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The Minimal Graph Model of Lambda Calculus

A longstanding open problem in lambda-calculus, raised by G.Plotkin, is whether there exists a continuous model of the untyped lambda-calculus whose theory is exactly the beta-theory or the beta-eta-theory. A related question, raised recently by C.Berline, is whether, given a class of lambda-models, there is a minimal theory represented by it. In this paper, we give a positive answer to this latter question for the class of graph models à la Plotkin-Scott-Engeler. In particular, we build a graph model in which the equations satisfied are exactly those satisfied in any graph model.

Introduction

Lambda theories (i.e., congruence relations on § -terms closed under ¨and © -conversion) are equational extensions of the untyped lambda calculus that are closed under derivation. Lambda theories arise by syntactical considerations, a lambda theory may correspond to a possible operational (observational) semantics of the lambda calculus, as well as by semantic ones, a lambda theory may be induced by a model of lambda calculus through the kernel congruence relation of the interpretation function (see e.g. [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF], [START_REF] Berline | From computation to foundations via functions and application: The ¥ -calculus and its webbed models[END_REF]). Since the lattice of the lambda theories is a very rich and complex structure, syntactical techniques are usually difficult to use in the study of lambda theories. Therefore, semantic methods have been extensively investigated.

Computational motivations and intuitions justify Scott's view of models as partially ordered sets with a least element and of computable functions as monotonic functions over these sets. After Scott, mathematical models of the lambda calculus in various categories of domains were classified into semantics according to the nature of their representable functions (see e.g. [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF], [START_REF] Berline | From computation to foundations via functions and application: The ¥ -calculus and its webbed models[END_REF], [START_REF] Plotkin | Set-theoretical and other elementary models of the ¥ -calculus[END_REF]). Scott's continuous semantics [START_REF] Scott | Continuous lattices[END_REF] is given in the category whose objects are complete partial orders (cpo's) and morphisms are Scott continuous functions. The stable semantics introduced by Berry [START_REF] Berry | Stable models of typed lambda-calculi[END_REF] and the strongly stable semantics introduced by Bucciarelli-Ehrhard [START_REF] Bucciarelli | Sequentiality and strong stability[END_REF] are strengthenings of the continuous semantics. The stable semantics is given in the category of DI-domains with stable functions as morphisms, while the strongly stable one is given in the category of DI-domains with coherence, and strongly stable functions as morphisms. All these semantics are structurally and equationally rich in the sense that it is possible to build up models in each of them inducing pairwise distinct lambda theories [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] The following are long standing open problems in lambda calculus (see Berline [START_REF] Berline | From computation to foundations via functions and application: The ¥ -calculus and its webbed models[END_REF]): Question 1. Is there a continuous (stable, strongly stable) model whose theory is exactly § © or § © ¡ (where § © is the minimal lambda theory and § © ¢ is the minimal extensional lambda theory)? Question 1 can be weakened in two ways: Question 2. Is § © the intersection of all theories of continuous semantics? and similarly for § © ¡ and extensional models; and similarly for other semantics.

A lambda theory £ is the minimal theory of a class ¤ of models if there exists a model in the class which induces £ , while all the other models in the class induce theories including £ . Question 3. Given a class of models in a given semantics, is there a minimal lambda theory represented in it? Two related question have been answered. Given a semantics, it is natural to ask if all possible § -theories are induced by a model in the semantics. Negative answers to this question for the continuous, stable and strongly stable semantics were obtained respectively by Honsell-Ronchi della Rocca [START_REF] Honsell | An approximation theorem for topological ¥ -models and the topological incompleteness of ¥ -calculus[END_REF], Bastonero-Gouy [START_REF] Bastonero | Strong stability and the incompleteness of stable models of ¥ -calculus[END_REF] and Salibra [START_REF] Salibra | Topological incompleteness and order incompleteness of the lambda calculus[END_REF]. All the known semantics are thus incomplete for arbitrary lambda theories. On the other hand, Di Gianantonio et al. [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] have shown that § © ¡ can arise as the theory of a model in the ¥ -semantics (thus all questions collapse and have a positive answer in this case). If ¥ §¦ and ¥ denote, respectively, the first infinite ordinal and the first uncountable ordinal, then the models in the ¥ -semantics are the reflexive objects in the category whose objects are ¥ ¦ -and ¥ -complete partial orders, and whose morphisms preserve limits of ¥ -chains (but not necessarily of ¥ ¨¦ -chains).

Another result of [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] is that Question 3 admits a positive answer for Scott's continuous semantics, at least if we restrict to extensional models. However, the proofs of [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] use logical relations, and since logical relations do not allow to distinguish terms with the same applicative behavior, the proofs do not carry out to non-extensional models.

Among the set-theoretical models of the untyped lambda calculus that were introduced in the seventies and early eighties, there is a class whose members are particularly easy to describe (see Section 2 below). These models, referred to as graph models, were isolated by Plotkin, Scott and Engeler [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF] within the continuous semantics. Graph models have been proved useful for giving proofs of consistency of extensions of § -calculus and for studying operational features of § -calculus. For example, the simplest of all graph models, namely Engeler-Plotkin's model, has been used to give concise proofs of the head-normalization theorem and of the leftnormalization theorem of § -calculus (see [START_REF] Berline | From computation to foundations via functions and application: The ¥ -calculus and its webbed models[END_REF]), while a semantical proof based on graph models of the "easiness" of © § ¢ © § was obtained by Baeten and Boerboom in [START_REF] Baeten | Omega can be anything it should not be. Indag[END_REF].

Intersection types were introduced by Dezani and Coppo [START_REF] Coppo | An extension of the basic functionality theory for the ¥ -calculus[END_REF] to overcome the limitations of Curry's type discipline. They provide a very expressive type language which allows to describe and capture various properties of § -terms. By duality, type theories give rise to filter models of lambda calculus (see [START_REF] Abramsky | Domain theory in logical form[END_REF], [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF]). Di Gianantonio and Honsell [START_REF] Di Gianantonio | An abstract notion of application[END_REF] have shown that graph models are strictly related to filter models, since the class of § -theories induced by graph models is included in the class of § -theories induced by non-extensional filter models. Alessi et al. [START_REF] Alessi | Filter models and easy terms[END_REF] have shown that this inclusion is strict, namely there exists an equation between § -terms which cannot be proved in any graph model, whilst this is possible with non-extensional filter models.

In this paper we show that the graph models admit a minimal lambda theory. This result provides a positive answer to Question 3 for the restricted class of graph models. An interesting question arises: what equations between § -terms are equated by this minimal lambda theory?

The answer to this difficult question is still unknown; we conjecture that the right answer is the minimal lambda theory § © . By what we said in the previous paragraph this would solve the same problem for the class of filter models. We conclude this introduction by giving a sketch of the technicalities used in the proof of the main theorem. For any equation between § -terms which fails in some graph model we fix a graph model, where the equation fails. Then we use a technique of completion for gluing together all these models in a unique graph model. Finally, we show that the equational theory of this completion is the minimal lambda theory of graph models.

Graph models

To keep this article self-contained, we summarize some definitions and results concerning graph models that we need in the subsequent part of the paper. With regard to the lambda calculus we follow the notation and terminology of [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF].

The class of graph models belongs to Scott's continuous semantics. Historically, the first graph model was Plotkin and Scott's ¢¡ , which is also known in the literature as "the graph model". "Graph" referred to the fact that the continuous functions were encoded in the model via (a sufficient fragment of) their graph.

As a matter of notation, for every set £ , £ ¥¤ is the set of all finite subsets of £ , while ¦ © §£ is the powerset of £ .

Definition 1. A graph model is a pair © §£ ¥ §©

, where £ is an infinite set and © £ ¤ £ £ is an injective total function.

Let © §£ ¥ §© be a graph model and "! $# &% be the set of £ -environments ' mapping the set of the variables of § -calculus into ¦ © §£ . We define the interpretation ( 0

) 1 & 2! $# 3% 4 ¦ © §£ of a §
-term ( as follows.
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denotes the set of continuous selfmaps of ¦ © §£

. For more details we refer the reader to Berline [START_REF] Berline | From computation to foundations via functions and application: The ¥ -calculus and its webbed models[END_REF] and to Chapter 5 of Barendregt's book [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF].

Given a graph model © §£ ¥ §©

, we say that ( ) 6 9 ) if, and only if, ( ) 5 6 9 ) 5 for all environments ' . The lambda theory £ ¢© §£ §© induced by © §£ ¥ §© is defined as £ © §£ ¥ §© 6 @A ( 6 9 ( ) 6 9 ) Y It is well known that £ © §£ ¥ §© is never extensional because © § ¢ ) "! 6 © § ©# ©# ) . Given this huge amount of graph models (one for each total pair © §£ ¥ §©

), one naturally asks how many different lambda theories are induced by these models. Kerth has shown in [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] that there exist graph models with different lambda theories.

A lambda theory £ is the minimal lambda theory of the class of graph models if there exists a graph model © §£ §© such that £ 6 £ ¢© §£ §© and £ Q £ ¢© § %$ for all other graph models © § %$ .

The completion method for building graph models from "partial pairs" was initiated by Longo in [START_REF] Longo | Set-theoretical models of ¥ -calculus: theories, expansions and isomorphisms[END_REF] and recently developed on a wide scale by Kerth in [14] [15]. This method is useful to build models satisfying prescribed constraints, such as domain equations and inequations, and it is particularly convenient for dealing with the equational theories of the graph models.

Definition 2. A partial pair © §£ §©

is given by an infinite set £ and a partial, injective function © £ ¤ D£ £ .

A partial pair is a graph model if and only if © is total. We always suppose that no element of £ is a pair. This is not restrictive because partial pairs can be considered up to isomorphism. .
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It is easy to check that the Engeler completion of a given partial pair © §£ §© is actually a graph model. The Engeler completion of a total pair © §£ §© is equal to © §£ §© .

A notion of rank can be naturally defined on the Engeler completion © § %$ of a partial pair

© §£ §©

. The elements of £ are the elements of rank , while an element CB D 6 £ has rank n if ¨B ¥ ( and ¨! B D ( ¢¡ .

We conclude this preliminary Section by remarking that the classic graph models, such as Plotkin and Scott's ¢¡ [4] and Engeler-Plotkin's £ ¥¤ (with ¦ an arbitrary nonempty set of "atoms") [START_REF] Berline | From computation to foundations via functions and application: The ¥ -calculus and its webbed models[END_REF], can be viewed as the Engeler completions of suitable partial pairs. In fact, ¡ and £ are respectively isomorphic to the Engeler completions of © A Y §© (with © © ¨ § © 6 ) and

© ¦ § .
3 The minimal graph model 
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We consider the pair © §£ #" 3©$ %" defined by:
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This pair fails to be a graph model because the map $ )" £ 0¤ " £ " R £ " is not total ($ 0" is defined only on the pairs © §I ¨

such that I 4 A Y Q S£ 1 for some E B ! ).
Finally, let © § %$ be the Engeler completion of © §£ 2" ©$ %"

.

We are going to show that the theory of © § %$

is the intersection of all the theories of graph models, i.e. that: Theorem 1. The class of graph models admits a minimal lambda theory.

From now on, we focus on one of the © §£ 3 c%$ , in order to show that all the equations between closed lambda terms true in © § %$ are true in © §£ c%$ .

The idea is to prove that, for all closed §

-terms ( ( 54 76 6 ( 54 £

This takes a structural induction on ( , and hence the analysis of open terms too. Roughly, we are going to show that equation ( 1) holds for open terms as well, provided that the environments satisfy a suitable closure property introduced below.

Definition 4. Given E B 8 , we call E -flattening the following function 9 defined by induction on the rank of elements of :
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otherwise For all I RQ S , © §I will denote the set A ) © B DI Y .

The following easy facts will be useful:

Lemma 1. (a) For all B D , if © ! B £ then © 6 . (b) If I Q , B ¥ and © B D£ , then © $ © §I X 6 $ © © §I £ ¨ © B D£ .
We notice that Lemma £ CQ 4 65 by using again Proposition 1(i) and the induction hypothesis on . Hence @B © § 4 65 . 

Conclusion

We have shown that the graph models admit a minimal lambda theory £ © § %$ -closure, introduced to prove the minimality of © § %$

. Actually it should be possible to apply our technique for proving that classes of models other than graph models, which, informally, are closed under direct product of "pre-models" and free completion, admit a minimal lambda theory.
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