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Received 14 November 2006; revised 19 January 2007; accepted 24 January 2007; published 28 February 2007.

[1] Various studies have demonstrated the potential of
thermal infrared brightness temperature (TIR TB) for
monitoring surface exchanges of water and energy. This
study focuses on the contribution of TIR TB data for Land
Surface Model (LSM) calibration. A numerical representation
of the Soil-Vegetation-Atmosphere (SVA) transfers (SVAT
model), named SEtHyS, was used. A calibration methodology
of the model based uniquely on the optimisation of TIR TB
diurnal cycle features has been developed and applied, in an
assimilation context, to the full vegetation period of a wheat
crop. The results illustrate the advantages of such a
methodology for the monitoring of environmental conditions
simulated with the SVAT model, such as the root zone soil
moisture. The impact of observation and simulation errors on
TIR TB was analysed and quantified in controlled numerical
experiments. The results demonstrate the advantages of using
relative temperature characteristics, instead of temperature
values themselves, to minimise the impact of noise.
Citation: Coudert, B., and C. Ottlé (2007), An improved SVAT

model calibration strategy based on the optimisation of surface

temperature temporal dynamics, Geophys. Res. Lett., 34, L04402,

doi:10.1029/2006GL028778.

1. Introduction and Background

[2] SVAT (Soil Vegetation Atmosphere Transfers)
models have been designed to compute both water and
energy budgets at the SVA interface, with varying degrees
of complexity in the described physical processes. These
models allow the state variables, describing the transfer
processes at different levels within the SVA continuum, to
be assessed. They require an application context constrained
by input variables (atmospheric forcing and vegetation
variables) and input parameters (soil and vegetation
properties, initialisation; see Table S1 of the auxiliary
material)1 to simulate the water and energy budget at the
surface. The number of parameters is generally related to
the complexity of the model, and their calibration requires
the development of optimisation methodologies. Numerous
studies of the characterisation of the surface properties and
variables (soil moisture state, thermal inertia, soil texture)
have been reported, based on the knowledge of surface
temperature [Price, 1977; Soer, 1980; Wetzel et al., 1984;
Wetzel and Woodward, 1987; Raffy and Becker, 1985; Raffy
and Becker, 1986; Van de Griend et al., 1985; Moran et al.,

1994; Carlson et al., 1995; Xue and Cracknell, 1995;
Cracknell and Xue, 1996; Sandholt et al., 2002; Verhoef,
2004; Verstraeten et al., 2006]. The work described in the
present paper concerns the application of a newly proposed
methodology (B. Coudert et al., Monitoring land surface
processes with thermal infrared data: Calibration of SVAT
parameters based on the optimisation of diurnal surface
temperature cycling features, submitted to Remote Sensing
of Environment, 2007, hereinafter referred to as Coudert et
al., submitted manuscript, 2007) used to control the simu-
lated variables and input parameters of a Land Surface
Model. The model used in this study, called SEtHyS (for
‘‘Suivi de l’Etat Hydrique des Sols’’, French acronym
for soil moisture monitoring), is a two-layer, two-source
SVAT model described by Coudert et al. [2006] based on
Deardorff’s [1978] ‘‘force-restore’’ formalism for the
soil representation. A model calibration based on the
optimisation of temporal dynamics characteristics (temporal
gradients, amplitude, phase) of the TIR (Thermal Infra Red)
brightness surface temperature has been proposed by
Coudert et al. (submitted manuscript, 2007), and applied
over a seasonal winter wheat cycle at field scale. This
method, in which time-differential temperature measure-
ments are used, has been compared with a former method
in which the absolute difference between modeled and
observed temperature values are minimised at each time
step (20 minute intervals) of the model (point-to-point
optimization). The new method demonstrates distinct
advantages, for the monitoring of SEtHyS SVAT output
variables. The next step is to test this new methodology in a
remote sensing brightness temperature automatic assimila-
tion context, where both observations and model errors need
to be handled. For this purpose, a dynamic calibration of the
model was carried out. The impact of TIR TB observational
errors has also been quantified with a classical optimisation
of the temperature method and the new methodology, and
the results are presented in this paper. Section 2 briefly
presents the calibration methodology and its objectives in an
automatic assimilation context. Section 3 presents the
application at field scale. Section 4 evaluates the sensitivity
of this methodology to observation and model errors, and
compares it with that obtained with classical optimisation of
the TIR TB variable.

2. Dynamic Calibration Methodology

[3] Previous studies [Coudert et al., 2006, also submitted
manuscript, 2007] showed the advantages of continuous
recalibration of the SEtHyS SVAT model, in terms of

1Auxiliary materials are available at ftp://ftp.agu.org/apend/gl/
2006gl028778.
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increased model performances. Depending on which time-
dependent parameters are considered, and their sensitivity to
the dominant transfer processes, surface conditions and
atmospheric forcing, the use of regular optimisation proce-
dures (which are then relevant to comparatively short
calibration periods), has proven to be more accurate than
a calibration methodology applied to the whole simulation
period. Moreover, the use of TIR surface brightness
temperature data in a multi-criteria model optimisation
process where surface sensible heat flux, ground heat
conduction flux, reflected solar incoming flux and soil water
contents (surface and root zone) are adjusted, has demon-
strated its potential for water budget monitoring [Coudert et
al., 2006]. Surface fluxes (sensible heat, latent heat, soil
heat conduction fluxes), soil water content, atmospheric
forcing and vegetation characteristics (Leaf Area Index
and canopy height) measurements are in practice rarely
measured simultaneously, and even then are limited to
specific experimental field programmes, as was the
case for the Alpilles-ReSeDA (Remote Sensing Data
Assimilation) experiment [Olioso et al., 2002] http://
www.avignon.inra.fr/reseda/base/) briefly described below,
whose database is used in the following. Conversely, thanks
to the presence of space-borne remote sensing instruments,
including new geostationary satellites which provide data
with a high temporal frequency (around 15 mn), TIR TB

measurements are available, under clear sky conditions, at
frequent intervals. Consequently, the development of a
SVAT model calibration methodology, based on the knowl-
edge of TIR TB data, is of particular interest.
[4] The principle of our methodology computes the

sensitivity of each model parameters to specific character-
istics of the TIR TB diurnal cycle, following the same
statistical approach as Bastidas et al. [1999], and calibrates
each model parameter by optimising a specific set of
characteristics defined by the previous sensitivity analysis.
The method differs from the multi-objective calibration
proposed by Gupta et al. [1999] and Demarty et al.
[2005], in that all the parameters are optimised with possible
different sets of criteria (using the same set of simulations).
In practice, just a specific set of criteria is used to calibrate
each parameter, at each given time interval. This particular
difference in approach is appropriate to the specific impact
of the model parameters on the specific characteristics of
the diurnal temperature cycle (morning rise, afternoon fall
or amplitude, etc. . .). A previous application of this
methodology (Coudert et al., submitted manuscript, 2007)
concluded that, in addition to time-differential temperature
criteria, a criterion related to the absolute difference
between simulated and measured TB would improve water
budget monitoring, by limiting drifts in the computed value
of root zone soil moisture.
[5] This improved calibration methodology has been

applied to an automatic assimilation context, and the first
results are presented in the present paper. In practice, instead
of making use of successive a priori fixed model calibration
periods, more exactly making model parameters readjust-
ments (because the model parameters’ uncertainty ranges
are determined, for a given calibration period, by the results
of the previous calibration), the model requiring recalibra-
tion is defined by the model errors on the brightness
temperature. These model divergences are evaluated on

the basis of the evolution of the set of TIR TB criteria.
The following section briefly presents the results obtained
for a winter wheat crop field, recorded in the Alpilles-
ReSeDA database.

3. Application at Field Scale

3.1. Alpilles-ReSeDA Database

[6] The Alpilles ReSeDA program was initiated to im-
prove monitoring of soil and vegetation processes from
remote sensing. A large database containing various types
of data was recorded over the Alpilles (southeast of France)
area from October 1996 to November 1997. Environmental
conditions (agrometeorology, surface characteristics, multi-
frequency remote sensing data and especially TIR data)
were measured over various instrumented agricultural
fields. In particular, ground based measurements of TIR
TB (8–14 micrometers) were acquired using a Heimann
KT15 thermal radiometer 3 meters above the surface, with
an 18.5� zenith angle and a 16� field of view. The dataset is
quasi-complete and forms a continuous time series. Soil
moisture profiles were measured with neutron (not regularly)
and capacitive probes. The data was intercalibrated. Neutron
probe data was used from 21st of January (DOY 21) and
19th of April (first rainfall episode, DOY 109) and capac-
itive probe data from 20th of April (DOY 110) to 25th of
June (DOY 176). Latent and sensible heat fluxes were
continuously measured (200 time step) by means of both
the Bowen ratio (over the whole period) and the Eddy
correlation method (between 15th of March and 4th of April,
DOY 74–94). The Bowen ratio deduced fluxes were
reprocessed [Olioso et al., 2002] because of over-estimations
(bias of +15 W.m�2) and a large scattering contribution
(RMSD between 50 and 70 W.m�2) compared with fluxes
deduced using the correlation method. All these processes
were carried out in order to obtain a coherent and continuous
set of data corresponding to a complete vegetation cycle, for
the validation and/or calibration of SVAT models [Olioso
et al., 2002].

3.2. Successive Readjustments

[7] The calibration process is driven by minimizing
errors (as quantified by the Root Mean Square Difference,
RMSD, over 20-day periods; see below) between the
measured and modeled TIR TB characteristics of the diurnal
temperature cycle. More precisely, 7 of these criteria are
related to temporal gradients, computed from the tempera-
ture rise and fall over 1 hour intervals in the morning and
the afternoon (see the list of the criteria in Table S2 of the
auxiliary material). Two additional criteria are given firstly
by the daily amplitude of the temperature cycle, determined
on the basis of the temperature maximum (around noon)
and its value at sunset and secondly by the phase of the
temperature signal, given by the time at which the daily
maximum temperature is reached. The last criterion is not
related to the diurnal temperature cycle characteristics but to
the absolute difference between measured and modeled TIR
TB time series calculated over day-time (between sunrise
and sunset). Notice that no RMSD are calculated for night-
time values. The reason for this is that the parameterisation
of atmospheric turbulence in SVAT models is not accurate
in cases of strong stability which often occur during the
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night. The resultantly greater model errors prevent the
optimisation methodology from reaching correct solutions,
especially for initial soil moisture states, as shown in
previous studies (Coudert et al., submitted manuscript,
2007). Consequently, reduced uncertainty ranges (±2% of
the simulated values) are determined at the first time step of
a new calibration period, for re-initialisation of the soil
water content (surface and root zone).
[8] The parameters’ sensitivity-dependent calibration is

carried out for 20-day periods, in order to compute the
RMSD over a significant volume of data. Moreover 20-day
periods are sufficiently short to provide adequate represen-
tation of the transitions between the vegetation’s phases of
growth, maturation and senescence, and of seasonal
meteorological changes in our specific case of application.
After each 20-day calibration period, the calibrated model
parameters from that time interval are used to restart the
model and to continue the model run beyond the calibration
period. The accuracy of the prediction is evaluated using
the Relative Root Mean Square Differences (RRMSD)
which are normalised by dividing the differences between
measured and modeled values by the measured values.
The RRMSD are related to the 9 temperature features
(characteristics of the diurnal temperature cycle) computed
over a 20-day sliding temporal window, starting at the
beginning of the calibration period. A new calibration is
performed when one or several RRMSD increase by 50%
with respect to the previous calibration period. Successive

calibration periods can be intersected or disjoined, accord-
ing to the evolution of the temperature features drifts.

3.3. Results

[9] Starting from the Day of Year (DoY) 21 (21st of
January), 10 calibration periods were needed to monitor the
SEtHyS simulations, using TIR TB data assimilation, in
order to reach DoY 129 (9th of May). No additional
calibrations were carried out between the latter period of
calibration (DoY 109 to 129) and the date at which the
wheat was harvested (DoY 176, 25th of June) because the
senesent phase had been reached and meteorological and
surface conditions such as a soil drying phase or a rainfall
event had all been encountered. Consequently, a new
calibration was not expected to have a significant impact
on model results for that particular time period. It is of
interest to discuss the frequency of the calibration periods
over the total period of simulation. All the calibration
periods overlap with one another, except for the third
(DoY 38–58) and the fourth (DoY 67–87), which are
separated by 9 days. During this time interval (regular soil
drying), atmospheric conditions were quite regular and the
LAI was close to 1. The calibrated set of parameters
obtained during the third period is thus accurate for a period
of 29 days. For other periods, frequent readjustments are
required because of variations in meteorological and
phenological vegetation conditions, which affect the surface
brightness temperature features.
[10] Figure 1 plots the results obtained for the surface

water content (wsfc) and the total root zone water content
(wrz, including the surface layer associated with wsfc) time
series, and includes a representation of the first day
(readjustment) of each of the calibration periods. It can be
seen that a very good degree of accuracy is obtained for the
total water content wrz, as opposed to that obtained for the
surface soil water content simulation. The systematic over-
estimation of the latter variable can be explained by a
tendency to overemphasise the soil’s resistance to evapora-
tion, which in turn leads to undervalued soil evaporation
rates. The impact of this outcome on the simulations is
particularly significant, since surface water content is high
at the beginning of the simulation period and after intense
rainfall events starting on DoY 109 (19th of April). A large
shift (about 0.1 m3.m�3), compared to the observations, can
then be observed. A similar result is observed when only
TIR TB is optimised. This additional criterion, used in the
methodology presented here, thus appears to be responsible
for the observed overestimation. On the other hand, after
rainfall events, the soil drying rate is accurately estimated
(DoY 117, 27th of April for example), thus showing that
water diffusivity is accurately retrieved. The mean perform-
ances over the whole simulation period, between DoY 21
(21st of January) and DoY 176 (25th of June), are given in
Table 1 in terms of biases and RMSD and also RRMSD and
relative biases (relative to each measured value, as is the
case for RRMSD, noted Rbiases). These statistical criteria
are given for the following variables: TIR TB, sensible heat
flux (H), latent heat flux (LE), ground heat flux (G), net
radiation (Rn) and solar reflected radiation (aRg). Generally
good results are obtained, with a mean RMSD of less than
45 W.m�2 for the surface fluxes, and low biases (lower than
8 W.m�2) with the exception of surface water content (wsfc).

Figure 1. Soil water content time series obtained for the
10 calibration periods. The first day of each of the
calibration periods is represented by grey, dashed vertical
lines.
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This latter variable is overestimated by about 51% in terms
of RRMSD, and by 44% in terms of Rbias.
[11] The relevance of the ‘‘readjustments’’ described here

needs to be analysed, in order to ascertain the usefulness of
the methodology in an assimilation context. To this intent,
a comparison has been made between the soil water con-
tent simulations obtained from the first calibration period
(DoY 21 to 41), and those obtained over the following
calibration periods. Figure 2 shows, for both simulations, a
plot of the RMSD calculated over a 20-day sliding window,
from the first period up until DoY 176, which defines
the end of the simulation period. This illustrates the cumu-
lative effect of model errors, incurred by the dynamic
calibration methodology. The model parameters calibrated
on the first period would be inappropriate, particularly after
DoY 121. In the case of this application, these results
illustrate the interest of successive readjustments in control-
ling the cumulated error of the model related to soil water
contents.
[12] The following section is devoted to the study of

the influence of TIR TB estimation errors on calibration
results, in the case of a controlled simulation. A detailed
comparison is given for a simple calibration, based

on point-to-point (at the model time step) TIR TB

optimisation.

4. Impact of Errors

4.1. Sources of Error

[13] Differences between modeled and measured TIR TB

time series result from both observational and model errors.
In the case of our application, observational errors are the
smallest. The ground-based Heimann KT15 thermal
radiometer, used to measure surface brightness temperature,
is characterised by a minimum error of 0.7 K (A. Olioso,
personal communication, 2006). Since its commissioning,
this sensor has demonstrated negligible drift over a one year
period of experimental recordings. When space-borne
remote sensing data is used, observational errors would
include additional atmospheric and surface emissivity cor-
rection errors, as well as various other sources of error such
as registration uncertainties and calibration effects resulting
from the presence of clouds. Simulation errors arise from
model input errors (atmospheric forcing, vegetation input
variables) and from model simulation errors (incorrect
representation of physical processes). Although the former
effects can have a strong impact on the simulation results,
their discussion is beyond the scope of this paper. The latter
forms of error are responsible for systematic biases and
characteristic features of computed TIR TB. This has been
illustrated by Coudert et al. [2006] and Olioso et al. [1996]
who showed, for example, the impact on surface fluxes and
TIR TB simulations of a simplified stomatal resistance
representation in SVAT models.
[14] In order to evaluate the impact of such errors on the

calibration methodology, a set of controlled numerical
calibration experiments has been carried out in the presence
of various levels of noise. The results of these experiments
are presented in the following.

4.2. Application in a Simulated Case

[15] A SVAT simulation performed with a calibrated
parameter set resulting from a multi-objective calibration
on the same Alpilles-ReSeDA experimental dataset, was
used as a reference. The 6 criteria simultaneously optimized
(referred to as scenario 1 in Coudert et al. [2006]) are
related to the surface fluxes, TIR TB and the soil water
contents. This scenario controls all terms of the water and

Table 1. Performances Obtained With the Calibration Methodol-

ogy Over the Seasonal Wheat Cycle Between DoY 21 and 176

Variable RMSD Bias N data

wsfc

(m3.m�3)
9.5 10�2

RRMSD: 51.1%
8.5 10�2

Rbias: 43.5%
10846

wrz

(m3.m�3)
1.2 10�2

RRMSD: 3.8%
1.1 10�2

Rbias: 3.6%
9582

LE
(W.m�2)

44.5 �4.1 3358

G
(W.m�2)

28.3 0.4 11055

H
(W.m�2)

43.4 �7.1 3358

aRg
(W.m�2)

24.4 12.7 5687

Rn
(W.m�2)

32.9 �12.8 11118

TB

(K)
1.78 �0.39 10903

Figure 2. Soil water contents RMSD calculated for a 20 day sliding window. Simulations obtained from the first
calibration period (DoY 21–41) are in grey. Simulations from successive readjustments are in black. DoY indicated on the
x axis are the final days of the calibration periods.
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energy budget and the resulting calibrated parameters were
used to produce a reference model run. The modeled surface
brightness temperature time series obtained from this run
was used instead of observations. This synthetic set of
observations was useful to study the impact of observational
errors on the calibration process, because they could be
statistically controlled. The synthetic TIR TB time series
data, over the period DoY 74–94 (wheat growing period
with regular soil drying), was degraded by the addition of
noise in terms of biases and random errors. The errors were
assumed to be Gaussian with a standard deviation sTB

(0.5 K, 1 K), and the biases were taken as mTB
(�1.5 K,

�1 K, 1 K, 1.5 K). The impacts of such errors have been
evaluated on both calibration methodologies: the calibra-
tion proposed in this paper based on the TIR TB diurnal
cycle characteristics (referred to in the following as
CM_multiTB), and the former (classical) calibration based
on the simple optimisation of point-to-point TIR TB values
(referred to as CM_monoTB). Each of the above two model
calibrations was then performed for each of the experiments
characterised by the 8 different permutations of the two
noise parameters (mTB

, sTB
). The results obtained from both

methodologies are shown in Figure 3, for surface fluxes LE
and H and for soil water contents (wsfc and wrz).

[16] RMSD values obtained with a given calibration
methodology and a given value of sTB

are linked by the
same line. For each variable, the RMSD obtained with a
given experiment is normalized by the minimum (0 in
Figure 3) and the maximum (1 in Figure 3) RMSD values
obtained from the 16 calibrations achieved. It can be seen
that CM_multiTB gives better results than CM_monoTB for
sTB

= 0.5 K (low temperature noise) whatever the value of
the bias. When the value of sTB

increases (sTB
= 1 K),

CM_multiTB conserves its advantage (excepted for wsfc) for
the larger biases (�1.5 K and 1.5 K) but is more sensitive to
random errors than CM_monoTB. It is interesting to note
that the two cases sTB

= 0.5 K and sTB
= 1 K lead to almost

identical results for CM_monoTB (the black and grey lines
are nearly identical) as opposed to the CM_multiTB method.
Note that maximum RMSD on LE and H are respectively
85 and 74 W.m�2 when CM_monoTB is used, to be
compared with respectively 25 and 15 W.m�2 when
CM_multiTB is used, for mTB

= 1.5 K. The results obtained
for wsfc with CM_monoTB are surprising, when mTB

= 1 K
because the largest RMSD were expected for the largest
absolute values of mTB

. In fact, the largest RMSD are
obtained for mTB

= 1 K and the RMSD on variables aRg
and Rn show the same features (not presented here). The
solution of the calibration reached by CM_monoTB for this
value of mTB

is the following: the surface albedo is minimal
(over the prescribed parameter uncertainty range) and the
saturated hydraulic conductivity parameter converges
towards the upper limit of its uncertainty range. Such a
combination is not accurate for simulations of aRg, Rn and
wsfc, and is not in general the solution obtained by the
calibration for other bias values but leads to a better solution
for the optimization of TIR TB. Table 2 shows the RMSD
dispersion with the bias mTB

for the SEtHyS output
variables. More precisely, this dispersion is the difference
between the maximal and minimal values of normalized
RMSD for the same sTB

(each line of the plots in Figure 3)
compared to 1 (the result is a percentage). An expected
result is the low sensitivity of CM_multiTB to bias, since the
random error on TIR TB is low. The dispersion is lower than
30% for the complete set of variables, whereas CM_monoTB
has a dispersion ranging between 60 and 90 %. Since sTB

increases up to 1K, the dispersion on RMSD due to the bias is
still lower for CM_multiTB than CM_monoTB, except for aRg

and consequently Rn. In practice, aRg depends only on the
albedo, the calibration of which can be strongly affected by
random errors, especially with the CM_multiTB method,

Figure 3. Normalised RMSD obtained for both calibration
methodologies, CM_multiTB and CM_monoTB, for each
of the experiments characterised by the 8 different
permutations of the two noise parameters (mTB, sTB).

Table 2. Percentage Dispersion of RMSD Obtained by Application of 4 Different Values of Bias for Both Calibration Methodologiesa

Variable

sTB, 0.5 K sTB, 1 K

CM_monoTB, % CM_multiTB, % CM_monoTB, % CM_multiTB, %

wsfc, M
3.m�3 87.6 24.5 67.4 50.9

wrz, m
3.m�3 72.7 15.8 62.1 58.6

LE, W.m�2 72.6 5.9 70.8 27.2
G, W.m�2 61.8 11.0 53.9 46.4
H, W.m�2 69.3 9.9 68.0 8.8
aRg, W.m�2 67.6 23.0 32.9 45.4
Rn, W.m�2 70.1 25.8 39.2 60.7
TB, K 10.6 27.9 3.4 45.9

aBias is mTB
.
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because of the greater sensitivity of TIR TB characteristics to
noise, when compared to the point-to-point complete cycle
optimisation for which the effect of the noise is averaged.

5. Conclusions

[17] A dynamic calibration methodology based on the
SEtHyS SVAT model parameters’ sensitivities to the diurnal
surface TIR TB features has been proposed in an assimila-
tion context. Correct root zone soil moisture monitoring
is obtained in this applied case, over the full seasonal
cycle of a wheat crop. However, surface soil moisture is
overestimated due to poor retrieval of the soil’s resistance to
evaporation. A set of ten 20-day calibration periods was
needed to control the SVAT model over more than 100 days
of simulation. Compared with a calibration based on a
simple optimisation of TIR TB simulations with respect to
measured values, the proposed methodology shows better
results and a lower sensitivity to error biases on TB, but
becomes unstable when the random errors increase. This
work demonstrates that TIR TB diurnal variations contain
useful information for SVAT model monitoring, but that
further development are needed in order to develop opera-
tional techniques for assimilating thermal infrared data into
SVAT models. The use of time-differential criteria on
remotely sensed surface temperatures has been shown to
be promising in terms of recent and future high temporal
data-rate acquisitions, in preventing observational error
biases from degrading the assimilation results.
[18] The stochastic calibration technique presented in this

paper has the advantage of being straightforward to imple-
ment, although it requires considerable computing resources
and is necessarily limited to optimisation problems with a
relatively small number of degrees of freedom.
[19] The next step in this study programme will involve

the further development of operational assimilation techni-
ques, in order to test the usefulness of rapid refresh rate
remote sensing satellites, such as Meteosat-8 and 9, to
control water and energy budgets over regional landscapes,
with the spatial resolution of the SVAT model.
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