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Abstract. This paper presents the high level Petri nets analyzer Helena.
Helena can be used for the on-the-fly verification of state properties, i.e.,
properties that must hold in all the reachable states of the system, and
deadlock freeness. Some features of Helena make it particularly efficient
in terms of memory management. Structural abstractions techniques,
mainly transitions agglomerations, are used to tackle the state explosion
problem. Benchmarks are presented which compare our tool to Maria.

Helena is developed in portable Ada and is freely available under the
conditions of the GNU General Public License.

1 Introduction

Model checking is an automatic method for the verification of finite state sys-
tems. It consists of enumerating all the possible configurations or executions of
the system to track the ones which do not match the specification.

Helena (a High LEvel Net Analyzer) is a model checker developed at the
CNAM university in Paris. The formalism supported by Helena makes it suitable
for the verification of concurrent software. Helena is part of the Quasar project
(a tool for the analysis of concurrent Ada programs [1]), but it is also a fully
autonomous tool which can be used independently. In its current version, Helena
can be used for the verification of state properties, i.e., properties that must
hold in all the reachable states of the system, and deadlock freeness. Helena is
a command-line oriented tool without any graphical user interface though we
consider to include a graphical interactive simulator.

This paper is structured as follows. Section 2 explains the reasons which
motivated us to design and implement Helena. The main features of Helena are
presented in Section 3. A set of benchmarks which compare our tool to Maria
[2] are presented in Section 4. Finally we conclude in Section 5.

2 Motivations

The model checking of concurrent programs involves a translation task from
the original programming language to a formalism suitable for the expression
of concurrency, e.g., Promela, Petri nets. In order to limit the state explosion
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problem of a model checking procedure, the produced model has to remain as
small as possible, but still must be an exact translation of the program to guar-
antee a correct verification process. Quasar is a tool which aims at the automatic
verification of concurrent Ada programs based on colored Petri nets. It can not
currently handle the whole language, though a large part of the language which
is related to concurrency is supported. The main task of Quasar is to perform
automatic abstraction (or slicing) of a program and to translate it into a colored
Petri net. In its current state, Quasar does not perform reachability analysis but
interfaces with another tool which realizes this task. The high level formalism
supported by Maria [2] pushed us into choosing this tool, though Quasar can
also interface with Prod [3].

After an intensive use of Quasar on various examples, we identified two main
factors which limit the efficiency of our tool. Firstly, the translation from the
source code to the colored Petri net is not straightforward. As the constructions
of high level programming language do not have their exact counterpart in col-
ored Petri nets, even in the Maria formalism, the translation step introduces
additional transitions which generate intermediate states that are not relevant
for the verification purpose. Secondly, the state vectors exhibited by models ob-
tained from the translation of a program are usually quite large as software
make heavy use of structured data types. Thus, though optimized to represent
multiplicity in a compact way [4], the encoding scheme of Maria fails to rep-
resent efficiently state vectors with large color domains, and many tokens in
places.

Helena has been designed from this previous experience to meet these two
requirements : enable a straightforward and automatic translation of concurrent
programs without resort to the introduction of many useless transitions and
intermediate states, and handle state spaces with large state vectors.

3 Main Features of Helena

High Level Description Language. The class of high level Petri nets used
in Helena was primarily designed to enable the simulation and verification of
concurrent Ada programs. To achieve this, we naturally decided to include in
Helena the possibility to define high level data types. There are four categories
of data types : numerical type, enumerate type, structured type, and vector, i.e.,
array type. Another feature of Helena is the possibility for the user to define
complex functions written in a pseudo-C syntax. These functions may then be
used in arc expressions. Such a possibility allows to automatically translate sub
programs and sequences of statements which do not include synchronizations into
a single transition, provided that the input programming language can easily be
mapped into Helena functions.

Compilation and Execution of the Model. A well known and efficient ap-
proach to reduce the execution time of a model checking procedure is to compile
the model into a source code which will correspond to the actual reachability
analyzer. Compiling and executing the model has numerous advantages over



High Level Petri Nets Analysis with Helena 457

an interpretation of the model. Mainly, the evaluation of the expressions in arc
mappings can be drastically fasten. Tools that use this technique include Prod,
Spin [5], and Maria. It has been shown in [6] that this technique greatly reduces
the execution time even for small models for which we may think that the com-
pilation of the generated code is a too severe overhead (which does not exist if
the model is interpreted).

Helena models are also translated into executable code. For performance and
portability issues we chose the language C. In order to ease the readability of
the generated code, and the debugging of the compilation process, this code is
commented, nicely formatted, and divided into several libraries.

Enabling Test Algorithm. Verification and simulation tools based on high
level Petri nets spend a significant amount of time in determining under which
assignments (or bindings) a high level transition is firable. This non trivial prob-
lem is known under the term of enabling test. The enabling test algorithm im-
plemented in Helena has been described in [7]. It basically includes two main
components.

1. We exploit the locality principle of Petri nets which states that the firing of
a transition only affects the status (enabled/disabled) of its neighbor tran-
sitions. Thus, a depth first search algorithm can benefit from this locality
principle by
(a) maintaining a set of enabled transitions
(b) updating this set when a transition instance is fired by only inspecting

the neighbor transitions of the fired instance.
Our implementation of this locality principle is based on the definitions of
structural conflict and causality [8]. The basic idea is to translate these
relations into equivalent constraints systems [9] before the search algorithm.
During the search, the systems built are solved in order to identify disabled
and enabled bindings. We illustrate our purpose with an example. Let us
consider the net of figure 1.
From the structure of the net and the arc expressions we can deduce that the
firing of an instance (t, 〈Xt〉) disables the firing of an instance (u, 〈Xy, Yu〉)
if the following constraint is verified : [Xt = Xu ∧ Yu = 0]. During the
search, at each firing of an instance of transition t we instantiate this system
with the firing binding to identify the instances of u which are disabled. We
also observe that the firing of an instance (t, 〈Xt〉) enables the firing of an
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Fig. 1. Translating arc expressions into constraints system
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instance (v, 〈Xv〉) if the following holds : [Xv = Xt]. Consequently, the firing
of an instance (t, 〈Xt〉) causes the insertion of the instance (v, 〈Xt〉) into the
set of enabled transitions without any additional check.

2. We showed in [7] that this approach is unfortunately not always sufficient
to determine valid transitions assignments at the new marking. In most
cases, this must be followed by an unification algorithm. The algorithm we
proposed is an improvement of Mäkelä’s unification algorithm [10].

State Space Storage. Model checking tools usually represent states in two
different forms :

– an expanded form which is convenient for the implementation of the transi-
tion relation

– a compressed form in which expanded states are encoded before their inser-
tion into the state space in order to save memory

An interesting feature of Helena is the way it represents compressed states. The
method, called ∆-markings method, has been described in [11]. The underlying
idea is to store a large set of states in a non explicit way by only storing references
on others states. Figure 2 illustrates the principle of the method. Markings met at
a depth d such that d mod kδ = 0 (with kδ a user defined parameter) are stored
explicitely whereas other markings are represented in the state space by a couple
(pred, (t, ct)), where pred is the ”address” in the hash table of one of the pre-
decessors of the marking and (t, ct) is the transition instance which firing leads
from the predecessor to the marking. Retrieving the actual value of a marking
from its ”∆ encoding” can simply be done by following the links which point
on the predecessors until a marking stored explicitely is reached. The marking
is then obtained by firing the sequence of instances (t, ct) which label the links
followed to reach the explicit marking. For instance, the actual value of marking
m can be retrieved by first backtracking to m′ and then to m0 and to apply
on it the firing of sequence (t, ct).(t′, ct′). For models exhibiting large state vec-
tors, the compression ratios observed are quite impressive, whereas the method
becomes less interesting for small models. The price to pay is an acceptable in-
crease of the run time. Both the compression ratio and the run time increase
can be influenced by parameter kδ.

The state collapsing [12] method of Spin is also implemented in Helena. This
method is based on the observation that even if the set of syntactical possible
values for a token in a place is huge (let us denote it size by m), the set of values
really met during the search (which size is denoted by n) is in practice usually
much smaller. This is so because the types of the places and transitions of the net
are usually over-approximations made by the user of the possible values really
met during the search.

With the collapse method a token is represented with log2(n) bits. This ”col-
lapsed token” is in fact an index of a table of size n which stores all the ”true
tokens” already met during the search on log2(m) bits. This table is initially
empty, and filled during the search by the token values met. Thus, we make use
of the two following functions to query the tokens table:
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∆-marking pointer

∆-marking

Explicit marking

Sequence firing
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(t′, ct′)

(t, ct)

Fig. 2. Illustration of the ∆-markings method

– index of(token t) → int looks for token t into the tokens table and returns
the index at which the token has been found. It may also add an entry in
the table if the token is not already in it.

– token at(int i) → token returns the token at index i in the tokens table.

Since n can not be known a priori, Helena can detect overflows in this table, i.e.,
cases where the number of different tokens met is greater than n, and report it
to the user who, in turn, can increase it and rerun the search. This restriction
may seem quite bothering, but after intensive experiments, we observed that
overflows are usually quickly detected during the search, causing only a small
run time overhead.

Structural Abstraction Techniques. The efficiency of the explicit model
checking approach is seriously limited by the state explosion problem inher-
ent to the concurrent execution of several components. An efficient way to
tackle this problem is to perform structural abstractions on the initial model in
order to obtain a simpler model which is equivalent to the initial one for to the
specified property. For Petri nets and Colored Petri nets, transitions agglom-
erations are surely the most efficient abstraction techniques. They have been
defined by Berthelot in his doctoral thesis [13], and generalized by Haddad to
Colored Petri nets in [14]. Transition agglomerations merge consecutive transi-
tions into a virtual atomic one which effect is the composition of the effects of
these transitions. It results in a drastic reduction of the combinatory explosion
due to the elimination of some intermediate states. In addition, the complexity
of these transformations is linear with respect to the size of the net, and their
application is totally automatic.

These agglomerations are implemented in Helena. This implementation is
based on the symbolic calculus of some structural relations which ensure cor-
rect agglomerations in the unfolded net. Though this symbolic computation is
not always possible, it usually works fine. To our best knowledge, Helena is cur-
rently the only tool that implement structural agglomerations for high level Petri
nets.
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Stack Representation. Model checking algorithms based on a depth first
search, e.g., LTL model checking, store the set of non fully processed states in
a stack. For some models, this stack can grow very large, and include almost
all the states of the state space. For instance, models for which the state space
forms a single strongly connected component usually follow this behavior. Thus,
an awkward choice for the representation of this stack can lead to important
memory wastes.

In Helena, the stack is represented as a vector of bits, and it uses a nice prop-
erty of Petri nets : the transition relation is a reversible mechanism, that is, given
a marking m and a transition t, there is a single marking m′ such that m′[t〉m.
This marking m′ is defined by ∀p ∈ P,m′(p) = m(p) + W−(p, t) − W+(p, t).
Instead of representing the search stack as a stack of states we therefore chose
to represent it as the sequence of transition bindings which leads from the initial
marking to the current marking. When a state has been fully expanded, the
binding on top of the stack is ”unfired”, and the next enabled binding is pro-
cessed. This representation can naturally be combined with the collapse method
to store transition bindings of the stack more compactly.

Expressing State Properties. The query language of Helena is rich enough
to express a wide range of state properties. It is based on four basic operations :

– The count operation allows to count the number of distinct items in a place
which fulfill a given condition.

– The mult operation allows to count the cumulated multiplicities of distinct
items in a place which fulfill a given condition.

– The exists token operation allows to check that at least one token in a
place fulfills a given condition.

– The forall token operation allows to check that all the tokens present in a
place fulfills a given condition.

For instance, the property

forall_token(p in P : exists_token(q in Q : q->1 = p->2))

could be stated in an informal way as : for each token p held in place P there is
a token q in place Q which is such that the first component of q and the second
component of p are equal.

4 Benchmarks

We have compared our tool with Maria to study the performances of both tools
concerning time and memory consumption. We considered these six examples :

– The distributed database system
– The slotted ring protocol
– The dining philosophers
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– The sieves of Eratosthene to find prime numbers
– The leader election protocol of Chang and Roberts
– The Peterson algorithm for the mutual exclusion problem

All these examples can be found in the Helena distribution (directory samples).
Experiments were done on a Pentium 4 with 2.5Ghz and a main memory of
1Gb. To allow a fair comparison, Maria was invoked with option --compile
which allows to compile arc expressions into a dynamically linkable library. In
addition, no capacity constraint was indicated in the Maria model and structural
agglomerations were disabled in Helena in order to obtain the same numbers of
markings and arcs.

The results of our experiments are reported in table 1. For each model, row T
reports the times observed for the exploration of the state space in seconds, row S
reports the size of the state space in kilobytes, and row V reports the average size
of the state vector in bytes. Compilation times of the models are included. Helena
was invoked with several values of parameter kδ within the set {1, 5, 10, 20, 50}.
Let us recall that kδ is the parameter of the compression method implemented
in Helena. The higher this parameter is, the more compressed the state space

Table 1. Results of the Comparison of Helena with Maria

Maria Helena
kδ = 1 kδ = 5 kδ = 10 kδ = 20 kδ = 50

The distributed database system, N=12, 2 125 765 states

T 900 452 492 533 778 782
S 303 409 336 330 80 111 52 496 16 493 15 997
V 146.15 162.01 38.59 25.29 7.95 7.71

The dining philosophers, N=12, 4 126 351 states

T 360 306 425 474 549 647
S 57 992 67 947 35 679 31 587 29 527 28 290
V 14.39 16.86 8.85 7.84 7.33 7.02

The sieves of Eratosthene, N=40, 2 028 969 states

T 116 90 121 151 206 368
S 82 056 92 868 35 274 28 046 24 432 22 294
V 41.41 46.87 17.80 14.15 12.33 11.25

The leader election protocol, N=14, 1 518 111 states

T 155 103 141 181 264 354
S 29 367 33 258 15 930 13 667 12 786 11 616
V 19.81 22.43 10.75 9.22 8.62 7.84

The Peterson algorithm, N=4, 3 407 946 states

T 136 91 133 154 188 315
S 35 899 43 366 28 287 26 511 25 630 25 094
V 10.78 13.03 8.50 7.97 7.70 7.54

The slotted ring protocol, N=8, 3 294 720 states

T 214 164 245 276 325 401
S 37 622 42 760 26 370 23 456 23 342 22 730
V 11.39 13.29 8.20 7.57 7.25 7.06
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will be, and the more slow the search will be. If kδ = 1 then no compression
is performed. In addition, the state collapsing method was not helpful for these
simple models and therefore disabled.

We observe that the results obtained by Helena without any compression
technique are comparable to the ones obtained by Maria. The encoding scheme
of Maria gives a slight advantage to Maria in terms of memory usage, while
Helena usually explores the state space in less time. When using the ∆-markings
method, Helena outperforms its competitor concerning the size of the state space,
especially for models with large state vectors (the distributed database system,
and the sieves of Eratosthene). The best compression ratio is obtained for the
distributed database system, with kδ = 50. For this case, the size of the state
space is divided by almost 19. The drawback is an increase of the execution
time. This one is acceptable for low values of kδ but tends to grow with it. For
models with small vectors, e.g., the slotted ring protocol, our storage method
is clearly less interesting though a reduction factor of 2, which is the average
reduction factor observed for these models, can still be helpful for systems with
large numbers of states. Finally, we observe that with our storage method, the
average size of the state vector could be reduced to approximatively 10 bytes,
whatever the model is.

5 Conclusions and Perspectives

The validation of software is a difficult problem. Few tools based on high level
Petri nets have been designed to face this challenge as most of them focus on
the representation of control, e.g. tools based on Well Formed Petri nets such as
GreatSPN [15], over data. Thanks to multiple features, Helena can handle the
validation of software systems.

The possibility to define high level data types and functions enables to model
concurrent software written in high level programming languages such as Ada
in a succinct way.

The ∆-markings method [11] is implemented in Helena. This one is partic-
ularly efficient when dealing with state spaces with large state vectors. This is
why we believe that it should be adapted within the scope of the verification of
software as these make heavy use of structured data types and usually exhibit
large state vectors.

Lastly, structural abstractions help to tackle the state explosion problem.
We plan to extend Helena in the following ways :

– At the current implementation stage, Helena supports the verification of
state properties and the deadlock freeness. We plan to extend the field of
properties that Helena can verify by including a module for the verification
of linear time temporal logic properties (LTL). An interface with the exten-
sible library SPOT [16] is currently under study. The main interest of using
SPOT is that it relies on transition-based generalized Büchi automata and
allows translation of LTL formula to smaller automata and thus, smaller
synchronized products.
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– The current version of Helena tackles the state explosion problem by the use
of structural abstraction techniques. We envisage to combine these with the
stubborn set method of Valmari [17, 18, 19]. However, defining an algorithm
which computes good stubborn sets for colored Petri nets is a difficult task.
To our best knowledge, the only tool that compute stubborn sets for colored
Petri nets (without unfolding) is CPN tools [20]. The algorithm has been
described in [19].

– New transitions agglomeration rules have been recently defined for ordinary
and colored Petri nets in [21, 22]. An implementation of these agglomerations
in Helena is scheduled.

Availability. Helena is a free software available under the conditions of the
GNU General Public License. It can be downloaded at the following URL :
http://helena.cnam.fr.
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