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Introduction

Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. They arise by syntactical or semantic considerations. Indeed, a -theory may correspond to a possible operational (observational) semantics of the lambda calculus, as well as it may be induced by a model of lambda calculus through the kernel congruence relation of the interpretation function.

Although researchers have mainly focused their interest on a limited number of them, the class of -theories constitutes a very rich and complex structure (see e.g. [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF][START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF]). Syntactical techniques are usually difficult to use in the study of -theories. Therefore, semantic methods have been extensively investigated.

Topology is at the center of the known approaches to giving models of the untyped lambda calculus. The first model, found by Scott in 1969 in the category of complete lattices and Scott continuous functions, was successfully used to show that all the unsolvable -terms can be consistently equated. After Scott, a large number of mathematical models for lambda calculus, arising from syntax-free constructions, have been introduced in various categories of domains and were classified into semantics according to the nature of their representable functions, see e.g. [START_REF] Abramsky | Domain theory in logical form[END_REF][START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF][START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF][START_REF] Plotkin | Set-theoretical and other elementary models of the ¡ -calculus[END_REF]]. Scott's continuous semantics [START_REF] Scott | Continuous lattices[END_REF] is given in the category whose objects are complete partial orders and morphisms are Scott continuous functions. The stable semantics introduced by Berry [8] and the strongly stable semantics introduced by Bucciarelli-Ehrhard [START_REF] Bucciarelli | Sequentiality and strong stability[END_REF] are a strengthening of the continuous semantics, introduced to capture the "sequential" Scott continuous functions. All these semantics are structurally and equationally rich in the sense that it is possible to build up © models in each of them inducing pairwise distinct -theories [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF][START_REF] Kerth | On the construction of stable models of ¡ calculus[END_REF].

Although a rich host of different -theories have a "fully abstract" syntax-free model (i.e., a model which induces precisely those identities which hold in the given theory), the above denotational semantics are equationally incomplete: they do not even match all the possible operational semantics of lambda calculus. The problem of the equational incompleteness was positively solved by Honsell-Ronchi della Rocca [START_REF] Honsell | An Approximation Theorem for Topological Incompleteness of Lambda Calculus[END_REF] for the continuous semantics, and by Bastonero-Gouy [START_REF] Gouy | Etude des théories équationnelles et des propriétés algébriques des modéles stables du ¡ -calcul[END_REF][START_REF] Bastonero | Strong stability and the incompleteness of stable models of ¡ -calculus[END_REF] for the stable semantics. Salibra [START_REF] Salibra | A continuum of theories of lambda calculus without semantics[END_REF][START_REF] Salibra | Topological incompleteness and order incompleteness of the lambda calculus[END_REF] has recently shown in a uniform way that all the semantics, which involve monotonicity with respect to some partial order and have a bottom element, fail to induce a continuum of -theories. From this it follows the incompleteness of the strongly stable semantics, which had been conjectured by Bastonero-Gouy [START_REF] Bastonero | Strong stability and the incompleteness of stable models of ¡ -calculus[END_REF] and by Berline [START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF].

If a semantics is incomplete, then there exists a -theory that is not induced by any model in the semantics. In such a case we say that the semantics omits the -theory . More generally, a semantics omits (forces, respectively) an equation if the equation fails (holds) in every model of the semantics. The set of equations 'forced' by a semantics ¡ constitutes a -theory. It is the minimal -theory of ¡ if it is induced by a model of ¡ .

The following natural question arises (see Berline [START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF]):

given a class of models in a semantics ¡ , is there a minimal -theory represented in it? Di Gianantonio et al. [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] have shown that the above question admits a positive answer for Scott's continuous semantics, at least if we restrict to extensional models. However, the proofs of [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] use logical relations, and since logical relations do not allow to distinguish terms with the same applicative behavior, the proofs do not carry out to non-extensional models. The authors [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF] have recently shown that the same question admits a positive answer for the graph semantics, that is, the semantics of lambda calculus given in terms of graph models. These models, isolated in the seventies by Plotkin, Scott and Engeler [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF] within the continuous semantics, have been proved useful for giving proofs of consistency of extensions of lambda calculus and for studying operational features of lambda calculus. For example, the simplest graph model, namely Engeler-Plotkin's model, has been used to give concise proofs of the head-normalization theorem and of the left-normalization theorem of lambda calculus (see [START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF]), while a semantical proof of the "easiness" of ¢ ¤£ ¦¥ §£ ¤£ ©¨¢ ¤£ ¦¥ §£ ¤£ ©¨w as obtained by Baeten and Boerboom in [START_REF] Baeten | Omega can be anything it should not be[END_REF]. Kerth has recently shown in [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] that there exists a continuum of different (sensible) graph theories (where "graph theory" means " -theory of a graph model"). However, it is well known that the graph semantics is incomplete, since it trivially omits the axiom of extensionality (i.e., the equation

¤£ ¥ £ ©£ ¤ ¥ §£ ¤

). Sensible -theories are equational extensions of the untyped lambda calculus that equate all the unsolvableterms and are closed under derivation. The least sensibletheory is the -theory ¡ (generated by equating all the unsolvable terms), while the greatest sensible -theory is the -theory ¡ ¢ (generated by equating -terms with the same Böhm tree up to possibly infinite ¤ -equivalence). A long- standing open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is the least sensible -theory ¡ . A re- lated question is whether, given a class of models, there is a minimal and maximal sensible -theory represented by it. In this paper we give a positive answer to this question for the graph semantics. Two further questions arise: what equations between -terms are equated by the least sensible graph theory? And by the greatest one? The answer to the first difficult question is still unknown; we conjecture that the right answer is the least sensible -theory ¡ . In this paper we positively answer the second question: the -theory ¥ (generated by equating -terms with the same Böhm tree) is the greatest sensible graph theory. This result is a consequence of the fact that the graph semantics omits all the equations between solvable -terms that have different Böhm trees. More formally, we show that the graph semantics omits all the equations satisfying the following conditions:

¡ £¢ ! and ¥ #" $ % &¥ (1) 
The following are other consequences of the main result of the paper.

(i) There exists a continuum of different sensible graph theories strictly included in ¥ (this result positively answers Question 2 in [7, Section 6.3]);

(ii) For every closed term ' , the -theory generated by ¢ ¤£ ¦¥ §£ ¤£ ©¨¢ ¤£ ¦¥ §£ ¤£ © ' contains no equation satisfying condition [START_REF] Abramsky | Domain theory in logical form[END_REF].

A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is equal to the least lambda theory ¦

. In this paper we show that this model cannot be found within graph semantics (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models). From the above result it follows that graph semantics forces equations between non-¦ -equivalent -terms and that the least graph theory, whose existence was shown in [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF], is not equal to §¦ . The paper is organized as follows. In Section 2 we review the basic definitions of lambda calculus and graph models. In particular, we recall the formal definition of the Engeler completion of a partial pair. The proof of the existence of a minimal sensible graph theory is presented in Section 3, while Sections 4 and 5 are devoted to the characterization of the maximal sensible graph theory.

Preliminaries

To keep this article self-contained, we summarize some definitions and results concerning lambda calculus and graph models that we need in the subsequent part of the paper. With regard to the lambda calculus we follow the notation and terminology of [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF].

Lambda calculus

The set ( 0) of -terms of lambda calculus over an infinite set 1 of variables is constructed as usual: every variable £ 32 1 is a -term; if ).

The -theory ¡ , generated by equating all the unsolv- able -terms, is consistent by [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Thm. 16.1.3] and admits a unique maximal consistent extension ¡ ¢ [4, Thm. 16.2.6]. A -theory is called sensible [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Def. 4.1.7(ii)] if ¡ 10 .

The set of all sensible -theories is naturally equipped with a structure of bounded lattice. ¡ is the least sensible - theory, while ¡ ¢ is the greatest one. ¡ ¢ is an extensional -theory.

Böhm trees

The -theory ¥ , generated by equating -terms with the same Böhm tree, is sensible and non-extensional. ¥ is dis- tinct from ¡ and ¡ £¢ , so that ¡ 12 ¥ 32 ¡ ¢ . Notice that not all the -theories satisfying the condition ¥ "2 2 ¡ ¢ are extensional (see Prop. 4.3 below).

In the remaining part of this subsection we characterize the -theory ¡ ¢ in terms of Böhm trees.

The Böhm tree of a -term will be denoted by

4 ¢ ¨.
For all -terms and , we write ¥

Graph models

The class of graph models belongs to Scott's continuous semantics. Historically, the first graph model was Plotkin and Scott's ' `Y , which is also known in the literature as "the graph model". "Graph" referred to the fact that the continuous functions were encoded in the model via (a sufficient fragment of) their graph.

As a matter of notation, for every set a , a ¢ is the set of all finite subsets of a , while b ¢ a ¨is the powerset of a . If . The function is defined in (2), while is defined as follows:

¢ d ¨¢ fe ¨ % 2 a p ¢ yg u h0 e ¨u e v % 2

¥

For more details we refer the reader to Berline [START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF] and to Chapter 5 of Barendregt's book [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF].

Let i j lk Em be the set of a -environments n mapping the set of the variables of lambda calculus into b ¢ a ¨. The interpretation

v p i oj lk Em e b ¢ a ¨of a -term is defined as follows. p £ v q n ¢ £ ¤¨ p ¢ ¨v q % 2 a p ¢ yg u 0 v q ¨u e v % 2 v q p ¢ ¤£ ¦¥ ¨v q u e v % p % 2 v q ¡ ¢ ¤£ ¥ §¦ ©¨ If £ ¡ £ ¥ ¥ ¥ £ is a sequence of variables and u u ¥ ¥ ¥
u is a sequence of finite subsets of a , then we have

¢ £ ¦¥ ¨v q u e % p % 2 v q ¡ ¢ ¤ £ ¥ §¦ ¡ ¢ ¤ £ ¥ §¦ ¨ ¥ Given a graph model ¢ a ÿh ¤¨, we have that v v
if, and only if, ¢ ¤£ © ¥ §£ © ¨v . Di Gianantonio and Honsell [START_REF] Di Gianantonio | An abstract notion of application[END_REF] have shown that graph models are strictly related to filter models (see Coppo-Dezani [START_REF] Coppo | An extension of the basic functionality theory for the ¡ -calculus[END_REF] and Barendregt et al. [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF]), since the class of graph theories is included in the class of -theories induced by non-extensional filter models. Alessi et al. [START_REF] Alessi | Filter models and easy terms[END_REF] have shown that this inclusion is strict, namely there exists an equation between -terms which is omitted in graph semantics, whilst it is satisfied in some nonextensional filter model.

A graph theory is The completion method for building graph models from "partial pairs" was initiated by Longo in [START_REF] Longo | Set-theoretical models of ¡ -calculus: theories, expansions and isomorphisms[END_REF] and recently developed on a wide scale by Kerth in [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF][START_REF] Kerth | On the construction of stable models of ¡ calculus[END_REF]. This method is useful to build models satisfying prescribed constraints, such as domain equations and inequations, and it is particularly convenient for dealing with the equational theories of graph models. 

The minimal sensible graph model

In this section we show that the class of sensible graph models has a minimum element, i.e., there exists a graph model whose equational theory is the smallest sensible graph theory.

In [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF] a general technique for "gluing together" the elements of a family of graph models is described.

The idea is the following: given a family I ¢ QP R# P ¨ of graph models, take the partial pair given by the disjoint union of the SP and of the # P . The key point is that the theory of the Engeler completion of this partial pair, that we call here the canonical product of I , is smaller than that of all the ¢ SP R# P ¨'s. This is enough to conclude that the class of graph models has a minimum element (simply take a "complete" family

¢ TP R# P ¨ , i.e. a
family such that, for any inequation between lambda terms which holds in some graph model, there exists 9 such that ¢ QP R# P ¨realises that inequation).

Here we restrict our attention to sensible models; we can use the same technique, starting from a complete family U of sensible graph models, but we have to be careful: it remains to show that the canonical product of U is sensible. This is a consequence of the following property of sensible graph models. We state here some definitions and lemmata, sketching the main result of [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF]. We need them for proving the main result of this section, Theorem 3.6: 

Definition 3.2 Let ¦ ¢ a P $# P ¨ RP ' ¨ § be a

Omitting equations and theories

A semantics is incomplete if there exists a -theory that is not induced by any model in the semantics. In such a case we say that the semantics omits the -theory . More generally, a semantics omits (forces, respectively) an equation if it fails (holds) in all the models of the semantics. If a semantics omits an equation , then it omits all the -theories including . It is easy to verify that the set of equations 'forced' by a semantics ¡ constitutes a -theory. It is the minimal -theory of ¡ if it is induced by a model of ¡ .

The following two theorems are the main results of the paper. The proof of Thm. 4.1 is postponed to the next section.

Theorem 4.1 The graph semantics omits all the equations !

satisfying the following conditions: U SW and " 10 3¥

In other words, graph semantics omits all the equations between -terms which do not have the same Böhm tree, but they have the same Böhm tree up to (possibly infinite) ¤ -equivalence (see Section 2.2 and Barendregt [4, Section 10]).

Theorem 4.2

The -theory ¥ is the unique maximal sensi- ble graph theory.

Proof: ¥ is the equational theory of the Plotkin-Scott graph model ' Y (see Section 19.1 in [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]) and of the Engeler-Plotkin graph model B AC (see [START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF]). Let be a sen- sible graph theory and # . We have that U $W , because ¡ ¢ is the unique maximal sensible -theory. Since graph semantics does not omit the equation , then from VU $W and from Theorem 4.1 it follows that 0 , so that 0 ¥ .

¥

It is well known that every graph theory is nonextensional (see [START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF]). In the following proposition we show that Thm 4.2 is not trivial. is not extensional.

Berline [START_REF] Berline | From computation to foundations via functions and application: The ¡ -calculus and its webbed models[END_REF] asked whether there is a non-syntactic sensible model of lambda calculus whose theory is strictly included in ¥ . The answer is positive as shown in the follow- ing corollary.

Corollary 4.4 There exists a continuum of different sensible graph theories strictly included in ¥ .

Proof: Based on a result of David [START_REF] David | Computing with Böhm trees[END_REF], Kerth [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] has shown that there exists a continuum of sensible graph theories which distinguish the Turing's fixpoint combinator 

¥

It is well known that the -term ¢ is easy, that is, it can be consistently equated to every other closed -term .

We denote by ¢ ¢ ¨) the -theory generated by the equation ¢ .

Corollary 4.5 Let be an arbitrary closed -term. Then we have:

' U W © ¨' " 10 © £ ¢ ¢ ¨) " $' © ¥ Proof: By [3] the -theory ¢ ¢ ¨) is contained
within a graph theory. Then the conclusion follows from Theorem 4.1.

¥

A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is equal to the least lambda theory ¦ . In the following theorem we show that this model cannot be found within graph semantics (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models). . We get a contradiction because

¢ v ¦ 0 ¢ ¤£ ¦¥ P¢ §¦ £ ¤¨v holds.

¥

From the above theorem it follows that graph semantics forces equations between -terms which are not ¦ equivalent, and that the least graph theory, whose existence was shown in [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF], is not equal to ¦ .

The proof of the main theorem

In this section we provide the proof of Theorem 4.1.

We recall that a node of a Böhm tree is a sequence of natural numbers and that the level of a node is the length of the sequence. The empty sequence will be denoted by . ¨, the difference "created" at node . This is done in lemma 5.6.

Let us introduce now some notations and definitions needed in the proof. Let

¥ ¥ ¥ ¡

be a node at least level, where the labels of From the hypothesis U $W and " 10 & it follows that (iii) The node is a starting point for a possibly infinite ¤ -expansion in either 4 ¢ ¨or 4 ¢ ¨, but not in both. Without loss of generality, we assume to have the ¤ -expansion in 4 ¢ ¨.

We define two sequences ¡ ' and ¡ ' (9 s5 (see [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Def. 8.3.20]) are respectively

¡ ' gB ED ¤£ P ¥ ¥ ¥ £ P ' ¥ PF P P ¥ ¥ ¥ P ¢ ' £ (5) 
¡ ' B ED ¤£ P ¥ ¥ ¥ £ P ' ¥ F P P ¥ ¥ ¥ P ¢ ' ¥
To abbreviate the notation we will write ¡ ' and ¡ ' as follows:

¡ ' CB ED £ P ' ¥ PF P P ¥ ¥ ¥ P ¢ ' £ ¤ ¡ ' CB ED £ P ' ¥ PF P P ¥ ¥ ¥ P ¢ ' ¥
Then the node P in the Böhm trees of and has 5 $P sons. Since P )

P ©P ) is a son of P in the Böhm trees of and , then we have $P ) §5 5 ©P and we define is the node where the Böhm trees are different), we get

¡ ' £ ¡ P ¤ ' £ £ ¡ ' £ ¡ P ¤ ' £ ¥
¡ ¦¥ ¡ ¡ @ ¤ ¥ CB ED £ ¡ ¥ ¥ PF ¡ ¡ ¥ ¥ ¥ ¡ ¢ ¥ £ (6) ¡ ¥ ¡ ¡ @ ¤ §¥ B ED £ ¡ ¥ ¤ ¥ PF ¡ ¡ ¥ ¥ ¥ ¡ ¢ §¥ © ¥ ¥ ¥ © ¤ ¨ (7) 
where

G 5 S6 © G (" C5 # 5 ) (i.e., © G is a possibly infinite ¤ -expansion of the variable G ),

G

does occur neither free nor bound in ¡ P (" 5 ), and it is distinct from each variable

£ ¡ ¨¥ ¥ ¥ 6£ ¡ ¥ , F ¡ , ¨¥ ¥ ¥ G @ 6 G ) ¨¥ ¥ ¥ ¨ ¤ . Let ¢ a ÿh ¤¨b
e an arbitrary graph model. First we will show that the terms

¡ ¥ and ¡ ¥ have different interpre- tations in ¢ a ïh ©¨, that is, there exist an element % ¡ 2 a and a a -environment ¨¡ such that % ¡ &2 ¢ ¡ ¥ ¨v © ¥ , while % ¡ £
2 ¢ ¡ ¥ ¨v © ¥ . Second we will show that this difference at level can be propagated upward, that is, there exist elements % G 2 a and a -environments ¨G (

# " ¨¥ ¥ ¥ ¨ ) such that % ¡ 2 ¢ ¡ ¦¥ ¨v © ¥ iff % G 2 ¢ ¡ ¨v © iff % H 2 v
© , and

% ¡ 2 ¢ ¡ ¦¥ ¨v © ¥ iff % G 2 ¢ ¡ ¨v © iff % H 2 v © .
To prove these properties of separability, we have to define the elements % G and the a -environments ¨G . The definition of ¨G is difficult and technical.

We are going to use families of points of the graph models, which are not only pairwise distinct, but also "functionally incompatible", in the sense expressed by the following definition. Then, in the appendix we show that such families actually exist in all graph models. [START_REF] Berry | Stable models of typed lambda-calculi[END_REF].

In the appendix it will be shown the following result.

Lemma 5.2

-sequences exist for every " .

Let

¢ ¦ p j 9 ¨be a -sequence of elements of a , where 1.

¢ ! #" ' " ¥ j 0P ¨! ¢ $ #" ' " ¥ 5 ©P ¨! ! 5 ;
2. j DP is the number of external abstractions in the princi- pal hnf of ¡ ' (see [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF] above);

3. 5 P is the number of sons of the node P in the Böhm tree of (see (5) above);

4. " is the number of ¤ -expansions in ¡ ¥ (see (7) above);

5. 5 is the number of external abstractions in the principal hnf of the subterm © ¤ of ¡ ¥ :

© ¤ B ED ¢ ¥ § ¤ ¡ ¥ ¥ ¥ ¢ ¢ 5 9 ¨¥ (9) 
We now define a sequence of environments n P and two sequences of elements ¢ P ¨% P 2 a (9 5 9 5 ). Next the environments n P will be used to define ¨H and ¨¡ . We start by defining n ¡ , ¢ ¡ and % ¡ .

(i) ¢ ¡ ¡ E ¢ §¥ ) ¤ @ e E ¢ e ¦ ¡ ) e ¦ ¡ ; (ii) n ¡ ¢ F ¡ ¨ 1 ¢ ¡
, where

F ¡
is the head variable of the principal hnfs of ¡ ¥ and ¡ ¥ ;

(iii) n ¡ ¢ ¤ ¨ E ¢ e ¦ ¡ ) ¨¦ ¡
, where ¤ is the head variable of the principal hnf of © ¤ ;

(iv) n ¡ ¢ £ ¤¨ E ¢ £ " ¡ F ¡ G6 ¤ ¨; (v) % ¡ ¡ n ¡ ¢ £ ¡ ¥ ¨e n ¡ ¢ ¤ ¨e ¦ ¡ .
Notice that, if 5 9 (i.e., there are no external abstraction in the principal hnf of © ¤ ), then by definition

E H e ¦ ¡ ) is just ¦ ¡ ) . Moreover, the notation n ¡ ¢ £ ¡ ¥ ¨e n ¡ ¢ ¤ ¨e ¦ ¡ , used in the definition of % ¡ , means n ¡ ¢ £ ¡ e E Q e n ¡ ¢ £ ¡ ¥ ¨e n ¡ ¢ ¨e E Q e n ¡ ¢ ¤ ¨e ¦ ¡
. Assume we have defined ¢ P ) , % P ) and n P ) ( 9). We define ¢ P , % P and n P as follows.

(i) ¢ P ¡ E ¤ ' @ e % P ) © e E ¢ ' @ ¤ ' e ¦ P ;

(ii) n P ¢ F P ¨ n P ) ¢ F P ¨'

¢ P @ , where . Assume by induction hypothesis that n P @ 5 ¨P . We have to show that n P 5 ¨P ) 

¡ £2 ¢ ¡ ¦¥ ¨v © ¥ . Proof: Recall that 1. ¡ ¥ ¡ £ ¡ ¥ ¥ PF ¡ ¡ ¥ ¥ ¥ ¡ ¢ §¥ ; 2. ¡ ¥ ¡ £ ¡ ¥ ¤ ¥ PF ¡ ¡ ¥ ¥ ¥ ¡ ¢ §¥ © ¥ ¥ ¥ © ¤ ; 3. © ¤ ¡ ¢ ¥ § ¤ § ¥ ¥ ¥ ¢ ; 4. ¢ ¡ ¡ E ¢ ¥ ) ¤ @ e E ¢ e ¦ ¡ ) Q e ¦ ¡ ; 5. % ¡ ¡ n ¡ ¢ £ ¡ ¥ e n ¡ ¢ ¤ ¨e ¦ ¡ .
As a matter of notation, let

p £ ¡ ¨¡ d £ ¡ ¥ p n ¡ ¢ £ ¡ ¥ ïf d ¤ p § n ¡ ¢ ¤ ¨f ; p © ¡ © ¥ ¥ ¥ © ¤ ; p ¡ ¡ ¥ ¥ ¥ ¡ ¢ ¥ . p ¡ ¡ ¥ ¥ ¥ ¡ ¢ ¥ . p ¡ ¥ ¥ ¥ ¢ . By the definition of ¨¡ ) we immediately get that £ ¨¡ ) Qd ¤ p § n ¡ ¢ ¤ ïf
. Then we have:

% ¡ 2 ¢ ¡ ¦¥ ¨v © ¥ iff ¦ ¡ 2 ¢ F ¡ ¨v ¨ v ¨© v ïff ¦ ¡ 2 ¢ F ¡ ¨v © ¥ £ v © ¥ £ © v ¨by G " "F ¡ not free in ¡ P and def. £ iff ¦ ¡ 2 ¢ ¡ v © ¥ £ © v ¨by ¨¡ ) 5 3n H and Lemma 5.3(b) iff ¦ ¡ 2 ¢ ¡ E ¢ §¥ ) ¤ @ ¢ © ¤ ¨v ¨by def. ¢ ¡ iff E ¢ e ¦ ¡ ) 2 ¢ © ¤ ¨v ¨¥ Finally, we have: ¢ © ¤ ¨v ¨ ¢ ¢ ¥ § ¤ ¥ ¥ ¥ ¢ ¨v ¨by def. © ¤ (see (9) above) ¢ ¢ ¥ § ¤ ¨v ¨by def. ¤ ¢ e ¨p ¨2 £ ¢ ¤ ¨ v ¨¡ ¡ £ ¥ ¢ ¡ ¨ by ¤ " G ¢ # ¦ " ¨¥ ¥ ¥ ¨5 ¤ ¢ e ¨p ¨2 n ¡ ¢ ¤ ¨ v ¨¡ ¡ £ ¥ ¢ ¡ ¨ by £ ¢ ¤ ¨ n ¡ ¢ ¤ ¤ ¢ e ¨p ¨2 E ¢ e ¦ ¡ ) ¨¦ ¡ v ¨¡ ¡ £ ¥ ¢ ¡ ¨ by definition of n ¡ ¢ ¤ ¥ ¤ ¢ e ¨p ¨2 E ¢ e ¦ ¡ ) E v ¨¡ ¡ £ ¥ ¢ ¡ ¨ ¤ ¢ e ¦ ¡ ) p ¤ ¢ 2 a ¢ ¥ Hence % ¡ 2 ¢ ¡ ¦¥ ¨v © ¥ , because E ¢ e ¦ ¡ ) 2 ¢ © ¤ ¨v ¨.
Recall that by (11) ¨¡ ) . We are going to show that there exists such that and j such that j 5 and 3 § © ¢ % P ¨ j for all 9 9 QH . We are going to show that this latter case is in fact impossible, hence concluding the proof. If , that contradicts [START_REF] David | Computing with Böhm trees[END_REF]. 

¨¡ d £ ¡ p § n ¡ ¢ £ ¡ ïf . % ¡ 2 ¢ ¡ ¥ ¨v © ¥ X n ¡ ¢ ¤ ¨e ¦ ¡ 2 ¢ F ¡ ¨v © ¥ £ ¢ ¨v © ¥ £ X n ¡ ¢ ¤ ¨e ¦ ¡ 2 ¢ ¡ ¢ ¨v © ¥ £ by ¨¡ ) 5 3n H and Lem. 5.3(b) X n ¡ ¢ ¤ ¨e ¦ ¡ 2 ¢ ¡ E ¢ ¥ by def. ¢ ¡ X n ¡ ¢ ¤ ¨e ¦ ¡ E ¤ @ e 3 E ¢ e ¦ ¡ ) Q e ¦ ¡ by def. ¢ ¡ X n ¡ ¢ ¤ ¨ E ¢ e ¦ ¡ ) Q by def. n ¡ X E ¢ e ¦ ¡ ) ¨¦ ¡ E ¢ e ¦ ¡ ) Q ¥

c.Definition 2 . 1 A

 21 is a complete partial ordering (cpo, for short), then d c e c gf denotes the cpo of all the Scott continuous functions from c into c graph model is a pair When parenthesis are omitted, then association to the right is assumed. For example,

  induced by a graph model will be called a graph theory. The graph model

3 .

 3 the maximal sensible graph theory if is sensible and

¥

  

Proposition 4 . 3

 43 There exist non-extensional -theories satisfying the condition ¥ 32 2 ¡ ¢ . Proof: Let ¢¡ V if, and only if, for all contexts normal form. We write ¤ ¥¡ V if ¢¡ V and ¡ V . The -theory ¦ ¡ # p §¤ ¡ V (see [4, Prop. 16.4.6]) is non-extensional, because and are distinct normal forms. We get the conclusion of the proposition from [4, Exercize 16.5.5], where it is shown that ¥ 32 ¨¦ ¡ V 2 ¡ £¢ . ¥ From the above proposition it follows that there existterms and , satisfying the condition (4) of Thm. 4.1, such that the -theory generated by ¥ '

8 have

 8 ¤¨¨a nd the Curry's fixpoint combinator 8 ¡ ¢ ©£ ¤ ¥ § ¢ £ ¤£ © ¨¨¢ ©£ ¤ ¥ § ¢ £ ¤£ © ¨¨. Then the conclusion follows from Theorem 4.2, because e and the same Böhm tree.

Theorem 4 . 6 .

 46 There exists no graph model whose equational theory is §¦ . Proof: First we show that every graph model satisfies the inequality Example 5.3.7 in Kerth's thesis [17] it follows that there exists a natural number " ¥ P¢ ¦ £ ¤¨v ) iff there exists a finite set 3 such that 3 e v w e v ¥ ¥ ¥ e v w ¢¡ e This last relation is true by defining 3 ¡ w , so that % 2 ¢ ©£ ¥ P¢ §¦ £ ¤¨v . In conclusion, we get ¢ v ¦ 0 ¢ ¤£ ¦¥ P¢ §¦ £ ©¨v . Assume now that there exists a graph model ¢ a ïh ©ẅ hose equational theory is §¦ . By Cor. 2.4 in[START_REF] Selinger | Order-incompleteness and finite lambda reduction models[END_REF] the denotations of the closed -terms in a graph model whose equational theory is ¦ must be pairwise incomparable.Then, for all closed -terms and such that "

. 4 ¢

 4 This last condition expresses the fact that the Böhm tree ¨of is different from the correspond- an informal overview of the proof: we start by picking a node get different interpretations in all graph models. This is done in lemma 5.5. In order to get the conclusion, we have to show that in all graph models it is possible to propagate upward, towards the roots of

If 9 9 )P

 99 we have finished. Otherwise, assume by induction hypothesis that we have already defined two -terms ¡ ' and that the Böhm trees of ¡ ' . Assume that the principal head normal forms (principal hnfs, for short) of ¡ ' and ¡ '

9 QH

 9 and j are as above, then there exist ¤ ¨¥ ¥ ¥ ¨¤ 2 a such that % P ) I ¤ e ¥ ¥ ¥ e ¤ e % P ) I , i.e. E P )

¥ Claim 5 . 9 2 a

 592 There exists a -sequence.Proof: By the above claim there exists an element % whose degree is greater than . Given a family u @ G E A' Y of pairwise distinct, finite subsets of a , define ¦ u e % (j 9 ). We prove that the sequence get a contradiction because the degree of % is greater than . ¥

  4 and 5 are -terms, then so are

	and	¤£ ¦¥ 4 for each variable	£ 2 1 . The symbol ¡ denotes
	syntactic equality. The following are some well-known -
	terms:				
	¢ ¡ ¢ ¤£ ¦¥ §£ ¤£ ©¨¢ ¤£ ¦¥ §£ ¤£ ©¤£ ¥¢ §¦ ¡ ¢ ¤£ ¦¥ §£ ¤£ ©£ ¤¨¢ ©£ ¥ §£ ©£ ¤£ ¤©
			¡ ¤£ ¦¥ §£ £ ¡ ¤£ ¤ ¥ §£ £ ¡ ¤£ © ¥ £ ¤ ¥
	A compatible -relation is any set of equations be-
	tween -terms that is closed under the following two rules:
	(i) If 4 ©	2	and 4 !	2	, then 4 © 4 !	2
		;				
	(ii) If 4 £ 2 1 . " 2	then	¤£ ¥ 4	¤£ ¥ 2	for every variable
	We will write either 4	5 or 4 $# 5 for 4	5 2	.
	A -theory is any compatible -relation which is an equivalence relation and includes (% )-and ( ¦ )-conversion.
	The set of all -theories is naturally equipped with a lattice
	structure, with meet defined as set theoretical intersection.
	The join of two -theories and & is the least equivalence relation including (' & . §¦ denotes the minimal -theory, while §¦ ¤ denotes the minimal extensional -theory (ax-iomatized by )
							¢ 5 64 ¨

Lemma 3.1

  If all the closed unsolvable -terms have the same interpretation in a graph model, then it must be the empty set.

	Proof: Let	¢ a R#	¨be a graph model and let	be a
	nonempty subset of a , that is the common interpretation of all closed unsolvables. Since ¢ and ©£ ¥ P¢ are both un-
	solvables, then we have that ¢ ¤£ ¥ ¢ ¨G u e % p %	2 ¢ G	u e % p % 2	¥
	(3) for all finite subsets u of a and . Let be a fixed element of It follows that u e % 2 all % 2 . Then u e 2 ¢ ¢ ¦ ¨G by (3), since ¢ ¦ is unsolvable and ¢ ¢ ¦ ¨G . From
	Example 5.3.7 in Kerth's thesis [17] it follows that
	u e	"w	e	¥ ¥ ¥ e w ¢¡ e	u	e
	for suitable finite subsets of ©£ ¥ §£ ©£ ¤£ . It follows that w G contained in the interpretation w u . By the arbitrariety of u we can conclude that ¢ ¤£ ¦¥ §£ ¤£ ©£ ¤¨G a . This is not possible, because, for example, E e ¦ ¤£2 ¢ ¤£ ¦¥ §£ ¤£ ©£ ¤¨G .

¥

  Then the Böhm trees of ¡ ' £ and ¡ ' £ are respectively

	the subtrees of	4	¢ ¨and	4 ¢ ¨at root	P ) . When
	we calculate the principal hnfs of ¡ ¦¥ and ¡ q	¡ ¦¥ (recall that

  . By definition ¨P )

	¢ £ P is a variable distinct from n P ¢ £ P ¨, for every F £ P (" V5 4 5 qj P ), then we have ¨P ) " V5 4 5 qj P . If ¢ F ¨ ¨P ¢ F ¦¥ n P @ ¢ F ¦¥ n P ¢ F ¨, by
	induction hypothesis and by n P 5 n P @ (see Lemma 5.3). (b) By definition ¢ P 2 n P ¢ F P ¨. Then the conclusion fol-
	lows from n P 5 ¨P ) (see (a)).
	Lemma 5.5 We have % ¡ 2 ¢ ¡ ¦¥ ¨v © ¥ and %

¥

Finally, in the following lemma we show that ¡ ¥ and ¡ ¥ have different interpretations.

  © ' iff ¦ P 2 ¢ F P ¨v © ' ¡ ¢ ' £ ¥ ¦ P 2 ¢ F P ¨v © ' £ ¢ P ¨v © ' £ and def. ¢ ©P .The conclusion of the lemma is now immediate. ¡ and ¡ ¡ . By apply- ing Lemma 5.6 it is easy to show that that % , we define the degree of % as the smallest natural number 9 such that there exist finite subsets . If such a natural number does not exist, we say that the degree of % is infinite. We denote by3 ¨ § © ¢ % ¨the degree of % .The proof of Lemma 5.2 is divided into claims. If a has an element whose degree is infinite, we are done. Otherwise, let % H be an element of a such that

		¤P @d	£ P p §	n P	¢ £ P ¨f for ¤P d	£ P	' p §	n P	¢ £ P	' ¨f .
		% P	2 ¢ ¡ '						q ' ¤£ ¢ ' ¦¥ ¨ v ©	' ¡ ¢	' £ ¥	q	' £ ¢	' ¥ ¨by
										by
					def. ¨P ) ¢ P ¢ P ¨v © ' £ ¤P ) S5 3n iff ¦ P 2 A H , Lem. 5.3(b), Lem. 5.4(b) by iff ¦ P 2 A ¢ P E ¤ ' @ ¢ P ¤ ' ¨v © ' £ E ¢ ' @ ¤ ' by
					iff % P )	def. ¢ P 2 ¢ ¡ ' £ ¨v © ' £	by
										¡ ' £ ¡ P ¤
										¥
		Lemma 5.7 We have % H 2 v © , while % H £ v 2 © .
		Proof: Recall that % ¡ 2 ¢ ¡ ¥ ¨v © ¥ , and % H 2	v ©	X	H 2 v © ¡ 2 ¢ ¡ ¥ ¨v © ¥ . Then X %
		the conclusion is immediate, because by Lemma 5.5 we have that % ¡ 2 ¢ ¡ ¥ ¨v © ¥ and % ¡ £ 2 ¢ ¡ ¥ ¨v © ¥ .
										¢ a ÿh ¤¨b e a
		graph model and that there exists a Given % 2	be an integer greater than " . We show -sequence in ¢ ÿh ¤¨. a
		w ¨¥ ¥ ¨w ¢¡	of a satisfying % w e ¥ ¥ ¥ @e w ¢¡ he
	This last relation is false. Hence % ¡ £2 ¢ ¡ ¦¥ ¨v © ¥ .								
		Claim 5.8 There exists an element of a whose degree is
	Lemma 5.6 For every % P 2 ¢ ¡ ' ¨v © ' X 9 9 we have % P ) 2 ¢ ¡ ' £ ¨v © ' £	greater than Proof: ¢ . j	9	¨% H "	E	e	%	H ¥	(12)
	and								
	% P 2 ¢ ¡ ' ¨v © ' X Proof: We prove the result for % P ) proof for ¡ ' is left to the reader. We recall that 2 ¢ ¡ ' £ ¨v © ' £ ¥ ¡ ' £ P ' ¥ PF P P ¥ ¥ ¥ P ¢ ' , ¡ ' £ ¡ P ¤ ' and % P ¡ n P ¢ £ P ' for P ¥ ¥ ¥ P ¢ ' , and ¦ P . In the following we will write ¨e ¡ ' CB ED . The corresponding	Such an element does exist since otherwise the function h p a ¢ or a e a would not be total. Let % G E e % G @ ( G # 9 ). In other words, % E G e % H

¥

The different interpretation of ¡ ¥ and ¡ ¥ can be propagated upward as shown in the following lemma. ¨v def. % P iff ' ¡ ¥

Appendix

In this appendix we prove Lemma 5.2. Let a %

A family of sensible graph models is complete if, for any inequation between closed

-terms which holds in some sensible graph model, there exists an element of the family in which that inequation holds.