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Abstract

We study a reaction-diffusion model in a binary environment made

of habitat and non-habitat regions. Environmental heterogeneity is ex-

pressed through the species intrinsic growth rate coefficient. It was known

that, for a fixed habitat abundance, species survival depends on habitat

arrangements. Our goal is to describe the spatial configurations of habitat

that maximise the chances of survival. Through numerical computations,

we find that they are of two main types - ball-shaped or stripe-shaped. We

formally prove that these optimal shapes depend on the habitat abundance

and on the amplitude of the growth rate coefficient. We deduce from these

observations that the optimal shape of the habitat realises a compromise

between reducing the detrimental habitat edge effects and taking advan-

tage of the domain boundary effects. In the case of an infinite-periodic

environment, we prove that the optimal habitat shapes can be deduced

from those in the case of a bounded domain.

1 Introduction

In the recent literature, the loss of habitat connectivity, also known as environ-
mental fragmentation, has been more and more often cited as a major cause of
species endangerment. In the IUCN Red List of Endangered Species [1], it is
shown to be one of the most important threats on the endangered species.

The main causes of these habitat losses and fragmentation are related to
human activities. For instance, roads create barriers for many animals, and
carnivores are particularly vulnerable to the resulting habitat fragmentation
(see e.g. Treves et al. [2]). Agricultural and forestry activities are the key
drivers of habitat loss affecting birds [1]. In freshwater, dam construction is
a well-established cause of ecosystem fragmentation and species extinction (an
example is given by Morita and Yamamoto [3]). Habitat fragmentation can also
be the result of climate changes. Indeed warming up can reduce the size of
the habitat patches for some mountain-top species; it is also responsible for the
shrinking of lakes and rivers, which may disconnect sub-populations.

Though it seems natural that habitat loss is a major threat to species per-
sistence, the effects of habitat fragmentation per se, i.e., without habitat loss,
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depend on the considered ecosystem. Nevertheless, most theoretical studies in-
volving single-species models (see below for details and references) predict a
negative impact of fragmentation on species persistence. Indeed, the larger the
habitat patches are, the more likely the sub-populations will be important and
therefore less susceptible to internal and external extinction factors. These the-
oretical results are supported experimentally for some animals and plants [4, 5].
However, a recent analysis of several empirical studies, by Fahrig [6], shows
that fragmentation per se can also have positive effects on biodiversity, which is
notably explained in her paper by interspecific interactions. The long-standing
debate on “single large or several small” reserves (see Simberloff [7] for a dis-
cussion and further references on this subject) illustrates the complexity of the
issue of the effects of habitat fragmentation.

In addition to the number and area of the habitat patches, their shape can
also have an influence on species persistence. For some species, the habitat’s
edge has a detrimental effect, for instance because of increased predation, or
increased risk of accident (see Chalfoun et al. [8] and Lovejoy et al. [9]). Stripe
shaped habitat patches have large edge/area ratios, compared to round shaped
habitat patches. Thus, it seems natural to claim, like Diamond [10], that species
for which the edge has a detrimental effect will be more likely to survive in the
latter case of round shaped habitat patches.

The important question of the effects of habitat fragmentation has stimu-
lated the development of numerous population models taking account of envi-
ronmental heterogeneity. In individual based models (IBM) each individual in-
teracts with its environment, and simulations are run until a general behaviour
of the population can be observed. Typically, with this approach, With and
King [11] showed that the probability of dispersal success increased with habi-
tat connectivity. In some situations, this kind of models can be advantageous
since their implementation does not require sophisticated mathematical tools
while they can incorporate precise information on the species behaviour. How-
ever, they remain limited in terms of general theoretical analysis [12, 13, 14].
Conversely, diffusion models, although they sometimes make oversimplifying
assumptions about movement of real organisms, provide an excellent tool for
obtaining theoretical and qualitative results on populations dynamics, which
can lead to a better understanding of some ecological processes. The idea of
modelling population dynamics with these models from molecular physics has
emerged at the beginning of the 20th century, with random walk theories of
organisms, introduced by Pearson and Blackeman [15]. Then, Fisher [16] and
Kolmogorov et al. [17] used a reaction-diffusion equation as a model for pop-
ulation genetics. Several years later, Skellam [18] used this type of model to
study biological invasions, and he succeeded to propose quantitative explana-
tions of observations, in particular of spreads of muskrats throughout Europe
at the beginning of 20th Century. Since then, these models have been widely
used to explain spatial propagation or spreading of biological species (bacteria,
epidemiological agents, insects, fishes, plants, etc., see the books [19, 20, 21] for
review).

The reaction-diffusion models that we study in this article correspond to
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a natural extension of the Fisher model to heterogeneous environments. This
kind of model has been introduced by Shigesada et al. [22] and studied recently
[23, 24, 25, 26], but it already appears that the heterogeneous character of the
coefficients plays an essential role. Indeed, for different spatial configurations
of the environment, the modelled species can tend to extinction or survive,
disperse or not, depending on the arrangement of the habitat, as illustrated by
the work of Roques and Stoica [27]. These models have been considered either
in bounded domains Ω or in an infinite domain. This last case, Ω = RN , is
especially helpful when spreading phenomena are studied since it generates the
existence of travelling waves [26, 28, 29, 30].

Cantrell and Cosner [31] have established, in the particular case of a 1-
dimensional bounded domain with reflecting boundary condition, that in a bi-
nary environment composed of habitat and non-habitat patches, it was better
to concentrate all the habitat at a boundary of the domain. Shigesada and
Kawasaki [24] proved a comparable result in the case of a 1-dimensional infinite
domain, composed of periodic regions of habitat and non-habitat. They found
that it was better for species persistence to concentrate the habitat patches at
the centre of the period cell. Berestycki et al. [25] then generalised these results
to the N-dimensional case, in both bounded and infinite-periodic situations. To
do so, they gave a necessary and sufficient condition for species survival, based
on the instability of the state 0 (where no individuals are present). This condi-
tion is equivalent to the negativity of the smallest eigenvalue λ1 of the linearised
elliptic operator around the 0 state (such a criterion was also used in [31], in
the bounded domain case). Using this criterion, they found a way of rearrang-
ing the habitat that decreases the value of λ1. Thus, given an initial spatial
configuration of the habitat, the rearranged and more aggregated configuration
always provides better chances of species survival for the Shigesada et al. model,
while it corresponds to the same habitat’s area. When the space dimension N
is larger than 1, among these aggregated configurations, we do not know which
one minimises λ1.

In the 1-dimensional case, the question of the optimal shape of the habitat
is already solved. As a result of the works [24, 25, 31], this shape is simply an
interval. However, even in the 2-dimensional case, as far as we know, nothing is
known about this optimal shape (even its existence is not established), except
that, if it exists, the optimal shape has to be stable by the above-mentioned
rearrangement process, as a consequence of the results in [25]. Mathematically,
the problem is the same as minimising the eigenvalue λ1 with respect to a
coefficient of the equation, corresponding to habitat configuration. Thus it is
a part of the vast area of eigenvalue minimisation problems, among which the
most celebrated is surely the Rayleigh problem [32] of minimising the lowest
frequency of a membrane. It says that, in the simple homogeneous Fisher’s
case, in bounded domain with lethal boundary and fixed area A, the principal
eigenvalue λ1 of the Dirichlet Laplacian is minimal when Ω is a ball. Thus
if the modelled species survives in a domain of area A, then it automatically
survives in a ball-shaped domain of area A, while in other domains of area A,
the species may go to extinction. This result is a consequence of the classical
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Rayleigh-Faber-Krahn inequality [33, 34, 35, 36].
In this paper, we address the question of finding an optimal habitat configu-

ration in bounded environments with reflecting (also called “Neumann”) bound-
ary conditions and in infinite-periodic environments. We prove the existence of
an optimal configuration. Then, in the 2-dimensional case, we approximate
it thanks to new numerical computations, which exhibit two thresholds in the
habitat abundance. Between these two thresholds, the optimal configuration
has the shape of a “stripe”. These numerical results lead to new questions:
(i) is there a relation between the shapes of the optimal configurations in the
bounded and periodic cases? (ii) does the optimal configuration depend on the
equation coefficients amplitude between the habitat and non-habitat regions?
(iii) in the particular situation of an environment composed of stripes, are large
habitat stripes separated with large gaps better than thin stripes with thin gaps?
We solve these questions analytically, in any space dimension; however, for the
sake of clarity, most of our statements are presented in the 2-dimensional case.

2 Model formulation and preliminary mathemat-

ical results

2.1 Formulation of the model

The classical reaction-diffusion model in homogeneous environments of Fisher
and Kolmogorov et al. corresponds to the following equation,

∂u

∂t
= D∇2u + u (µ − νu) in Ω ⊆ RN . (2.1)

The unknown u = u(t, x) corresponds to the population density at time t and
position x = (x1, . . . , xN ). The number D > 0 measures the dispersion rate and

∇2 stands for the spatial dispersion operator ∇2u =
∑N

i=1
∂2u
∂x2

i

, N being the spa-

tial dimension. The constant real numbers µ > 0 and ν respectively correspond
to the intrinsic growth rate of the modelled species and to its susceptibility to
crowding.

The extension of this model to heterogeneous environments that we study
in this paper (Shigesada et al. model) can be written as follows,

∂u

∂t
= D∇2u + u (µ(x) − ν(x)u), in Ω ⊆ RN . (2.2)

We assume that µ(x) takes two values µ+ or µ−, depending on x, with µ+ > µ−.
Regions where µ(x) = µ+ correspond to “habitat” and are favourable zones,
whereas regions where µ(x) = µ− are less favourable for the species (“non-
habitat” regions). When µ− < 0, it means that the birth rate is less than the
mortality rate in the non-habitat region. In this case, as proved in [25], the
species may tend to extinction.

The function ν is bounded, ν ≥ 0 in Ω and ν is not equal to 0 almost
everywhere, which corresponds to the classical negative density-dependence.
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We consider two kinds of domains: the bounded case, where Ω is a piecewise
C1 bounded domain; and the periodic case, with Ω = RN and the coefficients
µ(x) and ν(x) are periodic in the sense that there exist L1, . . . , LN > 0 such
that µ(x1 + k1L1, . . . , xN + kNLN ) = µ(x1, . . . , xN ) and ν(x1 + k1L1, . . . , xN +
kNLN ) = ν(x1, . . . , xN ) for all integers k1, . . . , kN ∈ Z and for all (x1, . . . , xN )
in RN . We denote L = (L1, . . . , LN ) and we say that µ and ν are L-periodic.
The period cell C is defined by

C := [0, L1| × · · · × [0, LN ]. (2.3)

In the bounded case, we assume that we have Neumann boundary conditions:
∂u

∂n
= 0 a.e. on ∂Ω, where n is the outward unit normal to ∂Ω.

Note that the study in RN with periodic coefficients cannot reduce to a
study on a torus since the solution u of (2.2) is not periodic as soon as the
initial condition u(0, x) is not periodic.

In the periodic case, C is defined by (2.3). In the bounded case, we set
C := Ω. Moreover, in both cases, we assume that

there exist two Borel sets C+, C− ⊂ C, s.t.







µ(x) = µ+ if x ∈ C+,
µ(x) = µ− if x ∈ C−,
C = C+ ∪ C−,

(2.4)

so that C+ corresponds to the habitat regions and C− to the non-habitat re-
gions.

Definition 2.1 Let µ be a function satisfying (2.4). We say that C+(µ) := C+

is the habitat configuration associated to the growth rate function µ.

2.2 A criterion for species persistence

The necessary and sufficient condition of species survival that we use in this
work is based on the sign of an eigenvalue λ1.

This number λ1 is the principal eigenvalue of the linear operator −D∇2 −
µ(x) and can be defined as the unique real number such that there exists a
function Φ > 0 which satisfies

L0Φ := −D∇2Φ − µ(x)Φ = λ1Φ in Ω, Φ > 0 in Ω, (2.5)

either with L-periodicity in the periodic case, or with the boundary condition
∂Φ

∂n
= 0 a.e. on ∂Ω in the bounded case (Φ is also unique up to multiplication

by positive numbers, see Amann [37] for further details). As we can see on
formula (2.5), λ1 does not depend on the coefficient ν. When necessary, we
shall distinguish the principal eigenvalues in the periodic and bounded cases by
denoting them λ1,p and λ1,b respectively. Furthermore, in order to emphasise
the dependency of λ1 with respect to µ, we shall sometimes write λ1(µ) for λ1.
Note that, given a function µ satisfying (2.4), the set C+ is uniquely defined.
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Reciprocally, the “patch function” µ is uniquely defined by C+, µ+ and µ−,
and, in the periodic case, the periodicity conditions. Thus, for fixed values of
µ+ and µ−, we note

λ1[C
+] := λ1(µ).

Since the operator L0 is self-adjoint, it is well-known that λ1 satisfies the
following formula:

λ1(µ) = min
ϕ∈G\{0}

∫

C

D|∇ϕ|2 − µ(x)ϕ2

∫

C

ϕ2
, (2.6)

where G is defined by G := H1
per =

{

ϕ ∈ H1
loc(R

N ) such that ϕ is L-periodic}
in the periodic case and G := H1(C) in the bounded case.

Given a bounded continuous nonnegative initial datum u(0, x) = u0(x), the
behaviour of the solution u(t, x) of (2.2) in the periodic case is given in [25],
Theorem 2.6. Namely, if λ1 ≥ 0, then u(t, x) → 0 uniformly in RN , thus the
species tends to extinction, whereas if λ1 < 0, u(t, x) → p(x) (uniformly on all
compacts sets of RN ), where p(x) is the unique positive and bounded stationary
solution of (2.2) i.e. p satisfies

D∇2p(x) + p(x) (µ(x) − ν(x)p(x)) = 0, x ∈ RN . (2.7)

The existence, uniqueness and periodicity of p are proved in [25], Theorems 2.1
and 2.4.

In the bounded case, a similar result holds. Its proof, which is more clas-
sical, can be viewed as a straightforward adaptation of the results in [25] (see
also Berestycki [38] for an analysis in the case of Dirichlet boundary condi-
tions). Moreover, in the bounded case, the convergence to the stationary state,
u(t, x) → p(x) as t → ∞, is uniform in Ω.

2.3 Mathematical formulation of the optimisation prob-

lem

The habitat proportion h ∈ [0, 1] being fixed, we define the family of habitat
configurations with proportion h by:

Sh := {Borel sets C+ ⊂ C, such that |C+| = h|C|}, (2.8)

where |E| denotes the Lebesgue measure of a set E.
This habitat proportion h and the values µ+ and µ− of the growth rate

in the habitat and nonhabitat regions being fixed, our goal is to describe the
optimal habitat configurations for species survival, that is, the sets C+ ∈ Sh

which minimise λ1[C
+]. For given values of µ+ and µ−, we denote the optimal

value of λ1[C
+] by

λ1 := min
C+∈Sh

λ1[C
+],
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and by Sh,µ+,µ− the set of optimal habitat configurations:

Sh,µ+,µ− := {C+ ∈ Sh, such that λ1[C
+] = λ1}. (2.9)

Remark 2.2 For a fixed h value, λ1 depends on µ+ and µ−. Moreover, as we
will see in the next sections, the set Sh,µ+,µ− may also depend on µ+ and µ−

as soon as N ≥ 2.

The existence of such optimal configurations is given by:

Theorem 2.3 For all µ+ > µ− in R, and for all h ∈ [0, 1], the set Sh,µ+,µ− is
not empty.

Proof. This result is proved rigourously in Appendix A. ¤

When needed, we may distinguish in the sequel the sets of optimal habitat
configurations in the bounded and periodic cases, denoting them by Sbh,µ+,µ−

and Sp
h,µ+,µ−

, respectively.

Remark 2.4 Actually, the minimum of λ1(µ) among the functions µ in {µ ∈
L∞(C), µ− ≤ µ ≤ µ+ a.e. and 1

|C|

∫

C
µ = hµ+ + (1 − h)µ−} is attained on

a “patch function” satisfying (2.4). This result, which says that the optimal
configuration is of “bang-bang” type, is proved in Nadin [39].

2.4 A numerical method for finding an optimal habitat

configuration in the bounded case

We consider here the two-dimensional bounded case with C = [0, L1] × [0, L2].
The domain is covered by n disjoint rectangles, and C+ is the union of n+ of
these rectangles (see Fig. 1). Moreover, we set n = nr × nc where nr is the
number of rows and nc is the number of columns in C. We have numerically
computed the value of λ1 for different configurations of C+ and C−. Among the

huge number of possible configurations (Cn+

n = n!/(n+!(n−n+)!)), the optimal
ones can be sought in a smaller subset of admissible configurations. Indeed,
consider the configuration C+,∗

nr,nc
obtained with the following algorithm: 1. on

each row, the rectangles that belong to C+ are moved to the left; 2. then, on
each column the rectangles that belong to C+ are moved down. The old and
new habitat configurations C+ and C+,∗

nr,nc
have the same area and it follows

from Theorem 6.3 in [25], that λ1[C
+,∗] ≤ λ1[C

+]. Thus, we only have to look
for the optimal configuration among the habitat which are stable through this
algorithm, that is, habitats concentrated in a corner of the domain. The number
of configurations Nconf corresponds to the number of ways of writing the integer
n+ as a sum of nc integers, each one being smaller than or equal to nr. It can
be computed in a similar way as the “partition function” (see e.g. [40]). For
our computations, we fixed C = [0, 1]× [0, 1], µ+ = 10, µ− = −1, nr = nc = 15,
n = 15×15 = 225, and n+ varies between 0 and 225, to investigate all the levels
of habitat proportion. The number Nconf varies between 1 (n+ = 0, 1, 224, 225)
to 2, 527, 074 (for n+ = 112, 113; compare with C112

225 ≃ 2.8 · 1066).
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Figure 1: An example of a configuration C+ ∈ Sh, with h = 0.2, in the particular
case of a domain C = [0, 1]2, covered by n = 225 disjoint rectangles, and where
C+ is the union of n+ = 45 of these rectangles. The habitats regions are
depicted in black.

As the mesh is refined i.e. when nr and nc increase, the “discrete” optimal
habitat configurations C+,∗

nr,nc
, obtained by the above process, converge to an

optimal configuration C+,∗ ∈ S
h= n+

n
,µ+,µ−

. Indeed, let us define the distance

between two subsets A1 and A2 of C by the measure of the symmetric difference
of A1 and A2 ,

dset(A1, A2) = |(A1 ∪ A2) − (A1 ∩ A2)|, (2.10)

and the distance between a subset A ⊂ C and the family of subsets Sh,µ+,µ− by

dset(A,Sh,µ+,µ−) = inf
K∈S

h,µ+,µ−

dset(A, K), (2.11)

then, we have the following

Proposition 2.5 As nr,nc → +∞, dset(C
+,∗
nr,nc

, Sh,µ+,µ−) → 0 as nr, nc →
+∞.

Proof. This result is proved in Appendix B. ¤

2.5 Deducing the periodic optimal configuration from the

bounded case

With a numerical method comparable to that of §2.4, using Theorem 2.11 in
[25], we could compute an optimal habitat configuration in the periodic case.
However, the computations would be lengthy whereas we can directly deduce it
from the bounded case. Indeed,

Theorem 2.6 For fixed numbers µ+, µ− ∈ R, with µ+ > µ−, and h ∈ [0, 1],
let C+,∗

b be an optimal habitat configuration in Sbh,µ+,µ−
in the bounded case.

Assume that C+,∗
b is stable by monotone rearrangement with respect to each

variable, with C = [0, L1| × [0, L2]. Let C+,∗
p be the set obtained by reflecting

C+,∗
b with respect to each axis:

C+,∗
p := C+,∗

b ∪ R1[C
+,∗
b ] ∪ R2[C

+,∗
b ∪ R1[C

+,∗
b ]],
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where Ri is the reflection with respect to the axis {xi = Li}, for i = 1, 2. Then
C+,∗

p is an optimal periodic configuration in Sp
h,µ+,µ−

on C̃ = [0, 2L1|×[0, 2L2].

Proof. In the bounded case, the existence of an optimal configuration, stable
by monotone rearrangement with respect to each variable, follows from the proof
of Theorem 2.3. The remaining part of the proof is given in Appendix C. We
have proved a comparable result in any space dimension N . ¤

Thus, using our numerical computations in the bounded case, and from
Proposition 2.5, we can derive an approximation of the optimal configuration
in the periodic case.

3 Results

Both numerical and analytical results are presented in this section, in the
bounded and periodic cases.

3.1 The bounded case

Using the numerical method presented in §2.4, we obtained that, when the

proportion of habitat h =
n+

n
is small, the optimal habitat regions have the

shape of a quarter of disc (Fig. 2). When this proportion is close to 1, these
optimal configurations look like the complement of a quarter of disc. When h is
not too small nor too large, the optimal configurations are stripe-shaped, and
are aggregated along a side of the boundary of the domain.

In the particular case of striped configurations, we have proved the following
result:

Theorem 3.1 Let µ+ > µ−, and h ∈ [0, 1]. Assume that L1 6= L2, and let
Ss

h be the subset of Sh made of striped configurations. Then min
C+∈Ss

h

λ1[C
+] is

attained for the striped configuration concentrated along the smallest side of the
domain.

Proof. See Appendix D.¤
This result is illustrated on Fig. 3.
When the habitat shape C+ is fixed a priori as a ball, it is proved in [41]

that the optimal position of the ball has to be tangent to the boundary of the
domain, as depicted in Fig. 4. However, this configuration is never optimal
among all habitats of fixed area when the shape of the habitat is not fixed a
priori:

Proposition 3.2 Let µ+ > µ−, and h ∈ [0, 1]. Assume that C+ ∈ Sh is tangent
to a boundary of the domain, in the sense that there exist a point x0 ∈ ∂C and a
ball B ⊂ C+ such that x0 ∈ ∂B ∩ ∂(C\C+)◦. Then λ1[C

+] > λ1. Equivalently,
this means that C+ 6∈ Sh,µ+,µ− .
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0 1

1

(a) n+ = 15

0 1

1

(b) n+ = 45

0 1

1

(c) n+ = 75

0 1

1

(d) n+ = 80

0 1

1

(e) n+ = 82

0 1

1

(f) n+ = 83

0 1

1

(g) n+ = 85

0 1

1

(h) n+ = 90

0 1

1

(i) n+ = 120

0 1

1

(j) n+ = 150

0 1

1

(k) n+ = 180

0 1

1

(l) n+ = 210

Figure 2: The optimal habitat configuration in terms of the number n+ of
habitat cells in the case of a bounded environment with Neumann boundary
conditions. The black cells correspond to habitat and the white cells to non-
habitat.
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0 L
1

L
2

(a)

0 L
1

L
2

(b)

Figure 3: Two striped configurations. The habitat regions are depicted in black.
In the bounded and periodic cases, the configuration (b), where the habitat C+

is aggregated along the smallest side of the domain provides lower values of λ1

than the configuration (a), independently of the habitat proportion h, and of
µ+ and µ−.

Figure 4: A configuration which is not optimal in the bounded case. The
habitats regions C+ are depicted in black.

Proof. This is a consequence of Steps 2 and 3 of Appendix E. See Remark 4.1.
¤

3.2 The periodic case

As in the bounded case, when the proportion of habitat is small, the optimal
configuration of C+ is disc-shaped (Fig. 5). Then, for a larger proportion,
it takes the form of a stripe, and when the proportion of habitat approaches
1, it looks like the complement of a disc. When the habitat region is stripe-
shaped, and when the period cell is not a square, two types of configurations
exist. Similarly to Theorem 3.1, we formally prove in Appendix D that the
configuration with wide stripes of habitat and wide gaps is always better than
the configuration with narrow stripes and narrow gaps between the stripes.

These computations show that the shape of the optimal habitat configu-
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0 2

2

(a) h = 0.2

2

0 2

(b) h = 0.4

2

20

(c) h = 0.6

2

20

(d) h = 0.8

Figure 5: Approximation of an optimal habitat configuration in the periodic
case, with a period cell of size 2 × 2, in terms of the habitat abundance h =
|C+|/|C|, with µ− = −1, µ+ = 10. The black regions correspond to habitat
and the white regions to non-habitat. The figures are assumed to extend in all
direction indefinitely.

12



ration is highly dependent on the proportion of habitat, even if two types of
optimal shapes (disc and stripe) are numerically observed. This result rules out
the attractive conjecture of the optimality of the striped configurations for all
habitat abundance. Actually, we can prove formally the following result:

Theorem 3.3 Assume that N = 2. Let µ+ > µ− be fixed.

(a) The disc configuration is not always optimal: assume that h = π(min{L1,L2})
2

4|C| ,

and that C+ is a disc in Sh. Then λ1[C
+] > λ1.

(b) The stripe configuration is not always optimal: there exist L1, L2 > 0
and h ∈ [0, 1] such that for all stripe C+ in Sh, λ1[C

+] > λ1.

Proof. Part (a) follows from Appendix E, Steps 2 and 3, and Part (b) follows
from Appendix F. We proved similar results in any space dimension N ≥ 2. ¤

From Theorem 2.6, it follows that these results are also true in the bounded
case, with, for Part (a), a quarter of disc instead of a disc.

3.3 Dependence of the optimal shape with respect to the

difference between the growing rates µ
+ and µ

−

Let the proportion of habitat h be fixed. It then turns out that the optimal
habitat configuration does not depend directly on the values of µ+ and µ−, but
only on the difference b := µ+ − µ−. Indeed, as a consequence of formula (2.6),
for all constant k ∈ R, we obtain

λ1(µ − k) = λ1(µ) + k. (3.12)

Thus, we may note Sh,b the set of optimal habitat configurations, with b =
µ+ − µ−, instead of Sh,µ+,µ− .

In dimension 1, when C := [0, L1], the optimal habitat shape is in fact totally
independent of µ+ and µ−. Indeed, in the periodic case, and up to a shift of
the period cell, there is an unique configuration where C+ is connected, which
is therefore the optimal one (see [25]). A similar result holds in the bounded
case, where the optimal habitat configuration is an interval situated at either
end of [0, L1].

However, in dimension 2 or higher, given the proportion of habitat h, we
prove that the optimal shape of the habitat does truly depend on the amplitude b
of the growth rate µ:

Theorem 3.4 Assume that N ≥ 2. There exists h ∈ [0, 1] such that, for all
C+ ∈ Sh, there exists b > 0 such that C+ 6∈ Sh,b.

Proof. This is proved in Appendix E. The proof relies on the fact that (i)
when the amplitude tends to infinity, the optimal habitat in the periodic case
tends to aggregate in a ball; (ii) from Theorem 3.3, Part (a), the ball-shaped
configuration of Fig. 6 is never optimal whatever the positive number b is. ¤

This result of dependence with respect to amplitude is also true in the
bounded case. Nevertheless, the transition between disc-shaped and stripe-
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Figure 6: A periodic configuration which is not optimal. The habitats regions
are depicted in black.

shaped configurations as the proportion of habitat increases seems to hold for
a wide range of values of b, as observed numerically in dimension 2. As the
amplitude b increases, the ball configuration becomes better than the striped
configuration for a wider range of habitat proportion (Fig. 7).

4 Discussion

We have numerically derived the optimal configurations of the habitat in the
case of a 2-dimensional patchy environment, constituted of cells of habitat and
non-habitat regions, distributed on a grid. As the size of the elementary cells
decrease, these numerical configurations converge to an optimal habitat config-
uration for fixed values of habitat abundance and growth rates. This configu-
ration is a global minimiser of λ1, contrary to most of the numerical methods
for minimising eigenvalues under geometrical constraints (see e.g. [42, 43]).
The shape of these optimal configurations was not known before for dimensions
higher than 1.

In rectangular bounded domains of R2, with reflecting boundaries, we have
observed a transition effect from “quarter of disc” to “striped” and to “comple-
ment of a quarter of disc” optimal configurations as the proportion of habitat
increases. The same phenomenon occurs in infinite periodic environments, with
discs instead of quarter of discs. The transition occurs abruptly, and the striped
configurations remain optimal for a substantial range of habitat proportion.

Actually, we have proved that the optimal configurations in the bounded and
periodic cases can be deduced from each other. This means that, in a period
cell, the role played by the proximity of the habitat patches lying in the other
period cells is similar to the boundary effects of the bounded case.

From Theorem 6.3 in [25], and as recalled in the introduction of this paper,
λ1 decreases, and thus the chances of survival increase, when the habitat is
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Figure 7: Comparison between the quarter disc configuration and the striped
configuration, in the bounded case of a square C = [0, 1] × [0, 1], in terms of
the amplitude of the difference between the growth rates b, and of the habitat
abundance h = |C+|/|C|. In the shadowed area, the quarter disc configuration
provides lower values of λ1, while in white zone the striped configuration gives
lower λ1 values.

rearranged in a monotone way, with respect to each space variable. Thus,
the optimal configurations are always aggregated against the domain boundary.
This underlines the favourability of the boundary effects. From an animal point
of view, these effects can be interpreted as follows: the individuals situated
in the habitat which try to cross the boundary are rejected into the habitat;
therefore, the average time spent in the habitat region by each individual is
larger when the habitat is closer to a boundary. From a vegetal viewpoint less
descendants disperse in the unfavourable regions. Conversely, the edge of the
habitat seems to have detrimental effects. This can again be illustrated with
Theorem 6.3 in [25]. Indeed, in the rearranged configurations the habitat has a
small perimeter compared to situations where the habitat is more “fragmented”.

Hence, the optimal configuration is a compromise between lessening the
detrimental habitat edge effects, which means that the perimeter of the habitat
has to be minimal and leads to disc shapes, and taking advantage of the domain
boundary (or the proximity of other patches in the periodic case), leading to
striped shapes. However, both phenomena cannot be optimised simultaneously.
When the habitat abundance is low, the optimal configuration looks like a quar-
ter of disc in the bounded case, and looks like a disc in the periodic case; in these
situation, the edge of the habitat is reduced, but the population does not take
full advantage of the domain boundary. When the habitat abundance increases,
the optimal configuration becomes stripe-shaped, and is concentrated along a
side of the boundary of the domain. Thus, in that case, the positive influ-
ence of the boundary effects is important, compared to the detrimental habitat
edge effects. However, when the domain (or period cell in the periodic case)
is not a square, we prove formally that the best striped habitat configuration
is aggregated along the smallest side of the domain. Thus this configuration
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reduces the edge in contact with non-habitat regions, while it does not take
full advantage of the boundary, still realising a compromise between these edge
and boundary effects. In the periodic case, this means that the configuration
with wide stripes is always better than the one with narrow stripes. This gives
an element of explanation of the observation of Kinezaki et al. [30] that, in a
periodic environment composed of stripes, when the scale of fragmentation is
enlarged without changing the habitat proportion, the spreading speed of the
modelled species increases.

We have proved that this equilibrium between boundary and edge effects
also depends on amplitude of the difference between the growth rates in the
habitat and non-habitat regions. As this amplitude grows, the detrimental ef-
fects of the habitat edge become more important compared to the favourable
boundary effects, resulting in ball-shaped optimal configurations in highly con-
trasted environments. Nevertheless, for a wide range of values of the growth
rate function, we observed the same transition behaviour between disc-shaped
and striped configurations as the habitat abundance increases.

Our results in the bounded case largely depend on the reflecting (Neumann)
boundary conditions. These boundary conditions mean that individuals encoun-
tering the boundary are reflected inside the domain. They can be encountered
in many real-world situations, at different scales, corresponding, for instance, to
the walls of a laboratory arena for small terrestrial species (see e.g. the exper-
iment of Hannunen and Ekbom [44]), to fences or rivers surrounding gardens,
forests or natural parks [24, 45] for larger species. This type of boundary condi-
tions can also correspond to coasts, in the case of aquatic species. They can also
be used for modelling plant dispersal, particularly when the seeds are dispersed
by animals. Of course, other boundary conditions could have been envisaged.
Of particular practical interest are also the absorbing (Dirichlet) conditions,
that we briefly discussed in the introduction section. These conditions, where
the domain’s boundary “absorbs” all individuals encountering it, are often en-
visaged for species with passive movement, such as plants. Although most of
the methods developed in this paper still work under these conditions, we have
not considered here the issue of finding an optimal habitat configuration in this
case. Firstly, because some numerical and theoretical results already exist in the
mathematical literature [42]. Moreover, the question of optimal configuration
should be of less interest in this case. Indeed, due to the negative effect of the
domain’s boundary, the habitat will concentrate at the centre of the domain.
Therefore we cannot expect great changes in the topology of the optimal habitat
configuration with respect to the model parameters.

A natural question arises: what is the interest of minimising λ1 as soon
as λ1 < 0, since species survival is already granted? The answer is partially
given by (3.12): λ1(µ − k) = λ1(µ) + k for all k ∈ R. Thus, a species in an
environment with smaller values of λ1 will be more robust to perturbations
in its habitat. Moreover, as shown by [46] it is also more robust to external
perturbations corresponding for instance to harvesting, in the sense that δ can

be chosen higher in
∂u

∂t
= D∇2u + u (µ(x) − ν(x)u) − δ, without risking the
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species extinction.
Another natural question is: when the environmental heterogeneity also

concerns the motility of the individuals, what results can be expected? Consider
the equation

ut = ∇2(D(x)u) + u (µ(x) − ν(x)u), (4.13)

where the diffusion term ∇2(D(x)u) is in the Fokker-Planck form. The co-
efficient D(x) corresponds to the species motility (see e.g.[19, 21]). Setting
v(t, x) := D(x)u(t, x), and using some results of [25], we can obtain that the
equation (4.13) exhibits the same behaviour as (2.2), replacing the initial growth
term µ(x) by µ(x)/D(x). Thus, our above optimisation results also hold for
equation (4.13), when D(x) is rearranged along with µ(x), and in the same
way. Such a rearrangement is biologically meaningful, since the motility and
the growth terms are generally associated with a certain type of habitat, and
are therefore spatially correlated. Note that, for most species that engage in
active habitat selection, such as birds, mammals of amphibians, D(x) is all
the smaller as µ(x) is large, since they tend to slow down as they encounter
favourable areas (e.g. [44]). Thus the functions µ and µ/D vary in the same
way.
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Appendices

This section is devoted to the proofs of the mathematical results which were
stated throughout this paper. The results of the appendices A,B,D,E,F are true
in both periodic case and bounded case when Ω is a rectangle. However, we
decided, for the sake of simplicity, and since the proof in one case can easily be
adapted to the other, to prove each result in only one case.

A. Existence of an optimal configuration

The existence of at least one optimal configuration that maximises the chances
of species persistence is proved in the periodic case. For another proof, in the
Dirichlet case, see [42].

Let µ− < µ+ be two given real numbers, L1, . . . , LN be N given positive
real numbers, and h ∈ [0, 1]. Call L = (L1, . . . , LN ) and

C :=

[

−
L1

2
,
L1

2

]

× · · · ×

[

−
LN

2
,
LN

2

]

.
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For the sake of simplicity of the following calculations, the cell C has been
centred at the origin. Let Ph be the set of measurable functions defined by:

Ph := {µ satisfying (2.4) with |C+| = h|C|}, (4.14)

and
λ1 := inf

µ∈Ph

λ1(µ) = inf
C+∈Sh

λ1[C
+],

where λ1(µ) denotes the principal eigenvalue of the operator −D∇2 − µ with
L-periodicity in the variables x1, . . . , xN (each function µ in Ph can be extended
by L-periodicity). By definition of λ1, there exists a sequence (µn)n∈N in Ph,
such that λ1(µn) → λ1 as n → +∞. Since, for all n ∈ N, λ1(µ

∗
n) ≤ λ1(µn) and

µ∗
n ∈ Ph, we also have

λ1(µ
∗
n) → λ1 as n → +∞,

where µ∗
n is the symmetric decreasing Steiner rearrangement of µn with respect

to each variable x1, ..., xN in the cell C (see [25] for details). Up to a change on a
set of zero measure, the functions µ∗

n can be constructed so that, for each 1 ≤ i ≤
N and (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ [−L1/2, L1/2]× · · · × [−Li−1/2, Li−1/2]×
[−Li+1/2, Li+1/2] × · · · × [−LN/2, LN/2], there exists a ∈ [0, Li/2] such that
the function s 7→ µ∗

n(x1, . . . , xi−1, s, xi+1, . . . , xN ) is equal to µ+ in [−a, a] and
to µ− in [−Li/2, Li/2]\[−a, a].

Up to the extraction of some subsequence, µ∗
n(x) → µ∗(x) ∈ {µ−, µ+} as

n → +∞, for all x in the countable set QN ∩ C. Let Ω+ be the closure of {x ∈
QN ∩ C, µ∗(x) = µ+}. We extend the function µ∗ to C by setting µ∗(x) = µ+

if x ∈ Ω+ and µ∗(x) = µ− otherwise; next, µ∗ is extended by L-periodicity in
RN . From the construction of the functions µ∗

n, the function µ∗ satisfies the
same symmetry properties as µ∗

n, in the sense that if x = (x1, . . . , xN ) ∈ Ω+,
then µ∗(y) = µ+ for all y ∈ [−|x1|, |x1|]× · · · × [−|xN |, |xN |]. Observe also that
the boundary of Ω+ has a zero N -dimensional Lebesgue measure.

Let x = (x1, . . . , xN ) be an interior point of C \ Ω+. There exists y =
(y1, . . . , yN ) another interior point in this set, such that y ∈ QN and

|yi| < |xi| for all i = 1, . . . , N. (4.15)

Since x, y 6∈ Ω+, µ∗(x) = µ∗(y) = µ−. Moreover, by pointwise convergence,
µ∗

n(y) = µ− for n large enough. From the symmetry properties of µ∗
n, and

from (4.15), we have µ∗
n(y) ≥ µ∗

n(x), therefore, µ∗
n(x) = µ− (= µ∗(x)) for

n large enough. If now x = (x1, . . . , xN ) is an interior point of Ω+, there
exists another point y in this set such that y ∈ QN and |yi| > |xi| for all i =
1, . . . , N , and we similarly obtain µ∗

n(x) = µ+ (= µ∗(x)) for n large enough. The
above observations imply that µ∗

n(x) → µ∗(x) as n → +∞ almost everywhere
in C. Since the functions µ∗

n are uniformly bounded, Lebesgue’s dominated
convergence theorem yields µ∗

n → µ∗ in L1(C) as n → +∞. Therefore, µ∗ ∈ Ph.
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Define, for all ϕ ∈ H1
per\{0} and µ ∈ Ph,

Qµ(ϕ) =

∫

C

D|∇ϕ|2 − µ(x)ϕ2

∫

C

ϕ2
. (4.16)

Then,

Qµ∗(ϕ) ≤ Qµ∗

n
(ϕ) +

∫

C

|µ∗ − µ∗
n|ϕ

2

∫

C

ϕ2
for all ϕ ∈ H1

per\{0}.

Call Φn the principal eigenfunction associated to µ∗
n, with the normalisation

condition ||Φn||∞ = 1. That is, Φn is L-periodic, positive, and it satisfies

−D∇2Φn − µ∗
nΦn = λ1(µ

∗
n)Φn in RN . (4.17)

By multiplying this equation by Φn and integrating over C, we get Qµ∗

n
(Φn) =

λ1(µ
∗
n). Hence,

Qµ∗(Φn) ≤ λ1(µ
∗
n) +

∫

C

|µ∗ − µ∗
n|

∫

C

Φ2
n

,

and since λ1(µ
∗) = minϕ∈H1

per\{0}
Qµ∗(ϕ),

λ1(µ
∗) ≤ λ1(µ

∗
n) +

∫

C

|µ∗ − µ∗
n|

∫

C

Φ2
n

. (4.18)

Moreover, since µ− ≤ µ∗
n ≤ µ+ in RN and −µ+ ≤ λ1(µ

∗
n) ≤ −µ−, the nor-

malisation condition ‖Φn‖∞ = 1 together with standard elliptic estimates (see
Gilbarg and Trudinger [48]) imply that the sequence (Φn)n∈N is bounded in
C1(RN ) (at least), whence infn∈N ‖Φn‖L2(C) > 0. Thus, passing to the limit
as n → +∞ in (4.18), we get, since µ∗

n → µ∗ in L1(C), λ1(µ
∗) ≤ λ1. It then

follows from the definition of λ1 that λ1(µ
∗) = λ1. Since µ∗ ∈ Ph, the associated

habitat configuration C+,∗, defined by (2.4), belongs to Sh, and λ1[C
+,∗] = λ1,

therefore C+,∗ is an optimal configuration. The infimum in the definition of λ1

is then a minimum.

B. Convergence of the computed configurations

to optimal configurations as the mesh is refined

This time, the proof is done in the bounded case of a rectangle. We assume that

C := [0, L1] × · · · × [0, LN ] .
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Let µ+, µ− ∈ R, and fix the habitat proportion h =
n+

n
. Let Ph be defined by

(4.14), and set C+(σ) := {x ∈ C, σ(x) = µ+}, for σ ∈ Ph.
From the result of Appendix A, there exists a function µ∗ ∈ Ph such that

λ1(µ
∗) = λ1. Let Φ∗ ∈ H1(C) ⊂ L2p(C) for some p > 1, be the eigenfunction

associated to the eigenvalue λ1, with Neumann boundary conditions. Let Pnr,nc

h

be the set of all elements σnr,nc
of Ph such that C+(σnr,nc

) belongs to the grid
of size n = nr × nc. For all ε > 0, and for nr and nc large enough, it is easily
seen that there exists µnr,nc

∈ Pnr,nc

h such that ||µ∗ − µnr,nc
||Lp′ (C) < ε (with

1
p

+ 1
p′

= 1). Let Φnr,nc
be the principal eigenfunction associated to µnr,nc

and

λ1(µnr,nc
). Using formula (2.6), and since, when µ = µ∗, the minimum in this

formula is precisely attained for Φ = Φ∗, we obtain

λ1(µnr,nc
) ≤ λ1(µ

∗)+

∫

C

|µnr,nc
− µ∗|(Φ∗)2

∫

C

(Φ∗)2
≤ λ1(µ

∗)+ ε‖Φ∗‖2
L2p(C)‖Φ

∗‖−2
L2(C),

(4.19)
from Hölder inequality. Setting α := ‖Φ∗‖2

L2p(C)‖Φ
∗‖−2

L2(C) we get λ1(µnr,nc
) ≤

λ1(µ
∗)+αε. Since Pnr,nc

h ⊂ Ph, we therefore have λ1(µnr,nc
) ∈ [λ1(µ

∗), λ1(µ
∗)+

αε]. Let µ∗
nr,nc

be a function which minimises λ1 in Pnr,nc

h ; up to a rearrange-
ment we can assume that µ∗

nr,nc
is nonincreasing with respect to each vari-

able x1, · · · , xN . Then λ1(µ
∗) ≤ λ1(µ

∗
nr,nc

) ≤ λ1(µnr,nc
); thus, λ1(µ

∗
nr,nc

) ∈
[λ1(µ

∗), λ1(µ
∗) + αε], and λ1(µ

∗
nr,nc

) → λ1(µ
∗) = λ1 as n → ∞.

From this convergence result, and using the same arguments as in Ap-
pendix A, we know that, up to the extraction of some subsequence, µ∗

nr,nc
→ µ∗

∞

in L1(C) as nr, nc → +∞, where µ∗
∞ ∈ Ph satisfies λ1(µ

∗
∞) = λ1. Let us define

the set of “optimal functions” µ by:

Ph := {µ ∈ Ph, such that λ1(µ) = λ1}. (4.20)

Since we can construct a converging subsequence from every subsequence of
(µ∗

nr,nc
)nr,nc∈N, the computed configuration µ∗

nr,nc
is as close as we want to the

set Ph for nr, nc large enough, in the sense that

distL1(C)(µ
∗
nr,nc

, Ph) → 0 as nr, nc → +∞. (4.21)

Let C+,∗
nr,nc

be the habitat configuration associated to µ∗
nr,nc

by (2.4). Then

distL1(C)(µ
∗
nr,nc

, Ph) = |µ+ − µ−|dset(C
+,∗
nr,nc

, Sh,µ+,µ−),

where Sh,µ+,µ− is defined by (2.9) and dset(C
+,∗
nr,nc

, Sh,µ+,µ−) is defined by (2.10-
2.11). Since µ+ 6= µ−, dset(C

+,∗
nr,nc

, Sh,µ+,µ−) → 0 as nr, nc → +∞.
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C. Deducing periodic optimal configurations from

bounded optimal configurations

Let C = [0, L1]×· · ·×[0, LN ] , µ+, µ− ∈ R, and h ∈ [0, 1]. Set C̃ := [0, 2L1]×· · ·×
[0, 2LN ]. Let Ph be defined by (4.14), and let P̃h be the set of functions defined
by (4.14) but with C̃ instead of C. For a function σ in P̃h, we denote by C̃+(σ) :=
{x ∈ C̃, σ(x) = µ+}. Let λ1,b(µ) denote the Neumann principal eigenvalue
of −D∇2 − µ in C, and λ1,p(σ) denote the periodic principal eigenvalue of

−D∇2 − σ in C̃.
From Appendix A, we know that there exists a function µ∗

b in Ph, nonincreas-
ing with respect to each variable x1, · · · , xN . Let us show that µ∗

p(x1, · · · , xN ) :=

µ∗
b(|x1 − L1|, · · · , |xN − LN |) minimises λ1,p in P̃h.

Indeed, let us set λ1,b := min
σ∈Ph

λ1,b(σ) and λ1,p := min
σ∈P̃h

λ1,p(σ), and

P̃h := {µ ∈ P̃h, such that λ1,p(µ) = λ1,p}.

Let µp be a symmetric nonincreasing function in P̃h and Ψp be the corre-

sponding symmetric nonincreasing eigenfunction (see [25]). Set

Ψb(x1, · · · , xN ) := Ψp(x1 + L1, · · · , xN + LN ).

The function Ψb is well defined on C, and by symmetry and periodicity prop-

erties of Ψp, it is of class C1(C) and it satisfies Neumann boundary conditions.
Moreover, Ψb > 0,

−D∇2Ψb − µp(x1 + L1, · · · , xN + LN )Ψb = λ1,pΨbin C,

and µp(· + L1, · · · , · + LN ) ∈ Ph. By definition of λ1,b, we get λ1,p ≥ λ1,b.
Let Φb be the eigenfunction corresponding to λ1,b with the configuration µ∗

b .
Let us define

Φp(x1, · · · , xN ) := Φb(|x1 − L1|, · · · , |xN − LN |) in C̃,

and let µ∗
p(x1, · · · , xN ) = µ∗

b(|x1−L1|, · · · , |xN−LN |). Then, from the Neumann
boundary conditions satisfied by Φb, it follows that Φp is a weak solution of

−D∇2Φp − µ∗
p(x)Φp = λ1,bΦp in C̃ with periodic boundary conditions. Since

|C̃+(µ∗
p)| =

1

µ+

∫

C̃∩{µ∗

p=µ+}

µ∗
p =

2N

µ+

∫

C∩{µ∗

b
=µ+}

µ∗
b = 2N |C+(µ∗

b)| = h|C̃|,

it follows that µ∗
p ∈ P̃h. Thus, we get λ1,p ≤ λ1,b, and finally λ1,p = λ1,b. As

a conclusion, we obtain that µ∗
p ∈ P̃h, and therefore that C̃+(µ∗

p) is an optimal

habitat configuration in the periodic case, with period cell C̃. Note that C̃+(µ∗
p)

simply corresponds to successive reflections with respect to each axis {xi = Li},
for i = 1 . . . N starting from the optimal configuration C+(µ∗

b) in the bounded
case.
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D. Proof of the comparison principle between the

striped configurations

The proof is done in the periodic case. Let λV be the value of λ1 in the case of
the vertical configuration depicted in Fig. 3 (a), and λH be the value of λ1 for the
horizontal configuration depicted in Fig. 3 (b). Then, a simple change of variable
leads to λV [L1, L2] = λH [L2, L1] (in λV [X, Y ] and λH [X,Y ], X corresponds to
the length of the period cell in the x1 direction and Y corresponds to the length
of the period cell in the x2 direction). Since L1L2 = |C|, we get

λV [L1, |C|/L1] = λH [|C|/L1, L1]. (4.22)

Let us now prove that λV [L1, |C|/L1] decreases with L1. Assume that we are
in the configuration of the vertical stripe. Then µ(x1, x2) does not depend on
x2. Set µ̃(x1) := µ(x1, 0). The function µ̃ is L1-periodic and, in the period
cell [0, L1], µ̃ is equal to µ+ on an interval of length l1 = |C+|/L2, and it is
equal to µ− on an interval of length L1 − l1. Let Φ and λV = λ1 be defined
by equation (2.5). Actually, since Φ is uniquely determined by (2.5) and the
periodicity conditions, it depends on x1 only. Set ψ(x1) := Φ(x1, 0). Then ψ
and λV satisfy the following one-dimensional equation:

−Dψ′′(x1) − µ̃(x1)ψ(x1) = λV ψ(x1), x1 ∈ R, ψ > 0 in R (4.23)

and ψ is L1-periodic. Now, set µ̂(y) := µ̃(yL1). The function µ̂ is 1-periodic
and, in the period cell [0, 1], µ̂ is equal to µ+ on an interval of length l′1 =
l1/L1 = |C+|/(L1L2) = |C+|/|C| ∈ (0, 1), and it is equal to µ− on an interval
of length 1− l′1. The function µ̂ does not depend on L1. The 1-periodic function
ξ defined by ξ(y) = ψ(yL1) satisfies

−(L1)
−2Dξ′′(y) − µ̂(y)ξ(y) = λV ξ(y), y ∈ R, ξ > 0 in R. (4.24)

Then, since the operator ϕ 7→ −(L1)
−2Dϕ′′ − µ̂ϕ is self-adjoint, we have the

following formula:

λV = min
ϕ∈H1

per\{0}









1

L2
1

×

∫ 1

0

D(ϕ′)2(y)dy

∫ 1

0

ϕ2(y)dy

−

∫ 1

0

µ̂(y)ϕ2(y)dy

∫ 1

0

ϕ2(y)dy









, (4.25)

where H1
per denotes here the set of H1

loc(R) functions which are 1-periodic. From
(4.25), we get that λV = λV [L1, |C|/L1] is decreasing with respect to L1. Notice
that the strict monotonicity follows from the fact that the minimum in (4.25)
is reached at the function ξ, which is not constant since µ̂ is not constant. As
a conclusion, using (4.22), it follows that λV [L1, L2] > λH [L1, L2] if L1 < L2.
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E. Dependence of the optimal configuration on

the amplitude of the variations of the environ-

ment

We consider here the periodic case. We fix N ≥ 2. In the sequel, for any Borel
set C+ ⊂ C◦ := (0, L1) × · · · × (0, LN ) and for any real numbers µ− < µ+, we
call

λ1[C
+, µ+, µ−] = min

ϕ∈H1
per\{0}

∫

C

D|∇ϕ|2 −

∫

C

µ(x)ϕ2

∫

C

ϕ2
(4.26)

the principal eigenvalue of the operator −D∇2 −µ(x) in RN with L-periodicity
conditions, where µ(x) = µ+ in C+, µ(x) = µ− in C− = C\C+, and µ is
extended in RN by L-periodicity.

Integrating equation (2.5) over the cell C and using the periodicity of Φ, we
get

−

∫

C

µ(x)Φ(x)dx = λ1[C
+, µ+, µ−]

∫

C

Φ(x)dx. (4.27)

Since µ ≥ µ−, it follows that λ1[C
+, µ+, µ−] ≤ −µ−. Next, multiply (2.5) by Φ

and integrate by parts over C, we get
∫

C

D|∇Φ|2(x)dx −

∫

C

µ(x)Φ2(x)dx = λ1[C
+, µ+, µ−]

∫

C

Φ2(x)dx,

and since µ ≤ µ+, we get λ1[C
+, µ+, µ−] ≥ −µ+. Finally,

−µ+ ≤ λ1[C
+, µ+, µ−] ≤ −µ−.

Step 1: limit of λ1[C
+, 0,−n] when C+ is fixed and n → +∞. Let C+ be a

fixed Borel subset of C◦ whose N -dimensional Lebesgue measure belongs to the
interval (0, |C|). For n ∈ N\{0}, call µn the L-periodic function such that

µn(x) = 0 if x ∈ C+, and µn(x) = −n if x ∈ C− = C\C+.

Call λ1,D[C+] the quantity defined by

λ1,D[C+] = min
ϕ∈H1

0,per(C+)\{0}

∫

C+

D|∇ϕ|2

∫

C+

ϕ2
, (4.28)

where H1
0,per(C

+) denotes the set of H1
per functions which vanish almost every-

where in C−. When C+ is a smooth open set, λ1,D is the principal eigenvalue
of the operator −D∇2 in C+ with Dirichlet boundary condition on ∂C+ ∩ C
and L-periodicity. Since µn = 0 in C+, it follows from (4.28) and (4.26) with
µ = µn that

λ1[C
+, 0,−n] ≤ λ1,D[C+] (4.29)
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for all n ∈ N\{0}. Call Φn the principal eigenfunction of the operator −D∇2 −
µn with L-periodicity, with the normalisation ‖Φn‖L2(C) = 1. One has

λ1[C
+, 0,−n] =

∫

C

D|∇Φn|
2 + n

∫

C−

Φ2
n. (4.30)

From (4.29) and (4.30), it follows that the sequence (‖∇Φn‖L2(C))n∈N\{0} is
bounded and that ‖Φn‖L2(C−) → 0 as n → +∞. Therefore, there exist a
subsequence (Φn′) and a function ϕ ∈ H1

0,per(C
+) such that Φn′ → Φ as n′ →

+∞ strongly in L2
loc(R

N ) and weakly in H1
loc(R

N ). In particular, ‖Φ‖L2(C+) =
‖Φ‖L2(C) = 1. Furthermore, since λ1[C

+, 0,−n′] ≥ D‖∇Φn′‖2
L2(C), it follows

that
lim inf
n′→+∞

λ1[C
+, 0,−n′] ≥ D‖∇Φ‖2

L2(C) = D‖∇Φ‖2
L2(C+).

As a consequence, lim infn′→+∞ λ1[C
+, 0,−n′] ≥ λ1,D[C+] from (4.28), whence

λ1[C
+, 0,−n′] → λ1,D[C+] as n′ → +∞, from (4.29). Eventually, since the limit

is uniquely determined, one concludes that the whole sequence converges, that
is

λ1[C
+, 0,−n] → λ1,D[C+] as n → +∞.

Step 2: A pointwise inequality for the principal eigenfunction associated to an
optimal configuration. Let µ− < µ+ and h ∈ (0, 1) be fixed. From Appendix A,
there exists a Borel set C+ ⊂ C◦ such that C+ ∈ Sh,µ+,µ− (Sh,µ+,µ− is defined
by (2.9)). Notice that the set C+ could be chosen to be symmetric with respect
to the hyperplanes {xi = Li/2} for all 1 ≤ i ≤ N , but this property is not
needed here. Call µ the L-periodic function which is equal to µ+ in C+ and
to µ− in C− = C\C+. Let Φ be the (unique up to multiplication) principal
eigenfunction of the operator −D∇2 − µ with L-periodicity. The function Φ
is positive, it belongs to all Sobolev spaces W 2,p

loc (RN ) for 1 ≤ p < +∞ (in
particular, it is of class C1,α(RN ) for all 0 ≤ α < 1) and it satisfies

−D∇2Φ − µ(x)Φ = λ1[C
+, µ+, µ−]Φ.

The goal of this step is to prove that

inf
(C+)◦

Φ = sup
(C−)◦

Φ. (4.31)

It is enough to prove that

Φ(x0) ≥ Φ(y0) (4.32)

for all x0 and y0 which are interior points of C+ and C− respectively. There
exists ε0 > 0 such that Bε(x0) (resp. Bε(y0)) is included in the interior of C+

(resp. in the interior of C−) for all 0 < ε < ε0, where Br(x) denotes the open
Euclidean ball of centre x and radius r > 0. For ε ∈ (0, ε0), call

C+
ε =

(

C+\Bε(x0)
)

∪ Bε(y0) and C−
ε = C\C+

ε .

24



By construction, the Borel set C+
ε is included in C◦ and its Lebesgue measure is

equal to h|C|. Let µε be the L-periodic function which is equal to µ+ in C+
ε and

to µ− in C−
ε , and let Φε be the principal eigenfunction of −D∇2 − µε with L-

periodicity. Call λ = λ1[C
+, µ+, µ−] and λε = λ1[C

+
ε , µ+, µ−] (for 0 < ε < ε0).

By definition of λ, there holds
λ ≤ λε. (4.33)

The functions Φ and Φε are positive and L-periodic solutions of
{

−D∇2Φ − µ(x)Φ = λΦ
−D∇2Φε − µε(x)Φε = λεΦε

in RN (4.34)

and up to normalisation, one can assume that ‖Φ‖∞ = ‖Φε‖∞ = 1. The
families (λε)0<ε<ε0

and (µε)0<ε<ε0
are bounded in R and L∞(RN ) respectively.

From standard elliptic estimates, the family (Φε)0<ε<ε0
is then bounded in all

W 2,p
loc (RN ) spaces with 1 ≤ p < +∞. Standard arguments (see for instance [25])

imply then that λε → λ and Φε → Φ in C1(RN ) (at least) as ε → 0. Multiply
now the first equation of (4.34) by Φε and the second one by Φ and subtract
and integrate over C the two quantities. It follows that

−

∫

C

(µ − µε)ΦΦε = (λ − λε)

∫

C

ΦΦε ≤ 0

from (4.33) and the positivity of Φ and Φε. In C, the function µ−µε is equal to
µ+ − µ− in Bε(x0), to µ− − µ+ in Bε(y0) and to 0 otherwise. Since µ+ > µ−,
it follows that

∫

Bε(x0)

ΦΦε ≥

∫

Bε(y0)

ΦΦε.

By dividing the previous inequality by αNεN (where αN denotes the Lebesgue
measure of the unit Euclidean ball in RN ) and passing to the limit as ε → 0,
one concludes that Φ(x0)

2 ≥ Φ(y0)
2. Since Φ is positive, the inequality (4.32)

follows and the claim (4.31) is proved.
Notice that the inequality (4.31) implies in particular that the function Φ

is constant on ∂(C+)◦ ∩ ∂(C−)◦. This property was observed in the numerical
computations which were carried out in Section 3.
Step 3: Conclusion. Up to rotation of the frame, one can assume that L1 =
min(L1, . . . , LN ). Call r = L1/2 and c = (L1/2, . . . , LN/2) the centre of the
cell C. The ball Br(c) is included in C and it is tangent to the two hyperplanes
{x1 = 0} and {x1 = L1}, like the black region in Fig. 6. Call αNrN the Lebesgue
measure of this ball, and assume that

h =
αNrN

|C|
.

Assume now that there is a Borel set C+ ⊂ C◦ such that C+ ∈ Sh,0,−n for
all n ∈ N\{0}. In other words, we assume that

λ1[C
+, 0,−n] = min

K∈Sh

λ1[K, 0,−n] for all n ∈ N\{0}. (4.35)
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From this assumption, we claim that there exist a point x ∈ C and a zero-
measure set E such that

C+ ⊂ Br(x) ∪ E.

If not, since the ball Br(c) has the same measure as C+ and is included in C, it
follows from the definition of λ1,D[C+] in Step 1 and from Schwarz rearrange-
ment inequalities that

λ1,D[C+] > λ1,D[Br(c)]. (4.36)

Indeed, let Φ be a minimiser of (4.28), call Φ its restriction in C and call BR(c)
the open ball of centre c and radius R > r which has the same measure as C.
The Schwarz decreasing symmetric rearrangement Φ∗ of Φ with respect to the
point c is in H1

0 (BR(c)) and it is such that Φ∗ = 0 in BR(c)\Br(c) and
∫

Br(c)

D|∇Φ∗|2

∫

Br(c)

(Φ∗)2
<

∫

C+

D|∇Φ|2

∫

C+

Φ2
= λ1,D[C+]

since C+ is not included in any ball of radius r, up to a zero-measure set. Notice
in particular that the restriction of Φ∗ to Br(c) is in H1

0 (Br(c)). Now define

Φ
∗

= Φ∗ in Br(c) and Φ
∗

= 0 in C\Br(c), and extend Φ
∗

in RN by L-periodicity.

The function Φ
∗

is then in H1
0,per(Br(c))\{0}, whence

λ1,D[Br(c)] ≤

∫

Br(c)

D|∇Φ
∗
|2

∫

Br(c)

(Φ
∗
)2

=

∫

Br(c)

D|∇Φ∗|2

∫

Br(c)

(Φ∗)2
< λ1,D[C+],

which yields (4.36). Step 1 yields λ1[C
+, 0,−n] > λ1[Br(c), 0,−n] for n large

enough, which is in contradiction with (4.35), since Br(c) is included in C and
has the same measure h|C| as C+.

As a consequence, the set C+ is included in a ball of radius r, up to a set
of zero measure. Up to a shift and a modification with a zero-measure set, one
can then assume without loss of generality that

C+ = Br(c).

Fix now any n0 ∈ N\{0}. Call µ the L-periodic function which is equal to 0
in Br(c) and to −n0 in C\Br(c), and call Φ the principal eigenfunction of the
operator −D∇2 −µ with L-periodicity. Call λ = λ1[Br(c), 0,−n0] the principal
eigenvalue. The function Φ is (at least) of class C1(RN ) and it is positive in
RN . From Step 2, the function Φ is equal to a constant β > 0 on ∂Br(c),
and it is larger than or equal to β in Br(c). In Br(c), the function Φ solves
−D∇2Φ = λΦ and the function ψ = Φ − β satisfies







−D∇2ψ − λψ = λβ > 0 in Br(c),
ψ ≥ 0 in Br(c),
ψ = 0 on ∂Br(c)
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since 0 < λ (< n0). It follows from the strong maximum principle and Hopf
lemma that ψ > 0 in Br(c) and

∂ψ

∂x1
(a) > 0.

where a = (0, L2/2, . . . , LN/2) ∈ ∂Bc(r). Therefore, the partial derivative
of Φ with respect to x1 at the point a is positive. But since the function µ is
symmetric with respect to x1 in RN (because r = L1/2, see Fig. 6), the function
Φ is also symmetric with respect to x1, by uniqueness. Therefore, ∂Φ

∂x1
(a) = 0,

a contradiction has been reached.
As a conclusion, the assumption (4.35) cannot hold, which means that the

optimal habitat configurations depend on the difference between the growth
rates in habitat and non-habitat regions in general.

Notice that, under the notations in Step 3, the above arguments imply that

the ball Br(c) is never in Sh,µ+,µ− , for all µ+ > µ−, when h = αN rN

|C| . In

particular, this shows rigourously that ball-shaped configurations are not always
optimal for species persistence.

Remark 4.1 In the bounded case, under the assumptions of Proposition 3.2,
if we assume that λ1[C

+] = λ1, it follows from Step 2 that Φ(x) > Φ(x0) for
all x ∈ B◦. Then, as in Step 3, applying Hopf’s lemma at the point x0, we get
that ∂Φ

∂n
(x0) < 0. This is in contradiction with the boundary conditions.

F. Stripe-shaped configurations are not always

optimal

We prove here that stripe-shaped configurations are not always optimal for
species persistence. The proof is done in the periodic case, in dimension N = 2,
but it can be adapted immediately in higher dimensions.

Fix two real numbers µ− < µ+. Call λD(BR(x)) the principal eigenvalue of
−D∇2 in the ball BR(x) with Dirichlet boundary conditions on ∂BR(x). Since
λD(BR(x)) = R−2λD(B1(0)), we can fix R > 0 large enough such that

λD(BR(x)) <
µ+ − µ−

2
, for all x ∈ R2. (4.37)

Call A+ = πR2, fix two positive real numbers l1 and l2, and a positive real num-
ber β0 such that β2

0 l1l2 > A+. We will compare the two stripe-configurations
which are depicted in Fig. 3, where L1 = βl1 and L2 = βl2, with the one for
which the habitat is a disc a radius R in the cell C = Cβ = [0, L1] × [0, L2], for
β large. The two stripe-configurations and the disc-shaped configurations are
constructed so that the habitat be of fixed area A+ in C. We will prove that
the disc-shaped habitat is better when β is large.

Pick any β ≥ β0, and let x be a point such that BR(x) ⊂ [0, L1] × [0, L2].
From [47], it is known that λ1[BR(x), µ+, µ−] is less than the principal eigenvalue
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of the operator −D∇2 −µ in the ball BR(x) with Dirichlet boundary condition
on ∂BR(x). Since −µ = −µ+ in the habitat BR(x), it follows that

λ1[BR(x), µ+, µ−] < λD(BR(x)) − µ+ < −
µ+ + µ−

2
(4.38)

from our choice of R in (4.37).
Let us now estimate λβ := λV [L1, L2] = λV [βl1, βl2], for β ≥ β0. From the

arguments used in Appendix E, there exists a positive function ψβ defined in
R, which is L1-periodic and satisfies

−Dψ′′
β − µβ(x1)ψβ = λβψβ almost everywhere in R

where the function µβ is L1-periodic and, up to shift, one can assume without
loss of generality that

{

µβ(x1) = µ+ if 0 ≤ x1 ≤ A+/L2 = A+/(βl2),
µβ(x1) = µ− if A+/(βl2) < x1 < L1 = βl1.

The function ψβ is in all spaces W 2,p
loc (R) for 1 ≤ p < +∞ and one can assume,

up to normalisation, that ‖ψβ‖∞ = 1. Furthermore, ψβ is analytic in the open
intervals (0, A+/(βl2)) and (A+/(βl2), L1). If ψβ reaches its maximum at a
point x0 ∈ (A+/(βl2), L1), then −ψ′′

β(x0) ≥ 0, whence λβ ≥ −µβ(x0) = −µ−,

which is impossible since −µ+ < λβ < −µ−. Therefore, the maximum of
ψβ is reached in the interval [0, A+/(βl2)].

1 Since the families (λβ)β≥β0
and

(µβ)β≥β0
are bounded in R and L∞(R) respectively, the functions (ψβ)β≥β0

are bounded in all W 2,p
loc (R) for 1 ≤ p < +∞. There exist then a sequence

βn → +∞ and a function ψ∞ which is in all W 2,p
loc (R) for 1 ≤ p < +∞, such that

λβn
→ λ∞ ∈ [−µ+,−µ−] and the functions ψβn

converge (at least) in C1
loc(R)

to ψ∞ as n → +∞. Furthermore, since µβn
(x) → µ− almost everywhere in R

(the convergence holds for all x 6= 0), the function ψ∞ satisfies

−Dψ′′
∞ − µ−ψ∞ = λ∞ψ∞ almost everywhere in R.

The function ψ∞ is then of class C2(R). Furthermore, ψ∞(0) = 1 = maxR ψ∞,
whence λ∞ ≥ −µ−. As a consequence, λ∞ = −µ− and by uniqueness of the
limit, the whole family (λβ = λV [βl1, βl2])β≥β0

converges to −µ− as β → +∞.
Similarly, λH [βl1, βl2] → −µ− as β → +∞.

Together with (4.38), we conclude that

λ1[BR(x), µ+, µ−] < min (λV [βl1, βl2], λH [βl1, βl2])

when β is large. This means that the two stripe-configurations are not optimal
for species persistence when β is large and A+ is fixed.

1Actually, this property could be viewed as a consequence of Step 2 of Appendix D, since µβ

corresponds to an optimal configuration among all L1-periodic one-dimensional configurations
for which the habitat has a total length equal to A+/(βl2) in [0, L1].
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