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Introduction

The untyped lambda calculus was introduced around 1930 by Church [START_REF] Church | A set of postulates for the foundation of logic[END_REF][START_REF] Church | The calculi of lambda conversion[END_REF] as part of an investigation in the formal foundations of mathematics and logic. Although lambda calculus is a very basic language, it is sufficient to express all computable functions. The process of application and evaluation reflects the computational behavior of many modern functional programming languages, which explains the interest in the lambda calculus among computer scientists.

Lambda theories are equational extensions of the untyped lambda calculus closed under derivation. They arise by syntactical or semantic considerations. Indeed, a λ-theory may correspond to a possible operational (observational) semantics of the lambda calculus, as well as it may be induced by a model of lambda calculus through the kernel congruence relation of the interpretation function. Although researchers have mainly focused their interest on a limited number of them, the class of λ-theories constitutes a very rich and complex structure (see e.g. [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF][START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF]). Syntactical techniques are usually difficult to use in the study of λ-theories. Therefore, semantic methods have been extensively investigated.

Topology is at the center of the known approaches to giving models of the untyped lambda calculus. The first model, found by Scott in 1969 in the category of complete lattices and Scott continuous functions, was successfully used to show that all unsolvable λ-terms can be consistently equated. After Scott, a large number of mathematical models for lambda calculus, arising from syntax-free constructions, have been introduced in various categories of domains and were classified into semantics according to the nature of their representable functions, see e.g. [START_REF] Abramsky | Domain theory in logical form[END_REF][START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF][START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF][START_REF] Plotkin | Set-theoretical and other elementary models of the λ-calculus[END_REF]]. Scott's continuous semantics [START_REF] Scott | Continuous lattices[END_REF] is given in the category whose objects are complete partial orders and morphisms are Scott continuous functions. The stable semantics (Berry [START_REF] Berry | Stable models of typed lambda-calculi[END_REF]) and the strongly stable semantics (Bucciarelli-Ehrhard [START_REF] Bucciarelli | Sequentiality and strong stability[END_REF]) are a strengthening of the continuous semantics, introduced to capture the notion of "sequential" Scott continuous function. All these semantics are structurally and equationally rich in the sense that it is possible to build up 2 ℵ 0 models in each of them inducing pairwise distinct λ-theories [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF][START_REF] Kerth | On the construction of stable models of λ-calculus[END_REF]. Nevertheless, the above denotational semantics are equationally incomplete: they do not match all possible operational semantics of lambda calculus. The problem of the equational incompleteness was positively solved by Honsell-Ronchi della Rocca [START_REF] Honsell | An approximation theorem for topological lambda models and the topological incompleteness of lambda calculus[END_REF] for the continuous semantics, and by Bastonero-Gouy [START_REF] Gouy | Etude des théories équationnelles et des propriétés algébriques des modéles stables du λ-calcul[END_REF][START_REF] Bastonero | Strong stability and the incompleteness of stable models of λcalculus[END_REF] for the stable semantics. Salibra [START_REF] Salibra | A continuum of theories of lambda calculus without semantics[END_REF][START_REF] Salibra | Topological incompleteness and order incompleteness of the lambda calculus[END_REF] has recently shown in a uniform way that all semantics, which involve monotonicity with respect to some partial order and have a bottom element, fail to induce a continuum of λ-theories. From this it follows the incompleteness of the strongly stable semantics, which had been conjectured by Bastonero-Gouy [START_REF] Bastonero | Strong stability and the incompleteness of stable models of λcalculus[END_REF] and by Berline [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF].

If a semantics is incomplete, then there exists a λ-theory T that is not induced by any model in the semantics. In such a case we say that the semantics omits the λ-theory T . More generally, a semantics omits (forces, respectively) an equation if the equation fails (holds) in every model of the semantics. The set of equations forced by a semantics C constitutes a λ-theory. It is the minimal (with respect to the inclusion order) λ-theory of C if it is induced by a model of C.

The following natural questions arises (see Berline [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF]): given a class C of models of lambda calculus, 1. Is there a minimal λ-theory represented by C? 2. Is there a minimal sensible (i.e., equating all unsolvable λ-terms) λ-theory represented by C? Di Gianantonio et al. [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] have shown that the above question [START_REF] Abramsky | Domain theory in logical form[END_REF] admits a positive answer for Scott's continuous semantics, at least if we restrict to extensional models. However, the proofs of [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] use logical relations, and since logical relations do not allow to distinguish terms with the same applicative behavior, the proofs do not carry out to non-extensional models.

In this paper we show that both question [START_REF] Abramsky | Domain theory in logical form[END_REF] and question [START_REF] Alessi | Filter models and easy terms[END_REF] admit a positive answer for the graph semantics, that is, the semantics of lambda calculus given in terms of graph models. These models, isolated in the seventies by Scott and Engeler [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF] within the continuous semantics, have been proved useful for giving proofs of consistency of extensions of lambda calculus and for studying operational features of lambda calculus. For example, the simplest graph model, namely Engeler's model, has been used by Berline [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF] to give concise proofs of the head-normalization theorem and of the left-normalization theorem of lambda calculus, while a semantical proof of the "easiness" of (λx.xx)(λx.xx) was obtained by Baeten and Boerboom in [START_REF] Baeten | Omega can be anything it should not be. Indag[END_REF]. It is well known that the graph semantics is incomplete, since it trivially omits the axiom of extensionality. The main technical device used in the proof of the existence of the least (sensible) graph theory is the notion of weak product of graph models. Roughly speaking, the weak product of a family of graph models is a new graph model which is the "canonical completion" of the disjoint union of the models in the family. We show that the theory of a weak product is always semisensible (i.e., it does not equate solvable and unsolvable terms) and it is included in the intersection of the theories of its factors (the inclusion is in general strict). The least graph theory (where "graph theory" means "λ-theory of a graph model") is the theory of the weak product of the family (D e : e ∈ I), where I is the set of equations between λ-terms which fail to hold in some graph model, and D e is a fixed graph model not satisfying the equation e.

Two further questions naturally arise: what equations between λ-terms belong to the minimal graph theory? And to the minimal sensible one? The answer to the second difficult question is still unknown; we conjecture that the λ-theory H, generated by equating all unsolvable λ-terms, is the least sensible graph theory. The first question is related to a longstanding open problem in lambda calculus, asking whether there exists a non-syntactic model whose equational theory is equal to the least λ-theory λβ. In this paper we show that this model cannot be found within graph semantics (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models). From this result it follows that the minimal graph theory is not equal to λβ, so that graph semantics forces equations between non-β-equivalent λ-terms. In this paper we provide an example of an equation of this kind.

The set of all sensible λ-theories constitutes a bounded lattice. The least sensible λ-theory is the λ-theory H (generated by equating all the unsolvable terms), while the greatest sensible λ-theory is the λ-theory H * (generated by equating terms with the same Böhm tree up to possibly infinite η-equivalence). Kerth has shown in [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] that there exists a continuum of different sensible graph theories. Then it make sense to ask whether there exists a maximal λ-theory represented by graph semantics. In one of the main results of the paper we show that the λ-theory B (generated by equating λ-terms with the same Böhm tree) is the greatest sensible graph theory. This result is a consequence of the main technical theorem of the paper: the graph semantics omits all equations M = N between λ-terms satisfying the following conditions:

H * M = N and B M = N . (1) 
In other words, the graph semantics omits all equations M = N between λ-terms which do not have the same Böhm tree, but have the same Böhm tree up to (possibly infinite) η-equivalence.

The following are other consequences of the main result of the paper.

(i) There exists a continuum of different sensible graph theories strictly included in B (this result positively answers Question 2 in [7, Section 6.3]);

(ii) For every closed term P , the λ-theory generated by Ω = P , where Ω is the paradigmatic unsolvable term (λx.xx)(λx.xx), contains no equation satisfying condition [START_REF] Abramsky | Domain theory in logical form[END_REF].

The paper is organized as follows. In Section 2 we review the basic definitions of lambda calculus and graph models. In particular, we recall the formal definition of the canonical completion of a partial model. The notion of a weak product of graph models is introduced and studied in Section 3. The proof of the existence of a minimal (sensible) graph theory is presented in Section 4, while in Section 5 it is shown that the least graph theory is not equal to λβ. Section 6 is devoted to the characterization of the maximal sensible graph theory. Conclusions and future work are presented in Section 7.

Preliminaries

To keep this article self-contained, we summarize some definitions and results concerning lambda calculus and graph models that we need in the subsequent part of the paper. With regard to the lambda calculus we follow the notation and terminology of [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF].

Lambda calculus

The set Λ of λ-terms over an infinite set of variables is constructed as usual: every variable is a λ-term; if M and N are λ-terms, then so are (M N ) and λx.M for each variable x. Λ o denotes the set of closed λ-terms.

The symbol ≡ denotes syntactic equality. The following are some well-known λ-terms:

Ω ≡ (λx.xx)(λx.xx); Ω 3 ≡ (λx.xxx)(λx.xxx); i ≡ λx.x; k ≡ λxy.x; 1 ≡ λxy.xy.
A compatible λ-relation T is any set of equations between λ-terms that is closed under the following two rules:

(i) If M = N ∈ T and P = Q ∈ T , then M P = N Q ∈ T ; (ii) If M = N ∈ T then λx.M = λx.N ∈ T for every variable x.
We will write either T M = N or M = T N for M = N ∈ T .

A λ-theory T is any compatible λ-relation which is an equivalence relation and includes (α)-and (β)-conversion. The set of all λ-theories is naturally equipped with a lattice structure, with meet defined as set theoretical intersection. The join of two λ-theories T and S is the least equivalence relation including T ∪ S. λβ denotes the minimal λ-theory, while λβη denotes the minimal extensional λ-theory (axiomatized by i = 1).

Solvable λ-terms can be characterized as follows: a λ-term M is solvable if, and only if, it has a head normal form, that is,

M = λβ λx 1 . . . x n .yM 1 . . . M k for some n, k ≥ 0 and λ-terms M 1 , . . . , M k . M ∈ Λ is unsolvable if it is not solvable.
The λ-theory H, generated by equating all unsolvable λ-terms, is consistent by [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Thm. 16 

Böhm trees

A λ-term M is called a projection term if M ≡ λx 1 . . . x n .y (n ≥ 0). A Böhm-like tree is a finite branching labelled tree, whose inner nodes are labelled by projection terms and leaves either by projection terms or by ⊥.

The Böhm tree BT (M ) of a λ-term M is a finite or infinite Böhm-like tree. If M is unsolvable, then BT (M ) = ⊥, that is, BT (M ) is a tree with a unique node labelled by ⊥. If M is solvable and λx 1 . . . x n .yM 1 . . . M k is the principal head normal form of M [4, Def. 8.3.20] then we have

BT (M ) = λx 1 . . . x n .y ¨rr r r BT (M 1 ) . . . . . . . . . BT (M k )
The λ-theory B, generated by equating λ-terms with the same Böhm tree, is sensible and non-extensional. B is distinct from H and H * , so that H ⊂ B ⊂ H * . Notice that not all λ-theories T satisfying the condition B ⊂ T ⊂ H * are extensional (see the remark after Thm. 45).

In the remaining part of this section we characterize the λ-theory H * in terms of Böhm trees.

For all λ-terms M and N , we write M ≤ η N if BT (N ) is a (possibly infinite) η-expansion of BT (M ) (see [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Def. 10.2.10]). For example, let J ≡ Θ(λjxy.x(jy)), where Θ is the Turing's fixpoint combinator. Then, x ≤ η Jx (see [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Example 10.2.9]), since

Jx = λβ λz 0 .x(Jz 0 ) = λβ λz 0 .x(λz 1 .z 0 (Jz 1 )) = λβ λz 0 .x(λz 1 .z 0 (λz 2 .z 1 (Jz 2 ))) = λβ . . .
The following is the Böhm tree of Jx: [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Def. 10.2.25] and the proof of the point (i ⇒ ii) in [4, Thm. 10.2.31]). It is well known that [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Thm. 19.2.9]).

BT (Jx) = λz 0 .x λz 1 .z 0 λz 2 .z 1 . . . . . . We write N = η M if there exists a Böhm-like tree A such that BT (M ) ≤ η A and BT (N ) ≤ η A (see
M = H * N ⇔ M = η N (see

Graph models

The class of graph models belongs to Scott's continuous semantics. Historically, the first graph model was Scott's P ω , which is also known in the literature as "the graph model". "Graph" referred to the fact that the continuous functions were encoded in the model via (a sufficient fragment of) their graph. When there is no danger of confusion, we use the same notation D for the graph model and its web. Thus, for example, α ∈ D means α ∈ |D|.

As a matter of notation, we write a → D α, or also simply a → α, for c D (a, α). When parenthesis are omitted, then association to the right is assumed. For example, a → b → α stands for c D (a, c D (b, α)). If a = a 1 . . . a n is a sequence of finite subsets of D, then we write

a n → α for a 1 → a 2 → • • • → a n → α.
The function c D is useful to encode a fragment of the graph of a Scott continuous function f : P(D) → P(D) as a subset G(f ) of D: The function G is defined in (2), while F is defined as follows:

G(f ) = {a → D α | α ∈ f (a) and a ∈ D * }. (2) 
F (X)(Y ) = {α ∈ D : (∃a ⊆ Y ) a → D α ∈ X}.
For more details we refer the reader to Berline [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF] and to Chapter 5 of Barendregt's book [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF].

Let Env D be the set of D-environments ρ mapping the set of the variables of lambda calculus into P(D).

If Y ⊆ D, then the environment ρ[x := Y ] is defined by: ρ[x := Y ](x) = Y ; ρ[x := Y ](z) = ρ(z) for z = x.
The interpretation M D of a λ-term M in an environment ρ is defined as follows.

• x D ρ = ρ(x) • (M N ) D ρ = {α ∈ D : (∃a ⊆ N D ρ ) a → α ∈ M D ρ } • (λx.M ) D ρ = {a → α : α ∈ M D ρ[x:=a] } If x ≡ x 1 .
. . x n is a sequence of variables and a = a 1 . . . a n is a sequence of finite subsets of D, then we have

(λx.M ) D ρ = {a n → α : α ∈ M D ρ[x 1 :=a 1 ]...[xn:=an] }.
We turn now to the interpretation of Ω in graph models. The following remark gives a necessary condition and a sufficient condition for α to be in the interpretation of Ω in a graph model.

Lemma 2 (Baeten-Boerboom [START_REF] Baeten | Omega can be anything it should not be. Indag[END_REF]) Let D be a graph model and α ∈ D. Then we have:

(i) If α ∈ Ω D , then there exists a such that a → α ∈ a. (ii) If there exists β ∈ D such that {β} → α = β, then α ∈ Ω D .
Given a graph model D, we have that M D = N D if, and only if, M D ρ = N D ρ for all environments ρ. The λ-theory T h(D) induced by D is defined as

T h(D) = {M = N : M D = N D }.
A λ-theory induced by a graph model will be called a graph theory. The graph model D is called sensible if T h(D) is a sensible λ-theory. Kerth has shown in [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] that there exists a continuum of different (sensible) graph theories. It is well known that the graph theory T h(D) is never extensional because (λx.x) D = (λxy.xy) D . Di Gianantonio and Honsell [START_REF] Di Gianantonio | An abstract notion of application, Typed lambda calculi and applications[END_REF] have shown that graph models are related to filter models (see and Barendregt et al. [START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF]), since the class of graph theories is included within the class of λ-theories induced by non-extensional filter models. Alessi et al. [START_REF] Alessi | Filter models and easy terms[END_REF] have shown that this inclusion is strict, namely there exists an equation between λ-terms, which is omitted in graph semantics, whilst it is satisfied in some non-extensional filter model.

A graph theory T will be called 1. the minimal graph theory if T ⊆ T h(D) for all graph models D;

2. the minimal sensible graph theory if T is sensible and T ⊆ T h(D) for all sensible graph models D;

3. the maximal sensible graph theory if T is sensible and T h(D) ⊆ T for all sensible graph models D.

A class C of graph models omits (forces, respectively) an equation if it fails (holds) in all models of C. If C omits an equation M = N , then it omits all λ-theories including M = N .

The completion method for building graph models from "partial pairs" was initiated by Longo in [START_REF] Longo | Set-theoretical models of λ-calculus: theories, expansions and isomorphisms[END_REF] and developed on a wide scale by Kerth in [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF][START_REF] Kerth | On the construction of stable models of λ-calculus[END_REF]. This method is useful to build models satisfying prescribed constraints, such as domain equations and inequations, and it is particularly convenient for dealing with the equational theories of graph models.

Definition 3 A partial pair A is given by an infinite set |A| and by a partial, injective function c

A : |A| * × |A| → |A|.
As for graph models, we use the same notation A for the partial pair and its underlying set.

A partial pair is a graph model if and only if c A is total. We always suppose that no element of A is a pair. This is not restrictive because partial pairs can be considered up to isomorphism.

Lambda terms can be interpreted by induction in partial pairs

A ways in the obvious way. For example, we have that

(M N ) A ρ = { α ∈ A : (∃a ⊆ N A ρ ) [(a, α) ∈ dom(c A ) ∧ c A (a, α) ∈ M A ρ ]} and (λx.M ) A ρ = { c A (a, γ) ∈ A : (a, γ) ∈ dom(c A ) ∧ γ ∈ M A ρ[x:=a] }.
Definition 4 Let A be a partial pair. The canonical completion of A is the graph model E defined as follows:

• E = n∈ω E n , where E 0 = A, E n+1 = E n ∪ ((E * n × E n ) -dom(c A )). • Given a ∈ E * , α ∈ E, c E (a, α) = c A (a, α) if c A (a, α) is defined (a, α) otherwise
It is easy to check that the canonical completion of a given partial pair A is actually a graph model. The canonical completion of a total pair A is equal to A.

A notion of rank can be naturally defined on the canonical completion E of a partial pair A. The elements of A are the elements of rank 0, while an element

α ∈ E -A has rank n if α ∈ E n and α ∈ E n-1 .
Classic graph models, such as Scott's P ω [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF], Park's P [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF] and Engeler's E B (where B is an arbitrary nonempty set) [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF], can be viewed as the canonical completions of suitable partial pairs. In fact, P ω , P and E B are respectively isomorphic to the canonical completions of

A = ({0}, c A ) (with c A (∅, 0) = 0), D = ({p}, c D ) (with c D ({p}, p) = p) and E = (B, c E ) (with c E the empty function).
Let x = x 1 . . . x n be a sequence of variables and ρ be a D-environment such that ρ(x i ) is a finite set. As a matter of notation, we write ρ(

x n ) → α for ρ(x 1 ) → ρ(x 2 ) → • • • → ρ(x n ) → α.

Weak product

In this section we introduce the notion of weak product of graph models, which is the main technical device used in the proof of the existence of the least (sensible) graph theory. The idea of a weak product is the following: given two graph models D 1 and D 2 , construct the partial pair whose web is the disjoint union of the webs of D 1 and D 2 , and whose coding function is the disjoint union of their coding functions. The canonical completion of this partial pair is the weak product of D 1 and D 2 .

As a matter of notations, given two sets A 1 and A 2 , we write A 1 A 2 their disjoint union, in i : A i → A 1 A 2 the canonical injections and pr i : 2 A 1 A 2 → 2 A i the canonical projections.

Definition 5

Let D 1 and D 2 be graph models. We define the partial pair D 1 D 2 by These definitions extend to countable products by considering countable disjoint unions of webs. Countable weak products are denoted by 3 i∈ω D i .

|D 1 D 2 | = |D 1 | |D 2 | c D 1 D 2 (b, β) = in i (c D i (a, α)) if b = {in i (α ) | α ∈ a} , β = in i (α)
For the sake of visibility of statements and proofs, we will suppose that, when forming weak products, the factors' webs are disjoint, and that the canonical injections are replaced by set inclusions. So, for instance, if M is a λ-term and D i is a factor of a weak product E, it makes sense to write

M D i ⊆ M E .
The rest of this section is devoted to the proof of the main properties of this construction:

(i) The theory of a weak product is included in the intersection of the theories of its factors (see Section 3.1).

(ii) The theory of a weak product is semisensible (see Section 3.2).

(iii) The inclusion in (i) is strict in general (see Section 3.3).

The theory of a weak product and of its factors

In this section we show that the theory T h(E) of a weak product E is included in the theory T h(D i ) of each of its factor D i . The idea is to prove that, for all closed λ-terms M

M D i = M E ∩ D i . (3) 
This takes a structural induction on M , and hence the analysis of open terms too. Roughly, we are going to show that equation ( 3) holds for open terms as well, provided that the environments satisfy a suitable closure property introduced below.

In the rest of this section, D i is a factor of a (finite or countable) weak product E.

Definition 7

We call i-flattening the function f i : E → E defined by induction on the rank of elements of E as follows:

if rank(x) = 0 then f i (x) = x
if rank(x) > 0 and x = (a, y) then

f i (x) = c D i (f i (a) ∩ D i , f i (y)) if f i (y) ∈ D i x otherwise,
where f i (a) = {f i (y) : y ∈ a}.

The following easy facts will be useful:

Fact 8 (a) For all x ∈ E, if f i (x) ∈ D i then f i (x) = x. (b) If a ∪ {z} ⊆ E and f i (z) ∈ D i , then f i (c E (a, z)) ∈ D i .
We notice that Fact 8(b) holds, a fortiori, if z ∈ D i .

Definition 9 For a ⊆ E let â = a ∪ f i (a); we say that a is i-closed if â = a.
In other words,

a is i-closed if f i (a) ⊆ a.
Lemma 10 For all a ⊆ E, â

∩ D i = f i (a) ∩ D i . Proof. By definition, â = a ∪ f i (a), hence â ∩ D i = (a ∩ D i ) ∪ (f i (a) ∩ D i ).
Since f i restricted to D i is the identity function, we have a ∩ D i ⊆ f i (a) ∩ D i , and we are done.

Definition 11 Let ρ : V ar → P(E) be a E-environment. We define the i-restriction ρ i of ρ by

ρ i (x) = ρ(x) ∩ D i , while we say that ρ is i-closed if for every variable x, ρ(x) is i-closed.
The following proposition is the key technical lemma of the section:

Proposition 12 Let M be a λ-term and ρ be an i-closed E-environment; then

(a) M E ρ is i-closed. (b) M E ρ ∩ D i ⊆ M E ρ i .
Proof. We prove (a) and (b) simultaneously by induction on the structure of M . If M ≡ x, both statements are trivially true.

Let M ≡ λx.N , and let us start by proving the statement (a): given y ∈ M E ρ , we have to show that f i (y) ∈ M E ρ . First we remark that, if rank(y) = 0 or if y = (a, z) and f i (z) ∈ D i , then by Fact 8(a) f i (y) = y and we are done. Then, let y = (a, z) and f i (z) ∈ D i ; we have

y ∈ M E ρ ⇒ z ∈ N E ρ[x:=a] by definition of ( ) E ⇒ z ∈ N E ρ[x:=â] by monotonicity of ( ) E w.r.t. environments ⇒ f i (z) ∈ N E ρ[x:=â] by (a), remark that ρ[x := â] is closed ⇒ f i (z) ∈ N E (ρ[x:=â]) i by (b) , since f i (z) ∈ D i ⇒ f i (z) ∈ N E ρ i [x:=f i (a)∩D i ] by Lemma 10 ⇒ c E (f i (a) ∩ D i , f i (z)) ∈ M E ρ i by definition of ( ) E ⇒ c D i (f i (a) ∩ D i , f i (z)) ∈ M E ρ i by definition of (E, i) ⇒ f i (y) ∈ M E ρ i by definition of f i ⇒ f i (y) ∈ M E ρ by monotonicity of ( ) E
Let us prove that M ≡ λx.N satisfies (b):

y ∈ M E ρ ∩ D i ⇒ (∃a ⊆ D i )(∃z ∈ D i ) y = c D i (a, z) and z ∈ N E ρ[x:=a] by definition of ( ) E and since y ∈ D i ⇒ z ∈ N E (ρ[x:=a]) i by (b), remark that â = a ⇒ z ∈ N E ρ i [x:=a] since a ⊆ D i ⇒ y ∈ M E ρ i by definition of ( ) E Let M ≡ P Q. (a) Let z ∈ (P Q) E ρ . If f i (z) = z we are done, otherwise by Lemma 8(a) f i (z) ∈ D i . Moreover, ∃a ⊆ E such that c E (a, z) ∈ P E ρ and a ⊆ Q E ρ .
Applying (a) and Fact 8(b) we get 

f i (c E (a, z)) = c D i (f i (a) ∩ D i , f i (z)) = c E (f i (a) ∩ D i , f i (z)) ∈ P E ρ . Applying (a) to Q we get f i (a) ⊆ Q E ρ . Hence f i (z) ∈ M E ρ . (b) If z ∈ (P Q) E ρ ∩ D i , then ∃a ⊆ E such that c E (a, z) ∈ P E ρ and a ⊆ Q E ρ . Since ρ is i- closed and z ∈ D i ,
f i (c E (a, z)) = c D i (f i (a)∩D i , z) ∈ P E ρ and f i (a) ∩ D i ⊆ Q E ρ . Now, by (b), we obtain c D i (f i (a) ∩ D i , z) ∈ P E ρ i and f i (a) ∩ D i ⊆ Q E ρ i , and we conclude z ∈ (P Q) E ρ i .
Proposition 13 Let M be a λ-term and ρ : V ar → P(D i ) be a D i -environment; then we have

M E ρ ∩ D i = M D i ρ .
Proof. We prove by induction on the structure of

M that M E ρ ∩ D i ⊆ M D i ρ . The converse is ensured by M D i ρ ⊆ M E ρ and M D i ρ ⊆ D i , both trivially true. If M ≡ x, the statement trivially holds. Let M ≡ λxN ; if y ∈ M E ρ ∩ D i , then y = c D i (a, z) with a ∪ {z} ⊆ D i , and z ∈ N E ρ[x:=a] . By induction hypothesis z ∈ N D i ρ[x:=a] , and hence c D i (a, z) = y ∈ M D i ρ . Let M ≡ P Q; If z ∈ (P Q) E ρ ∩ D i , then ∃a ⊆ E such that c E (a, z) ∈ P E ρ and a ⊆ Q E ρ .
Since ρ is i-closed and z ∈ D i , we can use Lemma 8(b) and Prop. 12(i) to obtain

f i (c E (a, z)) = c D i (f i (a) ∩ D i , z) ∈ P E ρ .
Hence we can use the induction hypothesis to get

c D i (f i (a) ∩ D i , z) ∈ P D i ρ . Moreover, f i (a) ∩ D i ⊆ Q D i
ρ by using again Prop. 12(i) and the induction hypothesis on Q. Hence z ∈ (P Q) D i ρ .

Theorem 14 T h(E) ⊆ T h(D i ).

Proof. Let M E = N E . By the previous proposition we have

M D i = M E ∩ D i = N E ∩ D i = N D i .
The existence of the least (resp. the least sensible) graph theory will be a consequence of Thm. 14 (see Section 4).

The following easy properties of weak products will be used in Section 4.2:

Proposition 15 Let E = 3 i∈I D i . For all x ∈ E there exists a unique j ∈ I such that f j (x) ∈ D j .
Proof. By induction on the rank of x.

Proposition 16 Let E = 3 i∈I D i and M be a closed λ-term. For all x ∈ M E there exists a unique j ∈ I such that f j (x) ∈ M D j .

Proof. By Prop. 15 we know that there is a unique j such that f j (x) ∈ D j , while By Prop. 12(a) we have that f j (x) ∈ M E . The conclusion follows from Prop. 13.

The theory of a weak product is semisensible

In this section we show that stratified graph models have semisensible theories. A graph model is stratified if it is the completion of a proper partial pair, i.e. one whose coding function is not total. Since weak products are particular stratified graph models, then the theory of a weak product is also semisensible.

Semisensibility of the theory of a stratified graph model is proved by case analysis, on the order of unsolvable terms (see Def. 23 for the definition of order of an unsolvable). The fact that unsolvables of order 0 cannot be equated to a solvable in a stratified graph model is shown in Lemma 24 by using the approximation theorem below.

Concerning unsolvable of finite order, we introduce the notion of height of elements of the model, and then rely on the previous case (Lemma 26).

For the unsolvable of infinite order, we rely on a general property of graph models, their non-extensionality, to show that such terms cannot be equated to solvables in any graph model (Lemma 28).

An Approximation Theorem

Approximation theorems are an important tool in the analysis of the λ-theories induced by models of lambda calculus. In this section we provide an approximation theorem for the class of stratified graph models: we show that the interpretation of a λ-term in a stratified graph model is the union of the interpretations of its direct approximants. This approximation theorem will be applied in Section 3.2.2 to show that the interpretation of an unsolvable of order 0 in a stratified graph model is a set of elements of rank 0. We do not claim any particular 13 originality for the approximation theorem we prove in this section, since it is a very similar to that in [START_REF] Honsell | An approximation theorem for topological lambda models and the topological incompleteness of lambda calculus[END_REF] and it is a particular case of that in [START_REF] Bastonero | Strong stability and the incompleteness of stable models of λcalculus[END_REF]. However, for the sake of completeness, we provide a proof.

Let D be a stratified graph model, which is the completion of the partial pair A. Recall that

D 0 = A and D n+1 = (D * n × D n ) -dom c A .
For every X ⊆ D, we denote by X n = X ∩ D n . The underlined natural numbers n are called labels. Lambda terms with occurrences of labels are called labelled-terms. For example, (λx.x n ) m y and (y n ) m are labelled-terms. Note that the set of ordinary λ-terms is a proper subset of the set of labelled terms (those without any label). If N is a labelled term, we denote by |N | the λ-term obtained by erasing all labels of N . For example, we have that |(λx.x n ) m y| = (λx.x)y.

Labelled terms are interpreted in D: the interpretation function of labelled terms is the unique extension of the interpretation function of λ-terms such that, for every labelled term M and label n,

(M n ) D ρ = (M D ρ ) n . As a matter of notation, we write M = D,ρ N for M D ρ = N D ρ and M ⊆ D,ρ N for M D ρ ⊆ N D ρ .
An easy fact that we will use later is that, for all labelled terms M, N and environment ρ, if N is obtained by erasing some of the labels of M , then , M ⊆ D,ρ N . In particular, for every labelled term M and environment ρ, M ⊆ D,ρ |M |.

Definition 17

The weak direct approximant (w.a.) of a λ-term is defined by induction as follows:

• x wa = x; • (λx.M ) wa = λx.M wa ; • (M N ) wa = M wa N wa if M N is not a redex; • ((λx.M )N ) wa = (λx.M wa ) 0 N wa .
The weak direct approximant M wa of a λ-term M is a labelled term such that |M wa | = M . Moreover, it is easy to show that M wa ⊆ D,ρ M for every λ-term M and environment ρ, so that we have

{(N wa ) D ρ : M = λβ N } ⊆ M D ρ .
The remaining part of this section is devoted to prove that the inclusion above is actually an equality.

Theorem 18 (The Approximation Theorem) Let D be a stratified graph model. For every λ-term M and environment ρ, we have

M D ρ = {(N wa ) D ρ : M = λβ N }.
Proof. The proof is divided into claims.

We say that a labelled-term N is completely labelled if every subterm of N has at least a label. For example, ((λx.x n ) 0 y m ) 0 and ((λx.x n ) 0 (y m ) 0 ) 0 are two completely labelled versions of the λ-term (λx.x)y.

Claim 19

For every λ-term M and for every environment ρ we have:

M D ρ = {N D ρ : N is a completely labelled term, |N | = M }. It is sufficient to show by induction on M that, if α ∈ (M ) D ρ ∩ D n , then there is a completely labelled term N such that |N | = M and α ∈ (N ) D ρ .
Claim 20 The rewriting system generated by the rules

(λx.P ) n+1 Q → lab P n [x := Q n ]; (P n ) m → lab P min(n,m)
is Church-Rosser and strongly normalizing.

The proof is in Section 14.1 of Barenderegt's book [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]; remark that:

• if M, N are labelled terms and M → * lab N , then |M | → * β |N |.
• every → lab reduct of a completely labelled term is completely labelled.

• the usual substitution lemma holds for labelled terms: for all labelled terms P and Q and environment ρ,

(P [x := Q]) D ρ = P D ρ[x:=Q D ρ ] .
The next claim shows that the interpretation of a labelled term does not decrease along → lab reduction paths:

Claim 21 For all labelled λ-terms P and Q and environment ρ, 

(λx.P ) n+1 Q ⊆ D,ρ P n [x := Q n ] Let α ∈ ((λx.P ) n+1 Q) D ρ .
(Q n ) D ρ we obtain that α ∈ (P n ) D ρ[x:=(Qn) D ρ ]
. By the substitution lemma we conclude that α ∈ P n [x := Q n ] D ρ . Finally, the approximation theorem:

Claim 22 For all λ-terms M and environment ρ,

M D ρ = {(N wa ) D ρ : M = λβ N }.
Let N be a completely labelled term such that |N | = M . By Claim 21 we get N ⊆ D,ρ N 1 , where N 1 is the normal form of N w.r.t. the rewriting rules → lab . Since N 1 has no redexes w.r.t. → lab , and it is completely labelled as remarked above, then every redex of the λ-term |N 1 | should occur in N 1 as (λx.P ) 0 Q. Let N 2 be the λ-term obtained from N 1 by erasing all labels n > 0; we have N 1 ⊆ D,ρ N 2 . Finally, we get a new term N 3 by erasing from N 2 all occurrences of the label 0 which are not in the position (λx.P ) 0 Q. Note that N 3 is the direct approximant of |N 3 |.

In conclusion, we have

N ⊆ D,ρ N 1 ⊆ D,ρ N 2 ⊆ D,ρ N 3 ; N 3 = |N 3 | wa . (4) 
Moreover, as remarked above, we also have

M → * β |N 3 |. (5) 
In conclusion,

M = {N D ρ : N completely labelled, |N | = M } by Claim 19 ⊆ D,ρ
{Q wa : M = β Q} by ( 4) and ( 5)

⊆ D,ρ M
as remarked after Definition 17.

This concludes the proof of the approximation theorem.

The theory of a stratified graph model

We apply the approximation theorem to show that stratified graph models have semisensible theories. Let us recall the definition of order of an unsolvable λ-term:

Definition 23 An unsolvable λ-term U has 1. order 0 if it is not β-equivalent to an abstraction term;

2. order n if U = λβ λx 1 . . . x n .T and T has order 0;

order ω if it has no finite order.

For example, Ω and Ω 3 are unsolvable of order 0, λx.Ω has order 1, while Y k has order ω, where Y is any fixpoint combinator.

Lemma 24

Let D be a stratified model, and U be an unsolvable of order 0. Then, for every environment ρ, we have:

U D ρ ⊆ D 0 .
Proof. If N = λβ U then N is also an unsolvable of order 0. Hence, N ≡ (λx.P )Q 1 . . . Q m , so that N wa ≡ (λx.P wa ) 0 Q wa 1 . . . Q wa m . The conclusion follows from the approximation theorem because ((λx.P wa ) 0 Q wa 1 . . . Q wa m ) D ρ ⊆ D 0 . An easy corollary of this lemma is that, in stratified graph models, unsolvables of order 0 cannot be equated to solvables, since the interpretation of any solvable contains elements of arbitrary rank (see Lemma 27).

In order to deal with unsolvable of arbitrary order, we introduce the notion of height in a stratified model.

Definition 25

Let D be a stratified model and α ∈ D. Then we define by induction over the rank the notion of height h(α) of α:

• If rank(α) = 0, then h(α) = 0; • If rank(α) > 0 and α = (b, β), then h(α) = 1 + h(β). Notice that, whenever α = a 1 → • • • → a n → β with rank(β) = 0, then h(α) ≤ n.
Lemma 26 Let D be a stratified model and U be an unsolvable of order n. Then, for every environment ρ, we have:

α ∈ U D ρ ⇒ h(α) ≤ n. Proof. By hypothesis U = λβ λx 1 . . . x n .T with T of order 0. If α ∈ U D ρ then α = a 1 → • • • → a n → β and β ∈ T D
σ , where σ(x i ) = a i and σ(y) = ρ(y) for all y = x i . By Lemma 24 we have that rank(β) = 0. Then the conclusion follows by the remark after Def. 25.

Lemmata 24 and 26 show that, for any unsolvable U of finite order, the interpretation of U in a stratified graph model contains only elements whose height is not bigger than the order of U .

The next lemma shows that the interpretation of any solvable terms contains element of arbitrary height: Lemma 27 Let D be a stratified model and S ∈ Λ o be a solvable λ-term. Then, for every natural number k, there is α ∈ D such that α ∈ S D and h(α) ≥ k.

Proof. Let S = λβ λx 1 . . . x n .x j P 1 . . . P m . It is easy to show that α = ∅ j-1 → (∅ m → β) → ∅ n-j → β ∈ S D for all β ∈ D. If we choose h(β) = k, then h(α) ≥ h(β)
= k and we get the conclusion.

So far, we have seen that in a stratified model the interpretation of an unsolvable term of finite order is different from the interpretation of any solvable term.

We show now that unsolvable terms of infinite order cannot be consistently equated to solvable terms in graph models.

Lemma 28

Let D be a graph model, U ∈ Λ o be an unsolvable λ-term of infinite order and S ∈ Λ o be a solvable λ-term. Then U D = S D .

Proof. Assume, by the way of contradiction, that U D = S D . Since S is solvable, there exist λ-terms M 1 , . . . , M k such that SM 1 . . . M k = λβ x, for an arbitrary variable x. Then we have, for any environment ρ, x = D,ρ U M 1 . . . M k .

Since U is unsolvable of infinite order, then U M 1 . . . M k is also an unsolvable of infinite order. This implies that U M 1 . . . M k = λβ λy.T for suitable y and T . However, the equation x = λy.T does not hold in any graph model: consider an environment ρ such that ρ(x) = {a → α} for given finite a and α ∈ D. Then (λy.T ) D ρ = {a → α}. This is not possible because, for all finite b ⊆ D, we have that (b ∪ a) → α ∈ (λy.T ) D ρ . Contradiction. Summing up, we have proved the following result:

Theorem [START_REF] Scott | Continuous lattices[END_REF] The theory of any stratified graph model is semisensible.

Corollary 30

The theory of any weak product is semisensible.

Self weak product

Thm. 14 states that the theory of a weak product is included in the intersection of those of its factors. In this section we show that this inclusion is strict in general. Moreover, in Thm. 32 below we show that self weak products do not preserve in general equations between unsolvable terms. Then it is not in general true that T h(D D) = T h(D), whenever T h(D) is semisensible.

Proposition 31 Let D be a graph model satisfying the equation Ω = i. The model D D, that we call self weak product of D, does not satisfy Ω = i.

Proof. By Cor. 30 the theory of D D is semisensible.

Theorem 32 There exists a graph model D satisfying the following two conditions:

(i) D |= Ω = λx.Ω (ii) D D |= Ω = λx.Ω.
Proof. The proof is divided into claims. For the sake of clarity, we denote by D a the first copy of D in D D and by D b the second copy. Moreover, we assume that these (isomorphic) copies are disjoint.

Recall that every weak product is a stratified graph model. 

→ β ∈ (λx.Ω) E = {a → α : α ∈ Ω E }.
In conclusion, by Lemma 24 we have that Ω E ⊆ E 0 is a set of elements of rank 0, while (λx.Ω) E contains elements of rank greater than 0. We get the conclusion E |= Ω = λx.Ω.

(⇒) The conclusion follows from the following relations:

Ω E ⊆ E 0 (see Lemma 24); E 0 = D a ∪ D b ; ∅ = Ω D i = Ω E ∩ D i (i = a, b) (see Prop. 13).

This concludes the proof of Claim 34.

Claim 34 There exists a graph model D satisfying the following two conditions:

1. D |= Ω = λx.Ω; 2. Ω D = ∅.
We construct a graph model by using the technique of forcing introduced by Baeten-Boerboom in [START_REF] Baeten | Omega can be anything it should not be. Indag[END_REF]. In the following proof we follow [START_REF] Berline | Easiness in graph models[END_REF].

Let D be any infinite countable set. We are going to define by "forcing" the injective total function c D :

D * × D → D
We fix an enumeration of D, and an enumeration of D * × D. Let p be the first element in the enumeration of D.

We are going to build an infinite sequence of elements α n ∈ D ∪ {v} (n ≥ 0), where v is some new element, and an infinite sequence of partial pairs A n (n ≥ 1) such that |A n | is a finite set and c An ⊆ c A n+1 (i.e., the graph of c An is contained within the graph of c A n+1 ). D becomes a graph model by defining c D = def ∪ n∈ω c An .

We start from |A 1 | = {p}, c A 1 ({p}, p) = p and α 0 = p (note that the canonical completion of the partial pair A 1 is Park's model (see Section 2.3)). It is not difficult to verify that Ω A 1 = {p} = (λx.Ω) A 1 (recall that the interpretation of a λ-term in a partial pair is defined in Section 2.3).

Assume that the partial pair A n and α 0 , ..., α n-1 have been built. Let α n be the first element of (λx.Ω) An -{α 0 , ..., α n-1 } if this set is non-empty, and v otherwise. 

c A n+1 (b n , δ n ) = γ n Case 2. α n ∈ D. Then |A n+1 | = |A n | ∪ b n ∪ {δ n , γ n , β n , α n } and c A n+1
c A n+1 (b n , δ n ) = γ n ; c A n+1 ({β n }, α n ) = β n ,
where β n is the first element of D such that :

({β n }, α n ) ∈ D * × D -(dom(c An ) ∪ {(b n , δ n )}) and β n ∈ D -(range(c An ) ∪ {γ n }).
It is clear that c An is a strictly increasing sequence of well-defined partial injective maps and that c D = ∪c An is total.

There remains to see that the graph model D satisfies the equation Ω = λx.Ω = B, where 

B = def { α n : n ∈ ω } ∩ D. B ⊆ (λx.Ω) D follows from α 0 = p ∈ (λx.Ω) A 1 ,

Weak product and graph theories

In this section we show the existence of a minimal graph theory and of a minimal sensible graph theory. The main technical device is that of weak product studied in the above section.

The minimal graph theory

Let I be the set of equations between λ-terms which fail to hold in some graph model. For every equation e ∈ I, we consider a fixed graph model D e , where the equation e fails to hold.

Then, we consider the weak product E = 3 e∈I D e . By Thm. 14, T h(E) ⊆ T h(D e ), for all e ∈ I. In particular, e ∈ T h(E), for all e ∈ I; hence:

Theorem 36 The theory of the graph model E is the minimal graph theory.

The minimal sensible graph theory

We proceed as before: let I s be the set of equations which fail to hold in some sensible graph model. For every e ∈ I s , let D e be a sensible graph model where the equation e fails to hold.

Then, we consider the weak product E s = 3 e∈I D e . By Thm. 14 the theory T h(E s ) is contained within any sensible graph theory. If T h(E s ) is sensible, then we are done.

In the remaining part of this section we show that T h(E s ) is actually sensible.

The proof of the following lemma can be found in Example 5.3.7 of Kerth's thesis [START_REF] Kerth | Isomorphisme et équivalence équationnelle entre modèles du λ-calcul[END_REF].

Lemma 37 (Kerth [22]) Let D be a graph model. If α ∈ (Ω 3 ) D , then there exists a natural number k ≥ 1 such that α = b 1 → ... → b k → α for suitable finite subsets b i contained in the interpretation of λx.xxx.

Lemma 38 If all closed unsolvable λ-terms have the same interpretation in a graph model, then it must be the empty set.

Proof. Let D be a graph model and let X be a nonempty subset of D, that is the common interpretation of all closed unsolvables. Since Ω and λx.Ω are both unsolvables, then we have that

X = (λx.Ω) D = {a → α : α ∈ Ω D } = {a → α : α ∈ X}. (6) 
It follows that a → α ∈ X for all finite subsets a of D and all α ∈ X. Let γ be an element of X. Then a → γ ∈ (Ω 3 ) D by ( 6), since Ω 3 is unsolvable and Theorem 39 The theory of E s is the minimal sensible graph theory.

(Ω 3 ) D = X. From Lemma 37 it follows that a → γ = b 1 → ... → b k → a → γ,
Proof. By construction, T h(E s ) is contained within any sensible graph theory. In order to prove that T h(E s ) is sensible, let us suppose that a closed unsolvable term U has a non-empty interpretation in E s , i.e., there exists α ∈ U Es . By Prop. 15 there exists a unique e ∈ I s such that f e (α) ∈ D e . By Prop. 12(a) we have that f e (α) ∈ U Es , and finally, by Prop. 12(b), that f e (α) ∈ U De . Since D e is sensible, this is impossible by Lemma 38. Hence U Es = ∅ for any closed unsolvable U (and actually for any unsolvable in any environment).

The minimal graph theory is not λβ

A longstanding open problem is whether there exists a non-syntactic model of lambda calculus whose equational theory is equal to the least λ-theory λβ. In Thm. 41 below we show that this model cannot be found within graph semantics. This result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models.

We start with a lemma. Theorem 41 There exists no graph model whose equational theory is λβ.

Proof. Assume that there exists a graph model D whose equational theory is λβ. By Cor. 2.4 in [START_REF] Selinger | Order-incompleteness and finite lambda reduction models[END_REF] the denotations of two non-λβ-equivalent closed λ-terms must be incomparable in every model of lambda calculus whose equational theory is λβ. Then, for all closed λ-terms M and N such that M = λβ N , we have that neither M D ⊆ N D nor N D ⊆ M D . We get a contradiction because of Lemma 40.

In Thm. 36 we have shown that there exists a minimal graph theory. By Thm. 41 we have that λβ is strictly included within the minimal graph theory. Thus, there exist equations between non-λβ-equivalent terms satisfied by all graph models. In Thm. 43, whose proof is based on technical results by Selinger [START_REF] Selinger | Order-incompleteness and finite lambda reduction models[END_REF], we characterize an equation of this kind.

Let f be any λ-term satisfying, via a fixpoint combinator, the recursive equation f xy = λβ f x(f x(f xy)) for variables x, y (in other words, any three applications of f x are equivalent to a single application) and let A ≡ λxyzwv.f x(f y(f z(f wv))). The λ-terms f and A were defined by Selinger in [START_REF] Selinger | Order-incompleteness and finite lambda reduction models[END_REF]. In [30, Prop. 2.1] Selinger has shown that

Axxxy = λβ Axyyy (7) 
and Axxxy = λβ Axxyy.

This inequality has a ingenious proof based on the notion of a finite lambda reduction model.

For the sake of completeness, we recall Lemma 2.2 in [START_REF] Selinger | Order-incompleteness and finite lambda reduction models[END_REF] that will be used in the proof of Thm. 43.

Lemma 42 (Selinger [30]) Let P 1 , . . . , P n be λ-terms that are distinct in λβ, and let x be a variable not free in P 1 , . . . , P n . Then, for all terms M, N for which x is not free in M and N , and for variables y 1 , . . . , y n , we have:

M (xP 1 )(xP 2 ) . . . (xP n ) = λβ N (xP 1 )(xP 2 ) . . . (xP n ) ⇒ M y 1 y 2 . . . y n = λβ N y 1 y 2 . . . y n .
As a matter of notation, let t ≡ Ω 3 and u ≡ λy.Ω 3 y in the following theorem.

Theorem 43 Let T be the minimal graph theory (whose existence has been shown in Thm. 36). Then we have, for a variable x, 

A(xt)(xt)(xt)(xu) = T A(xt)(xt)(xu)(xu), (9) 
Proof. By compatibility, by t ≤ u (see Lemma 40) and by [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF] we obtain that the following relations hold in every graph model:

A(xt)(xt)(xt)(xu) ≤ A(xt)(xt)(xu)(xu) ≤ A(xt)(xu)(xu)(xu) = λβ A(xt)(xt)(xt)(xu).
It easily follows [START_REF] Berline | Recursively enumerable λ-theories and Visser topology[END_REF]. It remains to show the inequality [START_REF] Berry | Stable models of typed lambda-calculi[END_REF]. Assume, by the way of contradiction, the opposite:

A(xt)(xt)(xt)(xu) = λβ A(xt)(xt)(xu)(xu).
We can apply the hypotheses of Lemma 42 to M ≡ λxy.Axxxy, N ≡ λxy.Axxyy, P 1 ≡ t and P 2 ≡ u. Then we get the conclusion of Lemma 42: M y 1 y 2 = λβ N y 1 y 2 , that implies Ay 1 y 1 y 1 y 2 = λβ Ay 1 y 1 y 2 y 2 . This contradicts [START_REF] Berline | Easiness in graph models[END_REF].

Omitting equations and theories

In this section we prove the main results of the paper:

• The λ-theory B of Böhm trees is the greatest sensible graph theory.

It is well known that the λ-term Ω is easy, that is, it can be consistently equated to every other closed λ-term M . We denote by (Ω = M ) + the λ-theory generated by the equation Ω = M .

Theorem 47 Let M be an arbitrary closed λ-term. Then we have:

P = H * Q, P = B Q ⇒ (Ω = M ) + P = Q.
In other words, (Ω = M ) + ∩ H * ⊆ B.

Proof. By [START_REF] Baeten | Omega can be anything it should not be. Indag[END_REF] the λ-theory (Ω = M ) + is contained within a graph theory. Then the conclusion follows from Thm. 44.

The proof of the main theorem

In this section we provide the proof of Thm. 44.

We recall that a node of a tree is a sequence of natural numbers and that the level of a node is the length of the sequence. The empty sequence will be denoted by ε.

Let M, N be closed λ-terms such that M = H * N and M = B N . This last condition expresses the fact that the Böhm tree BT (M ) of M is different from the corresponding Böhm tree BT (N ) of N .

Let us give an informal overview of the proof. We start by picking a node u = r 1 . . . r k satisfying the following two conditions: (1) the labels of u in BT (M ) and BT (N ) are different; (2) the labels of every strict prefix w = r 1 . . . r j (j < k) of u in BT (M ) and BT (N ) are equal. Then we show that the subterms of M and N , whose Böhm trees are the subtrees of BT (M ) and BT (N ) at root u, respectively, get different interpretations in all graph models. This is done in Lem. 54. In order to get the conclusion, we have to show that in all graph models it is possible to propagate upward, towards the roots of BT (M ) and BT (N ), the difference "created" at node u. This is done in Lem. 55.

Let us introduce now some notations and definitions needed in the proof.

Let u = r 1 . . . r k be a node at least level, where the labels of BT (M ) and BT (N ) are different. The sequence ε, r 1 , r 1 r 2 , r 1 r 2 r 3 ,...,r 1 . . . r k is the sequence of nodes that are in the path from the root ε to u. These nodes will be denoted by u 0 , u 1 , u 2 ,...,u k . Then, for example, u 0 = ε, u 2 = r 1 r 2 and u k = u. From the hypothesis of minimality of u it follows that (i) The label of the node u j (0 ≤ j < k) in the Böhm tree of M is equal to the corresponding one in the Böhm tree of N ;

(ii) The labels of the node u in BT (M ) and BT (N ) are different.

From the hypothesis M = H * N and M = B N it follows that (iii) The node u is a starting point for a possibly infinite η-expansion in either BT (M ) or BT (N ), but not in both . Without loss of generality, we assume to have the η-expansion in BT (N ).

We define two sequences M u j and N u j (0 ≤ j ≤ k) of λ-terms whose Böhm trees BT (M u j ) and BT (N u j ) are the subtrees of BT (M ) and BT (N ) at root u j , respectively. Let

M u 0 ≡ M ; N u 0 ≡ N.
If k = 0 we have finished. Otherwise, assume by induction hypothesis that we have already defined two λ-terms M u j and N u j (j < k) and that the Böhm trees of M u j and N u j are respectively the subtrees of BT (M ) and BT (N ) at root u j . Assume that the principal head normal forms (principal hnfs, for short) of M u j and N u j (see [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Def. 8.3.20]) are respectively

M u j = λβ λx j 1 . . . x j n j .z j M j 1 . . . M j s j ; (12) 
N u j = λβ λx j 1 . . . x j n j .z j N j 1 . . . N j s j . To abbreviate the notation we will write M u j and N u j as follows:

M u j = λβ λx j n j .z j M j 1 ..M j s j ; N u j = λβ λx j n j .z j N j 1 ..N j s j .
Then the node u j in the Böhm trees of M and N has s j sons. Since u j+1 = u j r j+1 is a son of u j in the Böhm trees of M and N , then we have r j+1 ≤ s j and we define

M u j+1 ≡ M j r j+1 ; N u j+1 ≡ N j r j+1 .
Then the Böhm trees of M u j+1 and N u j+1 are respectively the subtrees of BT (M ) and BT (N ) at root u j+1 . When we calculate the principal hnfs of M u k and N u k (recall that u k = u is the node where the Böhm trees are different), we get

M u k ≡ M k-1 r k = λβ λx k n k .z k M k 1 . . . M k s k ; (13) 
N u k ≡ N k-1 r k = λβ λx k n k λy r .z k N k 1 . . . N k s k Q 1 . . . Q r , (14) 
where

y i ≤ η Q i (1 ≤ i ≤ r) (i.e.
, Q i is a possibly infinite η-expansion of the variable y i ), y i does occur neither free nor bound in N k j (1 ≤ j ≤ s k ) and Q j (1 ≤ j = i ≤ r), and it is distinct from each variable x k 1 , . . . , x k n k , z k , y 1 , . . . y i-1 , y i+1 , . . . , y r . Let (D, p) be an arbitrary graph model. First we will show that the terms N u k and M u k have different interpretations in (D, p), that is, there exist an element

α k ∈ D and a D-environment σ k such that α k ∈ (N u k ) p σ k , while α k / ∈ (M u k ) p σ k .
Second we will show that this difference at level k can be propagated upward, that is, there exist elements α i ∈ D and D-environments σ i

(i = 1, . . . , k) such that α k ∈ (N u k ) p σ k iff α i ∈ (N u i ) p σ i iff α 0 ∈ N p σ 0 , and α k ∈ (M u k ) p σ k iff α i ∈ (M u i ) p σ i iff α 0 ∈ M p σ 0 .
To prove these properties of separability, we have to define the elements α i and the Denvironments σ i . The definition of σ i is difficult and technical.

We are going to use families of points of the graph models, which are not only pairwise distinct, but also "functionally incompatible", in the sense expressed by the following definition. Then, in the next lemma we show that such families actually exist in all graph models. Definition 48 Let q > 1 be a natural number. A sequence (β n ∈ D : n ≥ 0) of distinct elements of D is called a q-sequence if the following condition holds:

(∀i, j)(∀0 < t < q)(∀a ∈ (D * ) t ) β j = a t → β i . (15) 
Recall that, if a ≡ a 1 . . . a t , then

a t → β i means a 1 → a 2 → • • • → a t → β i .
Notice that i may be equal to j in the above condition [START_REF] Church | The calculi of lambda conversion[END_REF].

Lemma 49 q-sequences exist for every q > 1.

Proof. Let (D, p) be a graph model and q be an integer greater than 1. We show that there exists a q-sequence in (D, p).

Given α ∈ D, we define the degree of α as the least natural number k > 0 such that there exist finite subsets b

1 , .., b k of D satisfying α = b 1 → ... → b k → α.
If such a natural number does not exist, we say that the degree of α is infinite. The degree of α will be denoted by deg(α).

The proof is divided into claims.

Claim 50 There exists an element of D whose degree is greater than q.

If D has an element whose degree is infinite, we are done. Otherwise, let α 0 be an element of D such that

(∀n > 0) α 0 =→ n → α 0 . (16) 
Such an element does exist since otherwise the function p : D * × D → D would not be total.

Let α i = ∅ → α i-1 (i > 0). In other words, α i =→ i → α 0 . We are going to show that there exists k such that deg(α k ) > q. First remark that, for all j, deg(α

j ) ≤ deg(α j+1 ), since if α j+1 = b 1 → ... → b k → α j+1 then α j = b 2 → ... → b k → ∅ → α j .
Hence, either there exist j such that deg(α j ) > q, and we are done, or there exist j 0 and n such that n ≤ q and deg(α j ) = n for all j ≥ j 0 . We are going to show that this latter case is in fact impossible, hence concluding the proof. If j 0 and n are as above, then there exist c 1 , ..., c n ⊂ D such that

α j 0 +n = c 1 → ... → c n → α j 0 +n , i.e. → j 0 +n → α 0 = c 1 → ... → c n →→ j 0 +n → α 0 hence α 0 =→ n → α 0 ,

that contradicts (16).

Claim 51 There exists a q-sequence.

By the above claim there exists an element α ∈ D whose degree is greater than q. Given a family {a n } n∈ω of pairwise distinct, finite subsets of D, define β n = a n → α (n ≥ 0). We prove that the sequence (β n : n ≥ 0) is a q-sequence. By the way of contradiction, assume that β i = b 1 → ... → b t → β j (0 < t < q) for some i and j, i.e.,

a i → α = b 1 → ... → b t → a j → α. It follows that α = b 2 → ... → b t → a j → α.
We get a contradiction because the degree of α is greater than q.

Let (β n : n ≥ 0) be a q-sequence of elements of D, where 1. q > (Σ 0≤j≤k n j ) + (Σ 0≤j≤k s j ) + r + s; 2. n j is the number of external abstractions in the principal hnf of M u j (see [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF] above); 3. s j is the number of sons of the node u j in the Böhm tree of M (see [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF] above); 4. r ≥ 1 is the number of η-expansions in N u k (see [START_REF] Church | A set of postulates for the foundation of logic[END_REF] above); 5. s is the number of external abstractions in the principal hnf of the subterm Q r of N u k :

Q r = λβ λw s .y r R 1 . . . R s (s ≥ 0). (17) 
We now define a sequence of environments ρ j and two sequences of elements δ j , α j ∈ D (0 ≤ j ≤ k). Next the environments ρ j will be used to define σ 0 and σ k . We start by defining ρ k , δ k and α k .

(i) δ k ≡→ s k +r-1 → {→ s → β k+1 } → β k ; (ii) ρ k (z k ) = {δ k },
where z k is the head variable of the principal hnfs of N u k and M u k ;

(iii) ρ k (y r ) = {→ s → β k+1 , β k }, where y r is the head variable of the principal hnf of Q r ;

(iv) ρ k (x) = ∅ (x ≡ z k , y r ); (v) α k ≡ ρ k (x k n k ) → ρ k (y r ) → β k .
Notice that, if s = 0 (i.e., there are no external abstraction in the principal hnf of Q r ), then by definition → 0 → β k+1 is just β k+1 . Moreover, the notation

ρ k (x k n k ) → ρ k (y r ) → β k , used in the definition of α k , means ρ k (x k 1 ) → • • • → ρ k (x k n k ) → ρ k (y 1 ) → • • • → ρ k (y r ) → β k .
Assume we have defined δ j+1 , α j+1 and ρ j+1 (j < k). We define δ j , α j and ρ j as follows.

(i) δ j ≡→ r j -1 → {α j+1 } →→ s j -r j → β j ;

(ii) ρ j (z j ) = ρ j+1 (z j ) ∪ {δ j }, where z j is the head variable of the principal hnfs of N u j and M u j ;

(iii) ρ j (x) = ρ j+1 (x) (x ≡ z j );

(iv) α j ≡ ρ j (x j n j ) → β j .

As a matter of notation, if τ and ρ are environments, we write τ ≤ ρ for τ (x) ⊆ ρ(x) for all variables x. Lemma 52 (a) ρ j ≥ ρ j+1 (0 ≤ j < k).

(b) Let j < k and α ≡ c t → β j for some sequence c t of length t < q. Then, α ∈ ρ 0 (z j ) iff α ≡ δ j .

Proof. (a) trivially follows from the definition of ρ j . (b) By definition of ρ 0 we have that γ ∈ ρ 0 (x) for some variable x iff γ is one of the following elements of D: δ 0 , . . . , δ k , β k , → s → β k+1 . To get the conclusion it is sufficient to apply the definition of q-sequence.

As a matter of notation, for every environment τ , we write τ [x j n j := ρ j (x j n j )]

for τ [x j 1 := ρ j (x j 1 )] . . . [x j n j := ρ j (x j n j )]. We now define a sequence σ 0 , . . . , σ k+1 of environments as follows:

σ 0 = ρ 0 ; σ j+1 = σ j [x j n j := ρ j (x j n j )] (0 ≤ j ≤ k). (19) 
Lemma 53 (a) ρ j ≤ σ j+1 ≤ ρ 0 for every 0 ≤ j ≤ k (in particular, σ 1 = ρ 0 ).

(b) δ j ∈ σ j+1 (z j ) for all 0 ≤ j ≤ k.

Proof. (a) By definition we have σ 1 = ρ 0 . Assume by induction hypothesis that ρ j-1 ≤ σ j . We have to show that ρ j ≤ σ j+1 . By definition σ j+1 (x j t ) = ρ j (x j t ), for every 1 ≤ t ≤ n j . If z is a variable distinct from x j t (1 ≤ t ≤ n j ), then we have σ j+1 (z) = σ j (z) ⊇ ρ j-1 (z) ⊇ ρ j (z), by induction hypothesis and by ρ j ≤ ρ j-1 (see Lem. 52).

(b) By definition δ j ∈ ρ j (z j ). Then the conclusion follows from ρ j ≤ σ j+1 (see (a)).

Finally, in the following lemma we show that N u k and M u k have different interpretations. As a matter of notation, let

• τ ≡ σ k [x k n k := ρ k (x k n k )
][y r := ρ k (y r )];

• Q ≡ Q 1 . . . Q r ; • M ≡ M k 1 . . . M k s k . • N ≡ N k 1 . . . N k s k . • →≡ R 1 . . . R s .
By the definition of σ k+1 we immediately get that τ = σ k+1 [y r := ρ k (y r )]. Then we have: The conclusion of the lemma is now immediate.

α k ∈ (N u k ) p σ k iff β k ∈ (z k ) p τ N p τ Q p τ iff β k ∈ (z k ) p σ k+1 N p σ k+1 Q

Lemma 56

We have α 0 ∈ N p σ 0 , while α 0 / ∈ M p σ 0 .

Proof. Recall that N ≡ N u 0 and M ≡ M u 0 . By applying Lem. 55 it is easy to show that that α 0 ∈ N p σ 0 ⇔ α k ∈ (N u k ) p σ k , and α 0 ∈ M p σ 0 ⇔ α k ∈ (M u k ) p σ k . Then the conclusion is immediate, because by Lem. 54 we have that α k ∈ (N u k ) p σ k and α k / ∈ (M u k ) p σ k .

Conclusion and future work

In this paper, we have collected in an organized manner several already published results and some new material: the existence of the minimum (resp. minimun sensible) graph-theory appeared originally in [START_REF] Bucciarelli | The minimal graph model of lambda calculus[END_REF] (resp. [START_REF] Bucciarelli | The sensible graph theories of lambda calculus[END_REF]). The new presentation of section 3 stresses the relevance and generality of the weak product construction, underlying these results, and add some new results (for instance, the fact that the theory of weak products is semisensible and it is in general strictly finer than the intersection of the factors' theories, obtained via the notion of self weak product).

Section 6 covers the main result of [START_REF] Bucciarelli | The sensible graph theories of lambda calculus[END_REF], namely the fact that the maximal sensible graph theory is B.

The content of Section 5, a negative answer to the question of whether λβ is the minimal graph theory, also appeared in [START_REF] Bucciarelli | The sensible graph theories of lambda calculus[END_REF]. Actually, this negative result opens the way to the investigation of the minimal graph theory. Section 3.2 and Section 3.3 present new results. First, the fact that stratified graph models, which are those obtained by canonical completion of partial pairs (i.e. virtually all known graph models, apart from those constructed by forcing [START_REF] Baeten | Omega can be anything it should not be. Indag[END_REF][START_REF] Berline | Easiness in graph models[END_REF]) have semisensible theories. Then we show that the theory of a weak product is in general strictly finer than the intersection of the factors' theories. Finally, we provide equations between unsolvable terms which are not preserved in weak products.

Several questions remains open. Among them, we wish to address that concerning the minimal sensible graph theory: Is it H (the minimum sensible theory) or is it bigger? For the time being, we are able to separate in a graph model some typical example of B-equivalent, H-distinct λ-terms, like Y x and Θx.

The notion of effective graph model is a natural one: it is enough to ask that the coding function be total recursive w.r.t. given enumerations of the model's web, finite sets and pairs of natural numbers. Then one recasts classical recursion theory results in the framework of graph models, and this seems particularly compelling since those are models of the λ-calculus. A forthcoming paper on this subject is [START_REF] Berline | Recursively enumerable λ-theories and Visser topology[END_REF].

Definition 1 A

 1 As a matter of notation, for every set D, D * is the set of all finite subsets of D, while P(D) is the powerset of D. If C is a complete partial ordering (cpo, for short), then [C → C] denotes the cpo of all Scott continuous functions from C into C. graph model D is a pair (|D|, c D ), where |D| is an infinite set, called the web of D, and c D : |D| * × |D| → |D| is an injective total function.

  Any graph model D is used to define a model of lambda calculus through the reflexive cpo (P(D), ⊆) determined by two Scott continuous mappings G : [P(D) → P(D)] → P(D) and F : P(D) → [P(D) → P(D)].

undefined otherwise Definition 6

 6 Let D 1 and D 2 be graph models. The graph model D 1 D 2 , called the weak product of D 1 and D 2 , is the canonical completion of the partial pair D 1 D 2 defined above.

  then by (a) and by Fact 8(b) we get

  Then there exist b ⊆ D and α ∈ D such that b → α ∈ ((λx.P ) n+1 ) D ρ and b ⊆ Q D ρ . Hence b ∪ {α} ⊆ |D| n , and α ∈ P D ρ[x:=b] . By these two last relations and by b ⊆

Claim 33

 33 Let D be a graph model and let E ≡ D D be the self weak product of D. Then we have: Ω D = ∅ ⇐⇒ E |= Ω = λx.Ω. (⇐) Assume Ω D = ∅. Then by Prop. 13 we have that Ω Da = Ω E ∩ D a . Thus the hypothesis implies Ω E = ∅. Let β ∈ Ω E be an arbitrary element and let b ⊆ E be a finite set containing elements of rank 1. Then b

Let

  (b n , δ n ) be the first element in D * × Ddom(c An ) and γ n be the first element in D -(range(c An ) ∪ b n ). Case 1. α n = v. Then |A n+1 | = |A n | ∪ b n ∪ {δ n , γ n } and c A n+1 is a proper extension of c An defined as follows in the new pair (b n , δ n ):

  is a proper extension of c An defined as follows in the new pairs (b n , δ n ) and ({β n }, α n ):

  from the definition of α n (n > 0) and from the fact that (λx.Ω) An ⊆ (λx.Ω) D .(λx.Ω) D ⊆ B: suppose γ ∈ (λx.Ω) D ; then γ ∈ (λx.Ω) Am for some m (and for all the larger ones). If γ / ∈ B then, for all n ≥ m, α n = v (i.e., α n ∈ D) is smaller than γ in the enumeration of D, contradicting the fact that there is only a finite number of such elements.B ⊆ Ω D : α n ∈ Ω D follows immediately from α 0 = p ∈ Ω A 1 ⊆ Ω D ,from the fact that c D ({β n }, α n ) = β and from Lemma 2. Ω D ⊆ B : if ε ∈ Ω D then there is an a ∈ D * such that c D (a, ε) ∈ a (by Lemma 2). Since c D = ∪c An , then either ε = γ n or ε = α n for some n. Because of the choices of the γ n , the first possibility is not possible. This concludes the proof of Claim 34. The conclusion of the theorem is now a simple corollary of Claim 33 and Claim 34. Corollary 35 There exist graph models D satisfying the following condition: T h(D D) = T h(D) ∩ T, for every sensible λ-theory T .

where b 1

 1 , . . . , b k are finite subsets contained in the interpretation of λx.xxx. It follows that b 1 = a. By the arbitrariness of a we can conclude that (λx.xxx) D = D. This is not possible, because, for example, ∅ → β / ∈ (λx.xxx) D .

Lemma 40

 40 All graph models satisfy the inequality Ω 3 ≤ λy.Ω 3 y. Proof. Let D be an arbitrary graph model and α ∈ (Ω 3 ) D . From Lemma 37 it follows that there exists a natural number k ≥ 1 such that α = b 1 → b 2 → ... → b k → α for suitable finite subsets b i contained in the interpretation of λx.xxx. We have that α = b 1 → b 2 → ... → b k → α ∈ (λy.Ω 3 y) D iff there exists a finite set d such that d → b 2 → ... → b k → α ∈ (Ω 3 ) D and d ⊆ b 1 . This last relation is true by defining d ≡ b 1 , so that α ∈ (λy.Ω 3 y) D . In conclusion, we get (Ω 3 ) D ⊆ (λy.Ω 3 y) D .

  while A(xt)(xt)(xt)(xu) = λβ A(xt)(xt)(xu)(xu).

  by y i = z k not free in N k j and def. τ iffβ k ∈ {δ k }N p σ k+1 Q p τ , by σ k+1 ≤ ρ 0 and Lem. 52(b) iff β k ∈ {δ k } → s k +r-1 (Q r ) p τ , by def. δ k iff → s → β k+1 ∈ (Q r ) pτ . Finally, we have:(Q r ) p τ = (λw s .y r R 1 . . . R s ) p τ , by def. Q r (see (17) above) = (λw s .y r →) p τ , by def. → = {c s → σ : σ ∈ τ (y r ) → p τ [ws:=cs] }, by y r = w i (i = 1, . . . , s) = {c s → σ : σ ∈ ρ k (y r ) → p τ [ws:=cs] }, by τ (y r ) = ρ k (y r ) = {c s → σ : σ ∈ {→ s → β k+1 , β k } → p τ [ws:=cs] }, by definition of ρ k (y r ) ⊇ {c s → σ : σ ∈ {→ s → β k+1 } → p τ [ws:=cs] } = {c s → β k+1 : c s ∈ D s }.

  .1.3] and admits a unique maximal consistent extension H * [4, Thm. 16.2.6]. A λ-theory T is called sensible [4, Def. 4.1.7(ii)] if it is consistent and H ⊆ T . The set of all sensible λ-theories is naturally equipped with a structure of bounded lattice. H is the least sensible λ-theory, while H * is the greatest one. H * is an extensional λ-theory.A λ-theory is semisensible [4, Def. 4.1.7(iii)] if no solvable term is equivalent to an unsolvable term. It is easy to prove that sensible theories are semisensible. It is also possible to characterize semisensible λ-theories as follows: a λ-theory T is semisensible if, and only if, T ⊆ H * (see Section 16.2 in[START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]).

  Lemma 54We haveα k ∈ (N u k ) p σ k and α k / ∈ (M u k ) p σ k . M u k ≡ λx k n k .z k M k 1 . . . M k s k ; 2. N u k ≡ λx k n k λy r .z k N k 1 . . . N k s k Q 1 . . . Q r ; 29 3. Q r ≡ λw s .y r R 1 . . . R s ; 4. δ k ≡→ s k +r-1 → {→ s → β k+1 } → β k ; 5. α k ≡ ρ k (x k n k ) → ρ k (y r ) → β k .

	Proof. Recall that
	1.

† Work partially supported by the Equipe PPS of the University Paris 7-Denis Diderot, and by MIUR Cofin'04 FOLLIA Project.

• Graph semantics omits all equations M = N between λ-terms which do not have the same Böhm tree, but have the same Böhm tree up to (possibly infinite) η-equivalence.

We recall that the theory T h(D) of a model of lambda calculus D is the set of all equations M = N between λ-terms M and N which have the same interpretation in the model. A semantics C of lambda calculus is incomplete if there exists a λ-theory T such that T = T h(D) for all models D ∈ C. In such a case we say that the semantics omits the λ-theory T . More generally, a semantics omits (forces, respectively) an equation if it fails (holds) in all models of the semantics. If a semantics omits an equation M = N , then it omits all λ-theories including M = N . It is easy to verify that the set of equations 'forced' by a semantics C constitutes a λ-theory. It is the minimal λ-theory of C if it is induced by a model of C.

The following two theorems are the main results of the paper. The proof of Thm. 44 is postponed to the next section.

Theorem 44

The graph semantics omits all equations M = N satisfying the following conditions:

In other words, graph semantics omits all equations M = N between λ-terms which do not have the same Böhm tree, but have the same Böhm tree up to (possibly infinite) η-equivalence (see Section 2.2 in this paper and Barendregt [4,Section 10]).

Theorem 45 The λ-theory B is the unique maximal sensible graph theory.

Proof. B is the equational theory of Scott's graph model P ω (see Section 19.1 in [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]) and of Engeler's graph model E A (see [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF]). Let T be a sensible graph theory and suppose M = T N . We have that M = H * N , because H * is the unique maximal sensible λ-theory. Since graph semantics does not omit the equation M = N , then from M = H * N and from Thm. 44 it follows that M = B N , so that T ⊆ B.

It is well known that every graph theory is non-extensional (see [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF]). We remark that Thm. 45 is not trivial, because there exist non-extensional sensible λ-theories that strictly include B (see [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Exercize 16.5.5]).

Berline [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF] asked whether there is a non-syntactic sensible model of lambda calculus whose theory is strictly included in B. The answer is positive as shown in the following corollary.

Theorem 46 There exists a continuum of different sensible graph theories strictly included in B.

Proof. Based on a syntactic difficult result (conjectured by Kerth [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] and proved by David [START_REF] David | Computing with Böhm trees[END_REF]), Kerth [START_REF] Kerth | Isomorphism and equational equivalence of continuous lambda models[END_REF] has shown that there exists a continuum of sensible graph theories. Then the conclusion follows from Thm. 45.

Recall that by [START_REF] Di Gianantonio | Uncountable limits and the lambda calculus[END_REF] 

This last relation is false. Hence α k / ∈ (M u k ) p σ k . The different interpretation of N u k and M u k can be propagated upward as shown in the following lemma.

Lemma 55 For every k > j ≥ 0 we have

Proof. We prove the result for N u j . The corresponding proof for M u j is left to the reader. We recall that N u j = λβ λx j n j .z j N j 1 . . . N j s j , N u j+1 ≡ N j r j and α j ≡ ρ j (x j n j ) → β j . In the following we will write N for N j 1 . . . N j s j , and σ j [x := ρ j (x j )] for σ j [x j n j := ρ j (x j n j )].

α j ∈ (N u j ) p σ j iff β j ∈ (z j ) p σ j [x:=ρ j (x j )] N p σ j [x:=ρ j (x j )] by def. α j iff β j ∈ (z j ) p σ j+1 (N j ) p σ j+1 , by def. σ j+1 iff β j ∈ {δ j }(N j ) p σ j+1 , by σ j+1 ≤ ρ 0 , Lem.52(b), 53(b) iff β j ∈ {δ j } → r j -1 (N j r j ) p σ j+1 → s j -r j , by def. δ j iff α j+1 ∈ (N u j+1 ) p σ j+1 , by N u j+1 ≡ N j r j and def. δ j .