The Sensible Graph Theories of Lambda Calculus
Antonio Bucciarelli, Antonino Salibra

To cite this version:
Antonio Bucciarelli, Antonino Salibra. The Sensible Graph Theories of Lambda Calculus. Logic in Computer Science, 2004, Turku, Finland. pp.276-285. hal-00149558

HAL Id: hal-00149558
https://hal.science/hal-00149558
Submitted on 26 May 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The Sensible Graph Theories of Lambda Calculus

A. Bucciarelli
Equipe PPS
Université Paris 7
Paris, France

A. Salibra
Dipartimento di Informatica
Università Ca’Foscari di Venezia
Venezia, Italia

Abstract

Sensible λ-theories are equational extensions of the untyped lambda calculus that equate all the unsolvable λ-terms and are closed under derivation. The least sensible λ-theory is the λ-theory \mathcal{H} (generated by equating all the unsolvable terms), while the greatest sensible λ-theory is the λ-theory \mathcal{H}^* (generated by equating terms with the same Böhm tree up to possibly infinite η-equivalence). A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is the least sensible λ-theory \mathcal{H}. A related question is whether, given a class of models, there exist a minimal and maximal sensible λ-theory represented by it. In this paper we give a positive answer to this question for the semantics of lambda calculus given in terms of graph models. We conjecture that the least sensible graph theory, where “graph theory” means “λ-theory of a graph model”, is equal to \mathcal{H}, while in the main result of the paper we characterize the greatest sensible graph theory as the λ-theory \mathcal{B} generated by equating λ-terms with the same Böhm tree. This result is a consequence of the fact that all the equations between solvable λ-terms, which have different Böhm trees, fail in every graph model. Further results of the paper are: (i) the existence of a continuum of different sensible graph theories strictly included in \mathcal{B} (this result positively answers Question 2 in [7, Section 6.3]); (ii) the non-existence of a graph model whose equational theory is exactly the minimal lambda theory $\lambda \beta$ (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models).

1. Introduction

Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. They are by syntactical or semantic considerations. Indeed, a λ-theory may correspond to a possible operational (observational) semantics of the lambda calculus, as well as it may be induced by a model of lambda calculus through the kernel congruence relation of the interpretation function.
conjectured by Bastonero-Gouy [6] and by Berline [7].

If a semantics is incomplete, then there exists a \(\lambda \)-theory \(T \) that is not induced by any model in the semantics. In such a case we say that the semantics omits the \(\lambda \)-theory \(T \). More generally, a semantics omits (forces, respectively) an equation if the equation fails (holds) in every model of the semantics. The set of equations ‘forced’ by a semantics \(C \) constitutes a \(\lambda \)-theory. It is the minimal \(\lambda \)-theory of \(C \) if it is induced by a model of \(C \).

The following natural question arises (see Berline [7]): given a class of models in a semantics \(C \), is there a minimal \(\lambda \)-theory represented in it? Di Gianantonio et al. [14] have shown that the above question admits a positive answer for Scott’s continuous semantics, at least if we restrict to extensional models. However, the proofs of [14] use logical relations, and since logical relations do not allow to distinguish terms with the same applicative behavior, the proofs do not carry out to non-extensional models. The authors [10] have recently shown that the same question admits a positive answer for the graph semantics, that is, the semantics of lambda calculus given in terms of graph models. These models, isolated in the seventies by Plotkin, Scott and Engeler [4] within the continuous semantics, have been proved useful for giving proofs of consistency of extensions of lambda calculus and for studying operational features of lambda calculus. For example, the simplest graph model, namely Engeler-Plotkin’s model, has been used to give concise proofs of the head-normalization theorem and of the left-normalization theorem of lambda calculus (see [7]), while a semantical proof of the “easiness” of \((\lambda x.xx)(\lambda x.xx)\) was obtained by Baeten and Boerboom in [3]. Kerth has recently shown in [18] that there exists a continuum of different sensible graph theories (where “graph theory” means “\(\lambda \)-theory of a graph model”). However, it is well known that the graph semantics is incomplete, since it trivially omits the axiom of extensionality (i.e., the equation \(\lambda x.x = \lambda xy.xy \)).

Sensible \(\lambda \)-theories are equational extensions of the untyped lambda calculus that equate all the unsolvable \(\lambda \)-terms and are closed under derivation. The least sensible \(\lambda \)-theory is the \(\lambda \)-theory \(\mathcal{H} \) (generated by equating all the unsolvable terms), while the greatest sensible \(\lambda \)-theory is the \(\lambda \)-theory \(\mathcal{H}^* \) (generated by equating \(\lambda \)-terms with the same Böhm tree up to possibly infinite \(\eta \)-equivalence). A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is equal to the least lambda theory \(\lambda \beta \). In this paper we show that this model cannot be found within graph semantics (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models). From the above result it follows that graph semantics forces equations between non-\(\beta \)-equivalent \(\lambda \)-terms and that the least graph theory, whose existence was shown in [10], is not equal to \(\lambda \beta \).

The paper is organized as follows. In Section 2 we review the basic definitions of lambda calculus and graph models. In particular, we recall the formal definition of the Engeler completion of a partial pair. The proof of the existence of a minimal sensible graph theory is presented in Section 3, while Sections 4 and 5 are devoted to the characterization of the maximal sensible graph theory.

2. Preliminaries

To keep this article self-contained, we summarize some definitions and results concerning lambda calculus and graph models that we need in the subsequent part of the paper. With regard to the lambda calculus we follow the notation and terminology of [4].

2.1 Lambda calculus

The set \(\Lambda \) of \(\lambda \)-terms of lambda calculus over an infinite set \(I \) of variables is constructed as usual: every variable \(x \in I \) is a \(\lambda \)-term; if \(t \) and \(s \) are \(\lambda \)-terms, then so are \((st)\)
and \(\lambda x.t \) for each variable \(x \in I \). The symbol \(\equiv \) denotes syntactic equality. The following are some well-known \(\lambda \)-terms:

\[
\Omega \equiv (\lambda x.x)(\lambda x.x) \quad \Omega_2 \equiv (\lambda x.x)(\lambda x.x)(\lambda x.x),
\]

\(i \equiv \lambda x.x \quad k \equiv \lambda xy.x \quad 1 \equiv \lambda xy.xy. \)

A compatible \(\lambda \)-relation \(T \) is any set of equations between \(\lambda \)-terms that is closed under the following two rules:

(i) If \(t_1 = u_1 \in T \) and \(t_2 = u_2 \in T \), then \(t_1t_2 = u_1u_2 \in T \);

(ii) If \(t = u \in T \) then \(\lambda x.t = \lambda x.u \in T \) for every variable \(x \in I \).

We will write either \(T \vdash t = s \) or \(t =_T s \) for \(t = s \in T \).

A \(\lambda \)-theory \(T \) is any compatible \(\lambda \)-relation which is an equivalence relation and includes \((\alpha)\)- and \((\beta)\)-conversion. The set of all \(\lambda \)-theories is naturally equipped with a lattice structure, with meet defined as set theoretical intersection. The join of two \(\lambda \)-theories \(T \) and \(S \) is the least equivalence relation including \(T \cup S \). \(\lambda \beta \) denotes the minimal \(\lambda \)-theory, while \(\lambda \beta \delta \) denotes the minimal extensional \(\lambda \)-theory (axiomatized by \(i = 1 \)).

The \(\lambda \)-theory \(\mathcal{H} \), generated by equating all the unsolvable \(\lambda \)-terms, is consistent by [4, Thm. 16.1.3] and admits a unique maximal consistent extension \(\mathcal{H}^* \) [4, Thm. 16.2.6]. A \(\lambda \)-theory \(T \) is called sensible [4, Def. 4.1.7(ii)] if \(\mathcal{H} \subseteq T \). The set of all sensible \(\lambda \)-theories is naturally equipped with a structure of bounded lattice. \(\mathcal{H} \) is the least sensible \(\lambda \)-theory, while \(\mathcal{H}^* \) is the greatest one. \(\mathcal{H}^* \) is an extensional \(\lambda \)-theory.

2.2 Böhm trees

The \(\lambda \)-theory \(\mathcal{B} \), generated by equating \(\lambda \)-terms with the same Böhm tree, is sensible and non-extensional. \(\mathcal{B} \) is distinct from \(\mathcal{H} \) and \(\mathcal{H}^* \), so that \(\mathcal{H} \subset \mathcal{B} \subset \mathcal{H}^* \). Notice that not all the \(\lambda \)-theories \(T \) satisfying the condition \(\mathcal{B} \subseteq T \subseteq \mathcal{H}^* \) are extensional (see Prop. 4.3 below).

In the remaining part of this subsection we characterize the \(\lambda \)-theory \(\mathcal{H}^* \) in terms of Böhm trees.

The Böhm tree of a \(\lambda \)-term \(M \) will be denoted by \(BT(M) \).

For all \(\lambda \)-terms \(M \) and \(N \), we write \(M \leq_n N \) if \(BT(N) \) is a (possibly infinite) \(\eta \)-expansion of \(BT(M) \) (see [4, Def. 10.2.10]). For example, let \(J \equiv \Theta(\lambda y.x(yy)) \), where \(\Theta \) is the Curry’s fixpoint combinator \((\lambda y.y(yy)) \). Then, \(x \leq_n Jx \) (see [4, Example 10.2.9]), since

\[
Jx =_{\lambda \beta} \lambda z_0.x(Jz_0) =_{\lambda \beta} \lambda z_0.x(\lambda z_1.z_0(Jz_1)) =_{\lambda \beta} \ldots
\]

and

\[
BT(Jx) = \lambda z_0.x(\lambda z_1.z_0(\lambda z_2.z_1(\lambda z_3.z_2(\ldots)))).
\]

We write \(N \equiv_n M \) if there exists a Böhm-like tree \(A \) such that \(BT(M) \leq_n A \) and \(BT(N) \leq_n A \) (see [4, Def. 10.2.25, Thm. 10.2.31]). It is well known that

\[
M =_{\mathcal{H}^*} N \iff M =_n N \quad \text{(see [4, Thm. 19.2.9]).}
\]

2.3 Graph models

The class of graph models belongs to Scott’s continuous semantics. Historically, the first graph model was Plotkin and Scott’s \(P_{\omega} \), which is also known in the literature as “the graph model”. “Graph” referred to the fact that the continuous functions were encoded in the model via (a sufficient fragment of) their graph.

As a matter of notation, for every set \(D, D^* \) is the set of all finite subsets of \(D \), while \(P(D) \) is the powerset of \(D \). If \(C \) is a complete partial ordering (cpo, for short), then \(\lfloor C \to \mathcal{C} \rfloor \) denotes the cpo of all the Scott continuous functions from \(C \) into \(\mathcal{C} \).

Definition 2.1 A graph model is a pair \((D, p)\), where \(D \) is an infinite set and \(p : D^* \times D \to D \) is an injective total function.

As a matter of notation, we write \(a \to_p \alpha \), or also simply \(a \to \alpha \), for \(p(a, \alpha) \). When parenthesizes are omitted, then association to the right is assumed. For example, \(a \to b \to \alpha \) stands for \(p(a, p(b, \alpha)) \). If \(\pi = a_1 \ldots a_n \) is a sequence of finite subsets of \(D \), then we write \(\pi_n \to \alpha \) for \(a_1 \to a_2 \to \cdots \to a_n \to \alpha \).

The function \(p \) is useful to encode a fragment of the graph of a Scott continuous function \(f : P(D) \to P(D) \) as a subset \(G(f) \) of \(D \):

\[
G(f) = \{ a \to_p \alpha \mid \alpha \in f(a) \land a \in D^* \}.
\]

Any graph model \((D, p)\) is used to define a model of lambda calculus through the reflexive cpo \((P(D), \subseteq) \) determined by two Scott continuous mappings \(G : [P(D) \to P(D)] \to P(D) \) and \(F : P(D) \to [P(D) \to P(D)] \). The function \(G \) is defined in (2), while \(F \) is defined as follows:

\[
F(X)(Y) = \{ \alpha \in D : (\exists a \subseteq Y) a \to_p \alpha \in X \}.
\]

For more details we refer the reader to Berline [7] and to Chapter 5 of Barendregt’s book [4].

Let \(Env_D \) be the set of \(D \)-environments \(\rho \) mapping the set of the variables of lambda calculus into \(P(D) \). The interpretation \(M^\rho : Env_D \to P(D) \) of a \(\lambda \)-term \(M \) is defined as follows.

- \(x^\rho_\rho = \rho(x) \)
follows: theories of graph models. This is particularly convenient for dealing with the equational constraints, such as domain equations and inequations, and it is satisfied in graph semantics, whilst it is satisfied in some non-extendable single pair, that we call here the family such that, for any inequation between lambda terms which holds in some graph model, there exists an equation between lambda terms which is omitted in graph semantics, whilst it is satisfied in some non-extendable single pair.

A graph model is a partial pair. This is a consequence of the following property of sensible graph models, take the partial pair given by $\tau_n \colon \alpha : M^D_{[x_1=\alpha_1].[x_n=\alpha_n]}$. Given a graph model (D, p), we have that $M^p = N^p$ if, and only if, $M^p = N^p$ for all environments p. The λ-theory $Th(D, p)$ induced by (D, p) is defined as $Th(D, p) = \{ M = N : M^p = N^p \}$. A λ-theory induced by a graph model will be called a graph theory. The graph model (D, p) is called sensible if $Th(D, p)$ is a sensible λ-theory. It is well known that the graph theory $Th(D, p)$ is never extensional because the λ-terms α and β are indistinguishable in the class of λ-theories induced by non-extendable single pair models. Alessi et al. [2] have shown that this inclusion is strict, namely there exists an equation between λ-terms which is omitted in graph semantics, whilst it is satisfied in some non-extensional single pair filter model.

A graph theory T is

1. the minimal graph theory if $T \subseteq Th(D, p)$ for all graph models (D, p);
2. the minimal sensible graph theory if T is sensible and $T \subseteq Th(D, p)$ for all sensible graph models (D, p);
3. the maximal sensible graph theory if T is sensible and $Th(D, p) \subseteq T$ for all sensible graph models (D, p).

The completion method for building graph models from “partial pairs” was initiated by Longo in [20] and recently developed on a wide scale by Kerth in [18, 19]. This method is useful to build models satisfying prescribed constraints, such as domain equations and inequations, and it is particularly convenient for dealing with the equational theories of graph models.

Definition 2.2 A partial pair (D, p) is given by an infinite set D and a partial, injective function $p : D^* \times D \to D$.

A partial pair is a graph model if and only if p is total. We always suppose that no element of D is a pair. This is not restrictive because partial pairs can be considered up to isomorphism.

Definition 2.3 Let (D, p) be a partial pair. The Engeler completion of (D, p) is the graph model (E, i) defined as follows:

- $E = \bigcup_{n \in \omega} E_n$, where $E_0 = D$, $E_{n+1} = E_n \cup ((E_n^* \times E_n) - \text{dom}(p))$.
- Given $a \in E^*$, $\alpha \in E$, $i(a, \alpha) = \begin{cases} p(a, \alpha) & \text{if } p(a, \alpha) \text{ is defined} \\ (a, \alpha) & \text{otherwise} \end{cases}$

It is easy to check that the Engeler completion of a given partial pair (D, p) is actually a graph model. The Engeler completion of a total pair (D, p) is equal to (D, p).

A notion of rank can be naturally defined on the Engeler completion (E, i) of a partial pair (D, p). The elements of D are the elements of rank 0, while an element $\alpha \in E - D$ has rank n if $\alpha \in E_n$ and $\alpha \notin E_{n-1}$.

Classic graph models, such as Plotkin and Scott’s P_ω [4] and Engeler-Plotkin’s \mathcal{E}_A (where A is an arbitrary nonempty set) [7], can be viewed as the Engeler completions of suitable partial pairs. In fact, P_ω and \mathcal{E}_A are respectively isomorphic to the Engeler completions of $(\{0\}, p)$ (with $p(\theta, 0) = 0$) and (A, \emptyset).

Let $\tau = x_1 \ldots x_n$ be a sequence of variables and ρ be a D-environment such that $\rho(x_i) \in \tau$. As a matter of notation, we write $\rho(\tau_n) \colon \alpha$ for $\rho(x_1) \to \rho(x_2) \to \cdots \to \rho(x_n) \to \alpha$.

3. The minimal sensible graph model

In this section we show that the class of sensible graph models has a minimum element, i.e., there exists a graph model whose equational theory is the smallest sensible graph theory.

In [10] a general technique for “gluing together” the elements of a family of graph models is described.

The idea is the following: given a family $\mathcal{M} = \{(M_j, i_{j})\}$ of graph models, take the partial pair given by the disjoint union of the M_j and of the i_j. The key point is that the theory of the Engeler completion of this partial pair, that we call here the canonical product of \mathcal{M}, is smaller than that of all the (M_j, i_j)’s. This is enough to conclude that the class of graph models has a minimum element (simply take a “complete” family $\{(M_j, i_j)\}$, i.e. a family such that, for any inequation between lambda terms which holds in some graph model, there exists j such that (M_j, i_j) realises that inequation).

Here we restrict our attention to sensible models; we can use the same technique, starting from a complete family \mathcal{S} of sensible graph models, but we have to be careful: it remains to show that the canonical product of \mathcal{S} is sensible. This is a consequence of the following property of sensible graph models.
Lemma 3.1 If all the closed unsolvable λ-terms have the same interpretation in a graph model, then it must be the empty set.

Proof: Let (D, i) be a graph model and let X be a nonempty subset of D, that is the common interpretation of all closed unsolvables. Since Ω and $\lambda x.\Omega$ are both unsolvable, then we have that

$$X = (\lambda x.\Omega)^i = \{a \rightarrow \alpha : \alpha \in \Omega^1\} = \{a \rightarrow \alpha : \alpha \in X\}. \tag{3}$$

It follows that $a \rightarrow \alpha \in X$ for all finite subsets a of D and all $\alpha \in X$. Let γ be a fixed element of X. Then $a \rightarrow \gamma \in (\Omega_3)^i$ by (3), since Ω_3 is unsolvable and $(\Omega_3)^i = X$. From Example 5.3.7 in Kerth’s thesis [17] it follows that

$$\text{Lemma 3.1}$$

Let γ be a fixed element of X. We can conclude that $(\lambda x.\Omega x.x x x)^i = D$. This is not possible, because, for example, $0 \rightarrow \beta \notin (\lambda x.\Omega x.x x x)^i$. \hfill \Box

We state here some definitions and lemmata, sketching the main result of [10]. We need them for proving the main result of this section, Theorem 3.6:

Definition 3.2 Let $\mathcal{F} = \{(D_j, i_j)\}_{j \in J}$ be a family of graph models (without loss of generality, we may assume that $D_1 \cap D_2 = \emptyset$ for $j_1 \neq j_2 \in J$). Consider the partial pair (D_J, q_J) defined by:

$$D_J = \bigcup_{j \in J} D_j; \quad q_J = \bigcup_{j \in J} i_j.$$

The canonical product of \mathcal{F} is the Engeler completion of (D_J, q_J).

In the following, we denote by (D, i) the canonical product of $\mathcal{F} = \{(D_j, i_j)\}_{j \in J}$.

Definition 3.3 Let $j \in J$. We call j-flattening the following function $f_j : D \rightarrow D$, defined by induction on the rank of elements of D:

- if $\text{rank}(x) = 0$ then $f_j(x) = x$,
- if $\text{rank}(x) = n + 1$ and $x = (y_1, \ldots, y_k, y)$ then

$$f_j(x) = \begin{cases} i_j(d, f_j(y)) & \text{if } f_j(y) \in D_j \\ x & \text{otherwise} \end{cases}$$

where $d = \{f_j(y_1), \ldots, f_j(y_k)\} \cap D_j$.

Lemma 3.4 For all $x \in D$ there exists a unique $j \in J$ such that $f_j(x) \in D_j$.

Proposition 3.5 Let M be a closed λ-term and M^j (resp. M^{2j}) be its interpretation in the canonical product (D, i) (resp. graph model (D_j, i_j)); then we have for all $j \in J$:

(i) $f_j(x) \in M^j$ for all $x \in M$.
(ii) $M^j \cap D_j = M^{2j}$.

Theorem 3.6 Let $\mathcal{S} = \{(S_j, i_j)\}_{j \in J}$ be a countable and complete family of sensible graph models, and let (S, i) be the canonical product of \mathcal{S}; then the theory of (S, i) is the least sensible graph theory.

Proof: By the completeness of \mathcal{S} and by Proposition 3.5(ii) we have that $Th(S, i)$ is contained within any sensible graph theory.

In order to prove that (S, i) is sensible, let us suppose that a closed unsolvable term M has a non-empty interpretation in (S, i), i.e., there exists $\alpha \in M^j$. By Lemma 3.4 there exists a unique $j \in J$ such that $f_j(\alpha) \in S_j$. By Proposition 3.5(i) we have that $f_j(\alpha) \in M^j$, and finally, by Proposition 3.5(ii), that $f_j(\alpha) \in M^{2j}$. Since (D_j, i_j) is sensible, this is impossible by Lemma 3.1. Hence $M^j = \emptyset$ for any closed unsolvable M (and actually for any unsolvable in any environment). \hfill \Box

4. Omitting equations and theories

A semantics is incomplete if there exists a λ-theory T that is not induced by any model in the semantics. In such a case we say that the semantics omits the λ-theory T. More generally, a semantics omits (forces, respectively) an equation if it fails (holds) in all the models of the semantics. If a semantics omits an equation $M = N$, then it omits all the λ-theories including $M = N$. It is easy to verify that the set of equations ‘forced’ by a semantics \mathcal{C} constitutes a λ-theory. It is the minimal λ-theory of \mathcal{C} if it is induced by a model of \mathcal{C}.

The following two theorems are the main results of the paper. The proof of Thm. 4.1 is postponed to the next section.

Theorem 4.1 The graph semantics omits all the equations $M = N$ satisfying the following conditions:

$$M = \eta\gamma \quad \text{and} \quad M \neq \eta\gamma N. \tag{4}$$

In other words, graph semantics omits all the equations $M = N$ between λ-terms which do not have the same Böhm tree, but they have the same Böhm tree up to (possibly infinite) η-equivalence (see Section 2.2 and Barendregt [4, Section 10]).

Theorem 4.2 The λ-theory B is the unique maximal sensible graph theory.

1A family of sensible graph models is complete if, for any inequation between closed λ-terms which holds in some sensible graph model, there exists an element of the family in which that inequation holds.
Proof: \(B \) is the equational theory of the Plotkin-Scott graph model \(P_\omega \) (see Section 19.1 in [4]) and of the Engeler-Plotkin graph model \(E_A \) (see [7]). Let \(T \) be a sensible graph theory and \(M \models T \). We have that \(M \models H^* \), because \(H^* \) is the unique maximal sensible \(\lambda \)-theory. Since graph semantics does not omit the equation \(M = N \), then from \(M \models H^* \), \(N \) and from Theorem 4.1 it follows that \(M =_B N \), so that \(T \subseteq B \).

It is well known that every graph theory is non-extensional (see [7]). In the following proposition we show that Thm 4.2 is not trivial.

Proposition 4.3 There exist non-extensional \(\lambda \)-theories \(T \) satisfying the condition \(B \subseteq T \subseteq H^* \).

Proof: Let \(M \models n_1 \ N \) if, and only if, for all contexts \(C[\cdot] \), \(C[M] \) has a normal form \(\Rightarrow C[N] \) has the same normal form. We write \(M \sim_{n_1} N \) if \(M \models n_1 \ N \) and \(N \models n_1 \ M \). The \(\lambda \)-theory \(T_{n_1} = \{ M = N : M \sim_{n_1} N \} \) (see [4, Prop. 16.4.6]) is non-extensional, because \(i \) and \(1 \) are distinct normal forms. We get the conclusion of the proposition from [4, Exercise 16.5.5], where it is shown that \(B \subseteq T_{n_1} \subseteq H^* \).

From the above proposition it follows that there exist \(\lambda \)-terms \(M \) and \(N \), satisfying the condition (4) of Thm. 4.1, such that the \(\lambda \)-theory generated by \(B \cup \{ M = N \} \) is not extensional.

Berline [7] asked whether there is a non-syntactic sensible model of lambda calculus whose theory is strictly included in \(B \). The answer is positive as shown in the following corollary.

Corollary 4.4 There exists a continuum of different sensible graph theories strictly included in \(B \).

Proof: Based on a result of David [12], Kerth [18] has shown that there exists a continuum of sensible graph theories which distinguish the Turing’s fixpoint combinator \(Y \equiv \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx)) \) and the Curry’s fixpoint combinator \(\Theta \equiv (\lambda x y y(x y y))(\lambda x y y(x y y)) \). Then the conclusion follows from Theorem 4.2, because \(Y \) and \(\Theta \) have the same Bohm tree.

It is well known that the \(\lambda \)-term \(\Omega \) is easy, that is, it can be concentrated to every other closed \(\lambda \)-term \(M \). We denote by \((\Omega = M)^+ \) the \(\lambda \)-theory generated by the equation \(\Omega = M \).

Corollary 4.5 Let \(M \) be an arbitrary closed \(\lambda \)-term. Then we have:

\[P =_{H^*} Q, \ P \neq_B Q \Rightarrow (\Omega = M)^+ \n \neq P = Q. \]

Proof: By [3] the \(\lambda \)-theory \((\Omega = M)^+ \) is contained within a graph theory. Then the conclusion follows from Theorem 4.1.

A longstanding open problem in lambda calculus is whether there exists a non-syntactic model of lambda calculus whose equational theory is equal to the least lambda theory \(\lambda \beta \). In the following theorem we show that this model cannot be found within graph semantics (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models).

Theorem 4.6 There exists no graph model whose equational theory is \(\lambda \beta \).

Proof: First we show that every graph model satisfies the inequality \(\Omega_3 \leq \lambda x. \Omega_3 x \). Let \((D, p)\) be an arbitrary graph model and \(\alpha \in \Omega_3 \). From Example 5.3.7 in Kerth’s thesis [17] it follows that there exists a natural number \(k \geq 1 \) such that \(\alpha = b_1 \rightarrow \beta b_2 \rightarrow \beta \ldots \rightarrow \beta b_k \rightarrow \beta \alpha \) for suitable finite subsets \(b_i \subseteq \) contained in the interpretation of \(\lambda x. \beta x \).

We have that \(\alpha \in (\lambda x. \Omega_3 x)^p \) (that is, \(b_1 \rightarrow \beta b_2 \rightarrow \beta \ldots \rightarrow \beta b_k \rightarrow \beta \alpha \in \Omega_3 \)) if there exists a finite set \(d \) such that \(d = b_1 \beta b_2 \beta \ldots \beta b_k \beta \alpha \in \Omega_3 \) and \(d \subseteq b_1 \).

This last relation is true by defining \(d \equiv b_1 \), so that \(\alpha \in (\lambda x. \Omega_3 x)^p \).

Assume now that there exists a graph model \((D, p)\) whose equational theory is \(\lambda \beta \). By Cor. 2.4 in [25] the denotations of the closed \(\lambda \)-terms in a graph model whose equational theory is \(\lambda \beta \) must be pairwise incomparable. Then, for all closed \(\lambda \)-terms \(M \) and \(N \) such that \(M \not=_{\lambda \beta} N \), neither \(M^p \subseteq N^p \) nor \(N^p \subseteq M^p \). We get a contradiction because \(\Omega_3 \subseteq (\lambda x. \Omega_3 x)^p \).

From the above theorem it follows that graph semantics forces equations between \(\lambda \)-terms which are not \(\beta \)-equivalent, and that the least graph theory, whose existence was shown in [10], is not equal to \(\lambda \beta \).

5. The proof of the main theorem

In this section we provide the proof of Theorem 4.1.

We recall that a node of a Bohm tree is a sequence of natural numbers and that the level of a node is the length of the sequence. The empty sequence will be denoted by \(\varepsilon \).

Let \(M, N \) be closed \(\lambda \)-terms such that \(M =_{H^*} N \) and \(M \not=_{B} N \). This last condition expresses the fact that the Bohm tree \(BT(M) \) of \(M \) is different from the corresponding Bohm tree \(BT(N) \) of \(N \).

Let us give an informal overview of the proof: we start by picking a node \(u = r_1 \ldots r_k \) satisfying the following two conditions: (1) the labels of \(u \) in \(BT(M) \) and \(BT(N) \) are different; (2) the labels of each strict prefix \(w = r_1 \ldots r_j \) (\(j < k \)) of \(u \) in \(BT(M) \) and \(BT(N) \) are equal. Then we show that the subtrees of \(M \) and \(N \), whose Bohm trees are the subtrees of \(BT(M) \) and \(BT(N) \) at root \(u \), respectively, get different interpretations in all graph models. This is done in lemma 5.5. In order to get the conclusion, we have to show that in all graph models
it is possible to propagate upward, towards the roots of $BT(M)$ and $BT(N)$, the difference “created” at node u. This is done in lemma 5.6.

Let us introduce now some notations and definitions needed in the proof.

Let $u = r_1, \ldots, r_k$ be a node at least level, where the labels of $BT(M)$ and $BT(N)$ are different. The sequence $\varepsilon, r_1, r_1 r_2, r_1 r_2 r_3, \ldots r_k$ is the sequence of nodes that are in the path from the root ε to u. These nodes will be denoted by $u_0, u_1, u_2, \ldots, u_k$. Then, for example, $u_0 = \varepsilon, u_2 = r_1 r_2$ and $u_k = u$. From the hypothesis of minimality of u it follows that

(i) The label of the node u_j (0 \leq j < k) in the Böhm tree of M is equal to the corresponding one in the Böhm tree of N;

(ii) The labels of the node u in $BT(M)$ and $BT(N)$ are different.

From the hypothesis $M = H$, N and $M \neq N$ it follows that

(iii) The node u is a starting point for a possibly infinite η-expansion in either $BT(M)$ or $BT(N)$, but not in both. Without loss of generality, we assume to have the η-expansion in $BT(N)$.

We define two sequences M_{u_j} and N_{u_j} (0 \leq j \leq k) of λ-terms whose Böhm trees $BT(M_{u_j})$ and $BT(N_{u_j})$ are the subtrees of $BT(M)$ and $BT(N)$ at root u_j, respectively. Let

$$M_{u} \equiv M; \quad N_{u} \equiv N.$$

If $k = 0$ we have finished. Otherwise, assume by induction hypothesis that we have already defined two λ-terms M_{u_j} and N_{u_j} (j < k) and that the Böhm trees of M_{u_j} and N_{u_j} are respectively the subtrees of $BT(M)$ and $BT(N)$ at root u_j. Assume that the principal head normal forms (principal hnf) for short) of M_{u_j} and N_{u_j} (see [4, Def. 8.3.20]) are respectively

$$M_{u_j} = \lambda \beta \lambda x_1^j \ldots x_{n_j}^j. z_j. M_1^j \ldots M_{r_j}^j; \quad N_{u_j} = \lambda \beta \lambda x_1^j \ldots x_{n_j}^j. z_j. N_1^j \ldots N_{r_j}^j; \quad (5)$$

To abbreviate the notation we will write M_{u_j} and N_{u_j} as follows:

$$M_{u_j} = \lambda \beta \lambda x_1^j \ldots x_{n_j}^j. z_j. M_1^j \ldots M_{r_j}^j; \quad N_{u_j} = \lambda \beta \lambda x_1^j \ldots x_{n_j}^j. z_j. N_1^j \ldots N_{r_j}^j; \quad (6)$$

Then the Böhm trees of $M_{u_{j+1}}$ and $N_{u_{j+1}}$ are respectively the subtrees of $BT(M)$ and $BT(N)$ at root u_{j+1}. When we calculate the principal hnf of M_{u_j} and N_{u_j} (recall that $u_k = u$ is the node where the Böhm trees are different), we get

$$M_{u_k} \equiv M_{r_k}^{k-1} = \lambda \beta \lambda x_{n_k}^r. z_k. M_1^1 \ldots M_{r_k}^1; \quad (6)$$

$$N_{u_k} \equiv N_{r_k}^{k-1} = \lambda \beta \lambda x_{n_k}^r. \lambda y_r. z_k. N_1^1 \ldots N_{r_k}^1 Q_1 \ldots Q_r, \quad (7)$$

where $y_i \leq Q_i$ (1 \leq i \leq r) (i.e., Q_i is a possibly infinite η-expansion of the variable y_i), y_i does occur neither free nor bound in N_{j}^r (1 \leq j \leq s_k) and Q_j (1 \leq j \neq i \leq r), and it is distinct from each variable $x_1^j, \ldots, x_{n_k}^r, z_k, y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_r$.

Let (D, p) be an arbitrary graph model. First we will show that the terms N_{u_k} and M_{u_k} have different interpretations in (D, p), that is, there exist an element $\alpha_k \in D$ and a D-environment η_k such that $\alpha_k \in (N_{u_k})_{\eta_k}$, while $\alpha_k \notin (M_{u_k})_{\eta_k}$. Second we will show that this difference at level k can be propagated upward, that is, there exist elements $\alpha_i \in D$ and D-environments η_i (1 \leq i \leq k) such that $\alpha_k \in (N_{u_k})_{\eta_k}$ iff $\alpha_i \in (N_{u_k})_{\eta_i}$ iff $\alpha_i \in (N_{u_k})_{\eta_k}$, and $\alpha_k \in (M_{u_k})_{\eta_k}$ iff $\alpha_i \in (M_{u_k})_{\eta_i}$ iff $\alpha_i \in (M_{u_k})_{\eta_k}$.

To prove these properties of separability, we have to define the elements α_i and the D-environments η_i. The definition of η_i is difficult and technical.

We are going to use families of points of the graph models, which are not only pairwise distinct, but also “functionally incompatible”, in the sense expressed by the following definition. Then, in the appendix we show that such families actually exist in all graph models.

Definition 5.1 Let $q > 1$ be a natural number. A sequence $(\beta_n \in D : n \geq 0)$ of distinct elements of D is called a q-sequence if the following condition holds:

$$\forall i, j (0 < i < q) (\forall \overline{x} \in D^i) \beta_j \neq \overline{x} \rightarrow \beta_i. \quad (8)$$

Recall that, if $\overline{a} \equiv a_1 \ldots a_s$, then $\overline{a} \rightarrow \beta_i$ means $a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_s \rightarrow \beta_i$. Notice that i may be equal to j in the above condition (8).

In the appendix it will be shown the following result.

Lemma 5.2 q-sequences exist for every $q > 1$.

Let $(\beta_n : n \geq 0)$ be a q-sequence of elements of D, where

1. $q \geq (\Sigma_{s \leq s \leq s_j} n_j) + (\Sigma_{s_j \leq s_j} s_j) + r + s$;
2. n_j is the number of external abstractions in the principal hnf of M_{u_j} (see (5) above);
3. s_j is the number of sons of the node u_j in the Böhm tree of M (see (5) above);
4. \(r \geq 1 \) is the number of \(\eta \)-expansions in \(N_{ax} \) (see (7) above);

5. \(s \) is the number of external abstractions in the principal hnf of the subterm \(Q_r \) of \(N_{ax} \):

\[Q_r = \lambda \beta \, \lambda \mathbf{m}, y_r \cdot R_1 \ldots R_s \quad (s \geq 0). \quad (9) \]

We now define a sequence of environments \(\rho_j \) and two sequences of elements \(\delta_j, \alpha_j \in D \) (0 \(\leq j \leq k \)). Next the environments \(\rho_j \) will be used to define \(\sigma_0 \) and \(\sigma_k \). We start by defining \(\rho_0 \), \(\delta_0 \) and \(\alpha_0 \).

(i) \(\delta_0 \equiv \overline{\theta}_{s+1} \rightarrow \{ \overline{\theta}_0 \rightarrow \beta_{k+1} \} \rightarrow \beta_k; \)

(ii) \(\rho_0(y_r) = \{ \delta_0 \}, \) where \(\delta_0 \) is the head variable of the principal hnf of \(N_{ax} \) and \(M_{ax} \);

(iii) \(\rho_0(x) = \emptyset \) (\(x \not\equiv \delta_0 \), \(y_r \));

(iv) \(\alpha_0 \equiv \rho_0(x_{n_{ax}}^T) \rightarrow \rho_0(y_r) \rightarrow \beta_k. \)

Notice that, if \(s = 0 \) (i.e., there are no external abstraction in the principal hnf of \(Q_r \)), then by definition \(\overline{\theta}_0 \rightarrow \beta_{k+1} \) is just \(\beta_{k+1} \). Moreover, the notation \(\rho_0(x_{n_{ax}}^T) \rightarrow \rho_0(y_r) \rightarrow \beta_k \) used in the definition of \(\alpha_0 \), means \(\rho_0(x_1^T) \rightarrow \cdots \rightarrow \rho_0(x_{n_{ax}}^T) \rightarrow \rho_0(y_1) \rightarrow \cdots \rightarrow \rho_0(y_r) \rightarrow \beta_k \).

Assume we have defined \(\delta_j+1, \alpha_j+1 \) and \(\rho_j+1 \) (\(j < k \)). We define \(\delta_j, \alpha_j \) and \(\rho_j \) as follows.

(i) \(\delta_j \equiv \overline{\theta}_{s_j-r_j+1} \rightarrow \{ \alpha_j+1 \} \rightarrow \overline{\theta}_{s_j-r_j} \rightarrow \beta_j; \)

(ii) \(\rho_j(z_j) = \rho_j+1(z_j) \cup \{ \delta_j \}, \) where \(z_j \) is the head variable of the principal hnf of \(N_{ax} \) and \(M_{ax} \);

(iii) \(\rho_j(x) = \rho_j+1(x) \) (\(x \not\equiv \delta_j \));

(iv) \(\alpha_j \equiv \rho_j(x_{n_{ax}}^T) \rightarrow \beta_j. \)

As a matter of notation, if \(\tau \) and \(\rho \) are environments, we write \(\tau \preceq \rho \) for \(\tau(x) \preceq \rho(x) \) for all variables \(x \).

\textbf{Lemma 5.3} \((a) \) \(\rho_j \geq \rho_{j+1} \) (0 \(\leq j < k \)).

(b) Let \(j < k \) and \(\alpha \equiv \overline{\tau}_t \rightarrow \beta_j \) for some sequence \(\overline{\tau}_t \) of length \(t \leq q \). Then, \(\alpha \in \rho_0(z_j) \) iff \(\alpha \equiv \delta_j \).

\textbf{Proof:} (a) trivially follows from the definition of \(\rho_j \). (b) By definition of \(\rho_0 \) we have that \(\gamma \in \rho_0(x) \) for some variable \(x \) iff \(\gamma \) is one of the following elements of \(D \): \(\delta_0, \ldots, \delta_k, \beta_k, \overline{\theta}_s \rightarrow \beta_{k+1} \). To get the conclusion it is sufficient to apply the definition of \(\eta \)-sequence.

As a matter of notation, for every environment \(\tau \), we write

\[\tau[\overline{\tau}_{n_j}] := \rho_j(\overline{\tau}_{n_j}) \quad (10) \]

for \(\tau[\overline{\tau}_{n_j}] := \rho_j(\overline{\tau}_{n_j}). \)

We now define a sequence \(\sigma_0, \ldots, \sigma_{k+1} \) of environments as follows:

\[\sigma_0 = \rho_0; \quad \sigma_j+1 = \sigma_j[\overline{\tau}_{n_j}] := \rho_j(\overline{\tau}_{n_j}) \quad (0 \leq j \leq k). \quad (11) \]

\textbf{Lemma 5.4} \((a) \) \(\rho_j \leq \sigma_{j+1} \leq \rho_0 \) for every \(0 \leq j \leq k \) (in particular \(\sigma_1 = \rho_0 \)).

\((b) \) \(\delta_j \in \sigma_{j+1}(z_j) \) for all \(0 \leq j \leq k \).

\textbf{Proof:} (a) By definition we have \(\sigma_1 = \rho_0 \). Assume by induction hypothesis that \(\rho_j \leq \sigma_j \). We have to show that \(\rho_j \leq \sigma_{j+1} \).

By definition \(\sigma_{j+1}(z_j) = \rho_j(z_j^T) \) for every \(1 \leq t \leq n_j \), if \(z \) is a variable different from \(x_1^T \) (1 \(\leq t \leq n_j \)), then we have \(\sigma_{j+1}(z) = \sigma_j(z) \geq \rho_j(z), \) by induction hypothesis and by \(\rho_j \leq \rho_{j+1-1} \) (see Lemma 5.3).

(b) By definition \(\delta_j \in \rho_j(z_j) \). Then the conclusion follows from \(\rho_j \leq \sigma_{j+1} \) (see (a)).

Finally, in the following lemma we show that \(N_{ax} \) and \(M_{ax} \) have different interpretations.

\textbf{Lemma 5.5} We have \(\alpha_k \in (N_{ax})_{\rho_0} \) and \(\alpha_k \not\in (M_{ax})_{\rho_0} \).

\textbf{Proof:} Recall that

1. \(M_{ax} \equiv \lambda x_{n_{ax}}^T, z \in M_{ax}^T \ldots M_{ax}^k \);

2. \(N_{ax} \equiv \lambda x_{n_{ax}}^T, \overline{\tau}_r z \in N_{ax}^T \ldots N_{ax}^k Q_1 \ldots Q_r \);

3. \(Q_r \equiv \lambda w, y_r \cdot R_1 \ldots R_s \);

4. \(\delta_k \equiv \overline{\theta}_{s_k+r_k} \rightarrow \{ \overline{\theta}_0 \rightarrow \beta_{k+1} \} \rightarrow \beta_k; \)

5. \(\alpha_k \equiv \rho_0(x_{n_{ax}}^T) \rightarrow \rho_0(y_r) \rightarrow \beta_k. \)

As a matter of notation, let

\[\tau = \sigma_k[\overline{\tau}_{n_k}] := \rho_k(\overline{\tau}_{n_k}), \quad \overline{\tau}_r := \rho_0(\overline{\tau}_r), \]

\[\overline{\tau}_r \equiv Q_1 \ldots Q_r \]

\[\overline{\theta}_r \equiv M_{ax}^T \ldots M_{ax}^k \]

\[\overline{\theta}_r \equiv N_{ax}^T \ldots N_{ax}^k \]

\[\overline{\theta}_r \equiv R_1 \ldots R_s. \]

By the definition of \(\sigma_{k+1} \) we immediately get that \(\tau = \sigma_{k+1}[\overline{\tau}_r] := \rho_k(\overline{\tau}_r) \). Then we have:

\(\alpha_k \in (N_{ax})_{\rho_0} \) iff \(\beta_k \in (z_k)_{\rho_0}^T, \overline{\tau}_r \overline{\tau}_r \)

iff \(\beta_k \in (z_k)_{\rho_0}^T, \overline{\tau}_r \overline{\tau}_r \)

by \(z \not\equiv z_k \) not free in \(N_{ax}^k \) and def. \(\tau \)

iff \(\beta_k \in (z_k)_{\rho_0}^T, \overline{\tau}_r \overline{\tau}_r \)

by \(\sigma_{k+1} \leq \rho_0 \) and Lemma 5.3(b)

iff \(\beta_k \in (z_k)_{\rho_0}^T, \overline{\tau}_r \overline{\tau}_r \)

by def. \(\delta_k \)

iff \(\overline{\theta}_s \rightarrow \beta_{k+1} \in (Q_r)_{\rho_0}^T \).
Finally, we have:

\[(Q_r)_r^p = (\lambda y_r R_1 \ldots R_s)^r,\]

by def. \(Q_r\) (see (9) above)

\[= (\lambda y_r \overline{R}_r)^p,\]

by def. \(\overline{R}\)

\[= \{ \overline{r} \rightarrow \sigma : \sigma \in \tau(y_r) \overline{R}_r[\overline{y}_r = \overline{r}_1] \}, \]

by \(y_r \neq w_i\) \((i = 1, \ldots, s)\)

\[= \{ \overline{r} \rightarrow \sigma : \sigma \in \rho_k(y_r) \overline{R}_r[\overline{y}_r = \overline{r}_1] \}, \]

by \(\tau(y_r) = \rho_k(y_r)\)

\[= \{ \overline{r} \rightarrow \sigma : \sigma \in \{ \overline{0} \rightarrow \beta_k, \beta_k \overline{R}_r[\overline{y}_r = \overline{r}_1] \} \}, \]

by def. of \(\rho_k(y_r)\)

\[\supseteq \{ \overline{r} \rightarrow \beta_{k+1} \} : \sigma_r \in D^p \} \]

Hence \(\alpha_k \in (N_{u_1})^p_{\sigma_1}\) because \(\overline{w}_r \rightarrow \beta_{k+1} \in (Q_r)_r^p\).

Recall that by (11) \(\sigma_k + 1 = \sigma_k[\overline{y}_r := \rho_k(y_r)]\).

\[\alpha_k \in (M_{u_1})^p_{\sigma_1} \iff \rho_k(y_r) \rightarrow \beta_k \in (2k)^p_{\sigma_k + 1}(\overline{y}_r)^p_{\sigma_k + 1}, \]

\[\iff \rho_k(y_r) \rightarrow \beta_k \in (\overline{y}_r)^p_{\sigma_k + 1}, \]

by \(\sigma_k + 1 \leq \rho_k\) and Lem. 5.3(b)

\[\iff \rho_k(y_r) \rightarrow \beta_k \in (\overline{y}_r)^p_{\sigma_k}, \]

by def. \(\delta_0\)

\[\iff \rho_k(y_r) \rightarrow \beta_k \in [\overline{0} \rightarrow \beta_k], \]

by def. \(\rho_k\)

\[\iff \{ \overline{0} \rightarrow \beta_k \} \subseteq (M_{u_1})^p_{\sigma_1}. \]

This last relation is false. Hence \(\alpha_k \notin (M_{u_1})^p_{\sigma_1}\). \(\Box\)

The different interpretation of \(N_{u_1}\) and \(M_{u_1}\) can be propagated upward as shown in the following lemma.

Lemma 5.6 For every \(k > j \geq 0\) we have

\[\alpha_j \in (N_{u_j})^p_{\sigma_j} \iff \alpha_{j+1} \in (N_{u_{j+1}})^p_{\sigma_{j+1}}\]

and

\[\alpha_j \in (M_{u_j})^p_{\sigma_j} \iff \alpha_{j+1} \in (M_{u_{j+1}})^p_{\sigma_{j+1}}.\]

Proof: We prove the result for \(N_{u_j}\). The corresponding proof for \(M_{u_j}\) is left to the reader. We recall that \(N_{u_j} \equiv \lambda y_j N_{u_j}^1 \ldots N_{u_j}^j, N_{u_{j+1}} \equiv N_{u_{j+1}}^j\) and \(\alpha_j = \rho_j(\overline{y}_j) \rightarrow \beta_j\). In the following we will write \(\overline{y}_j\) for \(N_{u_1}^j \ldots N_{u_j}^j\), and

\[\sigma_j[\overline{y}_j := \rho_j(\overline{y}_j)] \text{ for } \sigma_j[\overline{y}_j := \rho_j(\overline{y}_j)] .\]

\[\alpha_j \in (N_{u_j})^p_{\sigma_j} \iff \beta_j \in (z_j y_j \sigma_j[\overline{y}_j := \rho_j(\overline{y}_j)])^p_{\sigma_j + 1}, \]

by def. \(\alpha_j\)

\[\iff \beta_j \in (z_j y_j \sigma_j[\overline{y}_j := \rho_j(\overline{y}_j)])^p_{\sigma_j + 1}, \]

by def. \(\sigma_{j+1}\)

\[\iff \beta_j \in \{ \delta_j(\overline{y}_j)^p_{\sigma_j + 1}, \]

by \(\sigma_{j+1} \leq \rho_j\), Lem. 5.3(b), Lem. 5.4(b)

\[\iff \beta_j \in \{ \delta_j(\overline{y}_j)^{j+1-1}(N_{r_j}^p_{\sigma_j + 1} \overline{y}_j = r_j), \]

by def. \(\delta_j\)

\[\iff \alpha_{j+1} \in (N_{u_{j+1}})^p_{\sigma_{j+1}}, \]

by \(N_{u_{j+1}} \equiv N_{u_{j+1}}^j\) and def. \(\delta_j\).

The conclusion of the lemma is now immediate. \(\Box\)

Lemma 5.7 We have \(\alpha_0 \in N_{\sigma_0}^p\), while \(\alpha_0 \notin M_{\sigma_0}^p\).

Proof: Recall that \(N := N_{u_1}\) and \(M \equiv M_{u_1}\). By applying Lemma 5.6 it is easy to show that that \(\alpha_0 \in N_{\sigma_0}^p \iff \alpha_k \in (N_{u_k})^p_{\sigma_k}\), and \(\alpha_0 \in M_{\sigma_0}^p \iff \alpha_k \in (M_{u_k})^p_{\sigma_k}\). Then the conclusion is immediate, because by Lemma 5.5 we have that \(\alpha_k \in (N_{u_k})^p_{\sigma_k}\) and \(\alpha_k \notin (M_{u_k})^p_{\sigma_k}\). \(\Box\)

Appendix

In this appendix we prove Lemma 5.2. Let \((D, p)\) be a graph model and \(q\) be an integer greater than 1. We show that there exists a \(q\)-sequence in \((D, p)\).

Given \(\alpha \in D\), we define the degree of \(\alpha\) as the smallest natural number \(k \geq 0\) such that there exist finite subsets \(b_1, \ldots, b_k\) of \(D\) satisfying \(b_1 \rightarrow \cdots \rightarrow b_k \rightarrow \alpha\). If such a natural number does not exist, we say that the degree of \(\alpha\) is infinite. We denote by \(d_{\text{deg}}(\alpha)\) the degree of \(\alpha\).

The proof of Lemma 5.2 is divided into claims.

Claim 5.8 There exists an element of \(D\) whose degree is greater than \(q\).

Proof: If \(D\) has an element whose degree is infinite, we are done. Otherwise, let \(\alpha_0\) be an element of \(D\) such that

\[(\forall n > 0) \alpha_0 \neq \overline{0}_n \rightarrow \alpha_0.\]

Such an element does exist since otherwise the function \(p : D^* \rightarrow D\) would not be total.

Let \(\alpha_i = \overline{0}_i \rightarrow \alpha_0\) \((i > 0)\). In other words, \(\alpha_i = \overline{0}_i \rightarrow \alpha_0\). We are going to show that there exists \(k\) such that \(d_{\text{deg}}(\alpha_k) > q\).

First remark that, for all \(j \geq 1\), \(d_{\text{deg}}(\alpha_j) \leq d_{\text{deg}}(\alpha_{j+1})\), since if \(\alpha_{j+1} = b_1 \rightarrow \cdots \rightarrow b_k \rightarrow \alpha_{j+1}\) then \(\alpha_j = b_2 \rightarrow \cdots \rightarrow b_k \rightarrow \overline{0} \rightarrow \alpha_j\).
Hence, either there exist j such that $d_{\text{deg}}(\alpha_j) > q$, and we are done, or there exist j_0 and n such that $n \leq q$ and $d_{\text{deg}}(\alpha_j) = n$ for all $j \geq j_0$. We are going to show that this latter case is in fact impossible, hence concluding the proof.

If j_0 and n are as above, then there exist $c_1, \ldots, c_n \subset D$ such that $\alpha_{j_0+n} = c_1 \rightarrow \cdots \rightarrow c_n \rightarrow \alpha_{j_0+n}$, i.e. $\emptyset_{j_0+n} \rightarrow \alpha_0 = c_1 \rightarrow \cdots \rightarrow c_n \rightarrow \emptyset_{j_0+n} \rightarrow \alpha_0$ hence $\alpha_0 = \emptyset_n \rightarrow \alpha_0$, that contradicts (12).

\[\square \]

Claim 5.9 There exists a q-sequence.

Proof: By the above claim there exists an element $\alpha \in D$ whose degree is greater than q. Given a family $\{\alpha_n\}_{n \in \mathbb{N}}$ of pairwise distinct, finite subsets of D, define $\beta_n = \alpha_n \rightarrow \alpha$ ($n \geq 0$). We prove that the sequence $(\beta_n : n \geq 0)$ is a q-sequence. By the way of contradiction, assume that $\beta_i = b_1 \rightarrow \cdots \rightarrow b_t \rightarrow \beta_j$ ($0 < t < q$) for some i and j, i.e.,

$$a_i \rightarrow \alpha = b_1 \rightarrow \cdots \rightarrow b_t \rightarrow a_j \rightarrow \alpha.$$

It follows that $\alpha = b_j \rightarrow \cdots \rightarrow b_t \rightarrow a_j \rightarrow \alpha$. We get a contradiction because the degree of α is greater than q. \[\square \]

References