0} \in N_{\sigma_{0}}^{p}$, while $\alpha_{0} \notin M_{\sigma_{0}}^{p}$.
Proof: Recall that $N \equiv N_{u_{0}}$ and $M \equiv M_{u_{0}}$. By applying Lemma 5.6 it is easy to show that that $\alpha_{0} \in N_{\sigma_{0}}^{p} \Leftrightarrow$ $\alpha_{k} \in\left(N_{u_{k}}\right)_{\sigma_{k}}^{p}$, and $\alpha_{0} \in M_{\sigma_{0}}^{p} \Leftrightarrow \alpha_{k} \in\left(M_{u_{k}}\right)_{\sigma_{k}}^{p}$. Then the conclusion is immediate, because by Lemma 5.5 we have that $\alpha_{k} \in\left(N_{u_{k}}\right)_{\sigma_{k}}^{p}$ and $\alpha_{k} \notin\left(M_{u_{k}}\right)_{\sigma_{k}}^{p}$.

Appendix

In this appendix we prove Lemma 5.2. Let (D, p) be a graph model and q be an integer greater than 1 . We show that there exists a q-sequence in (D, p).

Given $\alpha \in D$, we define the degree of α as the smallest natural number $k>0$ such that there exist finite subsets b_{1}, \ldots, b_{k} of D satisfying $\alpha=b_{1} \rightarrow \ldots \rightarrow b_{k} \rightarrow \alpha$. If such a natural number does not exist, we say that the degree of α is infinite. We denote by $\operatorname{deg}(\alpha)$ the degree of α.

The proof of Lemma 5.2 is divided into claims.
Claim 5.8 There exists an element of D whose degree is greater than q.

Proof: If D has an element whose degree is infinite, we are done. Otherwise, let α_{0} be an element of D such that

$$
\begin{equation*}
(\forall n>0) \alpha_{0} \neq \bar{\emptyset}_{n} \rightarrow \alpha_{0} \tag{12}
\end{equation*}
$$

Such an element does exist since otherwise the function $p: D^{*} \times D \rightarrow D$ would not be total.

Let $\alpha_{i}=\emptyset \rightarrow \alpha_{i-1}(i>0)$. In other words, $\alpha_{i}=$ $\bar{\emptyset}_{i} \rightarrow \alpha_{0}$. We are going to show that there exists k such that $\operatorname{deg}\left(\alpha_{k}\right)>q$.

First remark that, for all $j, \operatorname{deg}\left(\alpha_{j}\right) \leq \operatorname{deg}\left(\alpha_{j+1}\right)$, since if $\alpha_{j+1}=b_{1} \rightarrow \ldots \rightarrow b_{k} \rightarrow \alpha_{j+1}$ then $\alpha_{j}=b_{2} \rightarrow \ldots \rightarrow$ $b_{k} \rightarrow \emptyset \rightarrow \alpha_{j}$.

Hence, either there exist j such that $\operatorname{deg}\left(\alpha_{j}\right)>q$, and we are done, or there exist j_{0} and n such that $n \leq q$ and $\operatorname{deg}\left(\alpha_{j}\right)=n$ for all $j \geq j_{0}$. We are going to show that this latter case is in fact impossible, hence concluding the proof. If j_{0} and n are as above, then there exist $c_{1}, \ldots, c_{n} \subset D$ such that $\alpha_{j_{0}+n}=c_{1} \rightarrow \ldots \rightarrow c_{n} \rightarrow \alpha_{j_{0}+n}$, i.e. $\bar{\emptyset}_{j_{0}+n} \rightarrow$ $\alpha_{0}=c_{1} \rightarrow \ldots \rightarrow c_{n} \rightarrow \bar{\emptyset}_{j_{0}+n} \rightarrow \alpha_{0}$ hence $\alpha_{0}=\bar{\emptyset}_{n} \rightarrow$ α_{0}, that contradicts (12).

Claim 5.9 There exists a q-sequence.

Proof: By the above claim there exists an element $\alpha \in$ D whose degree is greater than q. Given a family $\left\{a_{n}\right\}_{n \in \omega}$ of pairwise distinct, finite subsets of D, define $\beta_{n}=a_{n} \rightarrow$ $\alpha(n \geq 0)$. We prove that the sequence ($\beta_{n}: n \geq 0$) is a q-sequence. By the way of contradiction, assume that $\beta_{i}=b_{1} \rightarrow \ldots \rightarrow b_{t} \rightarrow \beta_{j}(0<t<q)$ for some i and j, i.e.,

$$
a_{i} \rightarrow \alpha=b_{1} \rightarrow \ldots \rightarrow b_{t} \rightarrow a_{j} \rightarrow \alpha .
$$

It follows that $\alpha=b_{2} \rightarrow \ldots \rightarrow b_{t} \rightarrow a_{j} \rightarrow \alpha$. We get a contradiction because the degree of α is greater than q.

References

[1] Abramsky, S., 'Domain theory in logical form", Annals of Pure and Applied Logic, 51 (1991), pp. 1-77.
[2] Alessi, F., Dezani, M., Honsell, F.: 'Filter models and easy terms", ICTCS'01, LNCS 2202, Springer-Verlag, (2001), pp. 17-37
[3] Baeten, J., Boerboom, B., 'Omega can be anything it should not be", Indag. Mathematicae, 41 (1979), pp. 111-120.
[4] Barendregt, H.P. 'The lambda calculus: Its syntax and semantics", North-Holland Publishing Co., Amsterdam (1984).
[5] Barendregt, H.P., Coppo, M. and Dezani-Ciancaglini, M. "A filter lambda model and the completeness of type assignment", J. Symbolic Logic, 48 (1984), pp. 931-940.
[6] Bastonero, O. and Gouy, X. 'Strong stability and the incompleteness of stable models of λ-calculus", Annals of Pure and Applied Logic, 100 (1999), pp. 247-277.
[7] Berline, C. 'From computation to foundations via functions and application: The λ-calculus and its webbed models", Theoretical Computer Science, 249 (2000), pp. 81-161.
[8] Berry, G. 'Stable models of typed lambda-calculi', In Proc. 5th Int. Coll. on Automata, Languages and Programming, LNCS 62, Springer-Verlag, Berline (1978).
[9] Bucciarelli, A. and Ehrhard, T. 'Sequentiality and strong stability", Sixth Annual IEEE Symposium on Logic in Computer Science (1991), pp. 138-145.
[10] Bucciarelli, A. and Salibra, A. 'The minimal graph model of lambda calculus", 28th International Symposium on Mathematical Foundations of Computer Science, LNCS 2747 (2003), Springer-Verlag.
[11] Coppo, M., Dezani, M. "An extension of the basic functionality theory for the λ-calculus", Notre Dame J. Formal Logic, 21 (1980), pp. 685-693.
[12] David, R. 'Computing with B"ohm trees", Fundamenta Informaticae, 45 (2001), pp. 53-77.
[13] Di Gianantonio, P., Honsell, F.: "An abstract notion of application", Typed lambda calculi and applications, LNCS 664, Springer-Verlag, (1993) pp. 124-138
[14] Di Gianantonio, P., Honsell, F., Plotkin, G.D. 'Uncountable limits and the lambda calculus", Nordic J. Comput., 2 (1995), pp. 126-145.
[15] Gouy, X., 'Etude des théories équationnelles et des propriétés algébriques des modéles stables du λ-calcul", Thèse, Université de Paris 7 (1995).
[16] Honsell, F. and Ronchi della Rocca, S., "An Approximation Theorem for Topological Incompleteness of Lambda Calculus", Journal of Computer and System Sciences 45 (1992) pp. 49-75.
[17] Kerth, R., ’Isomorphisme et équivalence équationnelle entre modèles du λ-calcul", Thèse, Université de Paris 7 (1995).
[18] Kerth, R. 'Isomorphism and equational equivalence of continuous lambda models", Studia Logica 61 (1998) pp. 403415.
[19] Kerth, R., 'On the construction of stable models of λ calculus", Theoretical Computer Science 269 (2001).
[20] Longo, G., 'Set-theoretical models of λ-calculus: theories, expansions and isomorphisms", Ann. Pure Applied Logic 24 (1983) pp. 153-188.
[21] Plotkin, G.D., 'Set-theoretical and other elementary models of the λ-calculus", Theoretical Computer Science 121 (1993) pp. 351-409.
[22] Salibra, A., "A continuum of theories of lambda calculus without semantics", 16th Annual IEEE Symposium on Logic in Computer Science (2001), Boston, USA.
[23] Salibra, A., ’Topological incompleteness and order incompleteness of the lambda calculus", ACM Transactions on Computational Logic 4 (2003) pp. 379-401.
[24] Scott, D.S., 'Continuous lattices', Toposes, Algebraic geometry and Logic, Lecture Notes in Mathematics 274 (1972), Springer-Verlag, Berlin.
[25] Selinger, P., 'Order-incompleteness and fi nite lambda reduction models", Theoretical Computer Science 309 (2003) pp. 43-63.

[^0]: ${ }^{1}$ A family of sensible graph models is complete if, for any inequation between closed λ-terms which holds in some sensible graph model, there exists an element of the family in which that inequation holds.

