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ABSTRACT

Most of the bulk algorithms used to calculate turbulent air–sea fluxes of momentum and heat are iterative
algorithms whose convergence is slow and not always achieved. To avoid these drawbacks that are critical
when large datasets must be processed, a statistical model of bulk air–sea fluxes based on artificial neural
networks was developed. It was found that classical bulk algorithms were slower than the statistical model,
by a factor of 1.75–7 depending on the bulk algorithm selected for the comparison. A set of 12 global
analyses of an operational meteorological model as well as in situ data corresponding to equatorial and
midlatitude conditions were used to assess the accuracy of the proposed model. The wind stress, latent, and
sensible heat fluxes calculated with neural networks have acceptable biases with respect to bulk fluxes,
between 0.4% and 1% depending on the flux magnitudes. Moreover, the rms deviation between bulk fluxes
and neural network flux estimates is only 0.003 N m�2 for the momentum flux, 0.5 W m�2 for the sensible
heat flux, and 1.8 W m�2 for the latent heat flux, at global scale, which is small compared with the natural
variability of these quantities or the expected error.

1. Introduction

The turbulent fluxes of momentum �, sensible heat
HS, and latent heat LE at the air–sea interface charac-
terize the exchanges of mechanical energy, tempera-
ture, and humidity between the sea and the atmo-
sphere. The calculation of these fluxes is a key issue in
climatology, meteorology, and oceanography because
air–sea fluxes are a boundary condition for models of
the atmosphere and the ocean.

In most applications, turbulent fluxes are derived
from in situ meteorological observations, output fields
of atmospheric circulation models, or even satellite sen-
sor data. Except in a very few cases for which direct
measurements of the fluxes are available, the only pos-
sible approach for computing fluxes is to use a bulk

algorithm (e.g., Liu et al. 1979; Fairall et al. 1996). The
inputs of bulk algorithms are so-called bulk variables,
which are ensemble averages of sea surface tempera-
ture (SST), air temperature �A at a known altitude zA

above the ocean surface, specific humidity qA, wind
speed uA, and sea level pressure (SLP). Most of the
existing bulk algorithms are iterative, which means that
the algorithm stops and returns the values of the fluxes
if convergence is achieved. If not, no flux value is re-
turned. This is a major disadvantage because the algo-
rithms may or may not converge toward a solution,
depending on the values of the bulk variables used as
inputs. Moreover, those algorithms converge slowly,
which is a critical issue when large datasets must be
processed. There is one exception to this: Fairall et al.
(2003) recently produced a bulk algorithm that is sev-
eral times faster than previous algorithms, and which
does not have any convergence problem. This method
will be analyzed and its performances compared to
those of the method proposed hereafter.

This article presents an accurate and computationally
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fast method for calculating turbulent air–sea fluxes.
The method is a nonlinear statistical model of a modi-
fied version of the bulk algorithm developed for the
Coupled Ocean–Atmosphere Response Experiment
(COARE) program, version 2.5 (the COARE2.5 algo-
rithm; Fairall et al. 1996), which uses the Smith (1980)
parameterization of the bulk coefficients. The bulk al-
gorithm is called the modified COARE (MC) algo-
rithm hereafter. The proposed method is based on ar-
tificial neural networks (ANNs; e.g., Bishop 1995).
ANNs were never used before in this field of research.
The proposed approach is particularly adapted to heavy
computational tasks such as initializing ocean global
circulation models, estimating long time series of the
heat budget of the upper ocean, or computing fluxes in
ocean–atmosphere coupled models. A useful feature of
the method is that it produces fluxes regardless of the
combination of bulk variables used as inputs. In con-
trast, flux fields calculated with the MC algorithm have
gaps at the locations where the algorithms do not con-
verge. For evaluating the accuracy of the proposed
method, data collected during the Programme Océan
Multidisciplinaire Méso Echelle (POMME) experiment
(Mémery et al. 2005) were used together with observa-
tions of the Pilot Research Moored Array in the Tropi-
cal Atlantic (PIRATA) buoys (Servain et al. 1998) and
analyses of the European Centre for Medium-Range
Weather Forecasts (ECMWF) model. These datasets
represent a total of �250 000 kinds of environmental
conditions, which should ensure that the results pre-
sented in this article cover most of the possible situa-
tions to which the method could be applied.

The MC and ANN algorithms are presented in the
next two sections. The datasets used are described in
section 4. In section 5, the accuracy of the fluxes calcu-
lated with ANNs is analyzed with observations of the
POMME and PIRATA datasets. Section 6 presents an
evaluation of the accuracy of the method at global scale
with ECMWF analyses. It also includes a spatial analy-
sis of the accuracy of the method, with an emphasis on
the cases for which the MC algorithm did not converge,
followed by the conclusions.

2. MC algorithm and COARE3.0

The MC algorithm is a bulk algorithm, which is a
calculation method associated with the bulk parameter-
ization of the turbulent fluxes. The bulk parameteriza-
tion is based on the Monin and Obukhov (1954) theory
of the surface atmospheric boundary layer (SABL;
Businger et al. 1971), in which �, HS, and LE are related
to the differences between uA, �A, and qA, and their

values at the sea surface, uS, SST, and qS, respectively
[Eqs. (1)–(3)]:

� � �CD�uA � uS�2, �1�

HS � �CpCH�uA � uS��SST � �A�, and �2�

LE � �L�CE�uA � uS��qS � qA�. �3�

In Eqs. (1)–(3), � is the density of air, Cp is its specific
heat, and L	 is the latent heat of vaporization of water.
The � is positive downward when the atmosphere trans-
mits momentum to the ocean, and HS and LE are posi-
tive upward when the ocean is cooling. Here CD, CH,
and CE are the exchange coefficients for momentum,
sensible, and latent heat, respectively, which are usually
parameterized as a function of the stability of the
SABL, and wind speed. Stability is represented by the
ratio 
 � zA/L, where L is the Monin–Obukhov length.
The parameterization of the exchange coefficients used
throughout this article follows Smith (1980). It was pre-
ferred to the Fairall et al. (1996) parameterization,
which was originally designed for tropical regions and
may not be adapted to some midlatitude conditions.
The MC algorithm is iterative because the relationship
between bulk variables and fluxes depends on 
, which
is itself a function of the fluxes. Technically, the MC
algorithm consists of two parts, a first calculation of the
fluxes for which 
 is assumed to be zero (neutral
SABL), and an iterative sequence that includes the cal-
culation of 
 and the fluxes. In most bulk algorithms,
the sequence is interrupted when the differences in 

and fluxes between two successive iterations are
smaller than prescribed thresholds, which are defined
according to the desired accuracy of the flux calcula-
tion. If the convergence is not achieved in a limited
number of iterations (20–50 depending on the authors),
the algorithm returns no flux value. The MC algorithm
was arbitrarily selected for the present study. However,
the proposed method may also be applied to other bulk
algorithms (Brunke et al. 2003).

A bulk algorithm named COARE3.0 was recently
released by Fairall et al. (2003). According to these
authors, the COARE3.0 algorithm is 7 times faster than
COARE2.5, and does not have any convergence prob-
lem because its main loop performs only 3 iterations
instead of 20–50 for more classical algorithms. Accord-
ing to Fairall et al. (2003), three iterations are sufficient
because they use an improved first guess for stability
(Grachev and Fairall 1997). To check this, we per-
formed the following test. One million fluxes were cal-
culated with the COARE3.0 algorithm, with inputs ran-
domly selected within realistic limits (in the same fash-
ion as the dataset described in section 3a). Next, the
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same input data were used for calculating new series of
fluxes with modified versions of the COARE3.0 algo-
rithm, in which the number of iterations (initially 3) was
increased to an arbitrary number, ranging from 4 to 20.
After several attempts, we found that the discrepancy
between the fluxes calculated with three and five itera-
tions was not negligible, namely 4 W m�2 in rms for the
latent and 4.5 W m�2 for the sensible heat flux, which
converts to 5% of error for a 100 W m�2 flux. This
result shows that convergence is not always obtained
with three iterations only, in spite of the improved
guess for 
. Eventually, we found that 5–10 iterations
were necessary to obtain stable flux values (discrepancy
smaller than 1 W m�2 for the sensible and latent heat
fluxes) with the COARE3.0 algorithm, which affects
the speed of execution of COARE3.0 by a factor of
1.3–2. In addition, several threshold values are used for
the roughness lengths and z /L in COARE3.0. Even if
the threshold values are reached, the algorithm contin-
ues until it returns a flux value, which can lead to un-
realistic flux values. As the COARE3.0 algorithm is
faster than other bulk algorithms, its speed of execution
will be used as a point of reference in efficiency of
algorithm convergence.

3. ANNs

The method proposed is a statistical model of the MC
algorithm. It is a straightforward mathematical rela-
tionship between bulk variables and turbulent fluxes.
The mathematical relationship has coefficients called
weights and biases that are adjusted, so that given a set
of bulk variables, the outputs of the network are as
close as possible to the corresponding outputs of the
MC algorithm. The process by which the coefficients of
the network are adjusted is called learning. Hereafter,
the concepts of neuron, ANN, and learning are de-
scribed in more detail.

a. Definition

In an analogy to the brain, an entity made up of
interconnected neurons, ANNs are made up of inter-
connected processing elements called artificial neurons,
which respond in parallel to a set of input signals given
to each. A biological neuron may have as many as
10 000 different inputs, and may send its output (the
presence or absence of a short-duration spike) to many
other neurons. In an ANN, a neuron computes a single
output from multiple real-valued inputs by forming a
linear combination according to its input weights and
then possibly putting the output through some nonlin-
ear activation function. Mathematically, this can be
written as

a � ���
i�1

n

wixi � b� � ��wTx � b�, �4�

where a is the neuron output (i.e., the so-called activa-
tion). Here w denotes the vector of weights, x is the
vector of inputs, b is the bias, and 
 is the activation
function. A graph of this operation is shown in Fig. 1.
The activation function is often chosen to be a log-
sigmoid [Eq. (5)] or a linear function [Eq. (6)]:

��x� �
1

1 � exp��x�
, �5�

��x� � x. �6�

The neurons are organized into layers, as repre-
sented in Fig. 2. Mathematically it reads as follows:

in j � aj
0 →

wjk
1 , bk

1

ak
1 →

wk · · ·
2 , b· · ·

2

· · · →
w· · · l

L , bl
L

al
L � out l

ANN,

�7�

where j ∈ [1, m0], k ∈ [1, m1], and l ∈ [1, mL]. There are
L � 1 layers of neurons, and L layers of weights w and
biases b. Here m0, m1, . . . , mL are the number of neu-
rons in layers 0, 1, . . . , L, respectively; inj are the inputs
and outANN

l are the outputs of the network; and ai
k is

the output of neuron k in layer i. The interconnections
within the ANN are such that every neuron in each
layer is connected to every neuron in the adjacent lay-
ers. For the present study, a typical configuration for an
ANN would include the same inputs (uA, �A, qA, SLP,

FIG. 1. Representation of an artificial neuron. It computes a
single ouptut a. Its inputs xi are linearly combined (with coeffi-
cients wi and b) and put through a transfer function 
.

MARCH 2007 B O U R R A S E T A L . 1079

Unauthenticated | Downloaded 12/22/20 01:28 PM UTC



SST, and zA) and outputs (�, HS, and LE) as in the MC
algorithm. The intermediate layers are called “hidden”
layers. With one or two hidden layers, ANNs can ap-
proximate virtually any input–output map, provided
that the hidden layer contains enough neurons.

b. Learning

Learning is the process by which a neuron is capable
of changing its input–output behavior as a result of
changes in the environment. During the learning stage
of an ANN, weights and biases are modified in re-
sponse to the inputs (inlearn) and outputs (outlearn) of a
learning dataset. The learning dataset can be mentally
represented as an array of n lines and m0 � mL col-
umns, where n is the length of the learning dataset. Line
k contains the following elements, {inlearn

1k , . . . , inlearn
m0k ,

outlearn
1k , . . . , outlearn

mLk }. Practically, for the present study
it could be {ulearn

Ak
, �learn

Ak
, qlearn

Ak
, SLPlearn

k , zlearn
Ak

, � learn
k ,

Hlearn
Sk

, Llearn
Ek

}, where {ulearn
Ak

, �learn
Ak

, qlearn
Ak

, SLPlearn
k , zlearn

Ak
}

could be randomly selected, and the corresponding val-
ues {� learn

k , Hlearn
Sk

, Llearn
Ek

} would be calculated with the
MC algorithm.

Many learning algorithms are available in the litera-
ture. The most popular is the back-propagation
method, which was used in the present study (Mehrotra

et al. 1996). It is an iterative distributed gradient de-
scent technique that changes the weights and biases so
that the actual outputs outANN

lk become closer to the
desired output out learn

lk . A measure of this is the
summed square error (SSE), defined as the quadratic
sum of the differences between out learn

lk and outANN
lk , for

all k.
The learning must be stopped at the right time. If it

continues for too long, it results in overlearning. Over-
learning means that the ANN extracts too much infor-
mation from the individual cases of the learning
dataset, forgetting the relevant information of the gen-
eral case. Overlearning can be identified by checking
the accuracy of the ANN outputs not only with the
learning dataset but also with additional independent
datasets that are so-called testing datasets. At each it-
eration of the learning process, the SSE should de-
crease for the testing and the learning datasets. But if
overlearning happens, the SSE will continue to de-
crease for the learning dataset, whereas it will start to
increase for the testing dataset.

c. Optimization of the ANN

The performances of the ANNs strongly depend on
the number of layers and neurons, and the choice of the

FIG. 2. Description of an ANN. The inputs of each neuron n are the output signals a of the
neurons of the previous layer, multiplied by a weight w, and added to a bias b. In the present
study, the inputs of the ANN are bulk variables, while the output is either �, HS, or LE.
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transfer functions. In practice, the optimization of the
ANNs is done by modifying the configuration of the
ANNs as long as the accuracy of the ANN fluxes is not
satisfactory for the learning and the testing datasets.
Note that the choice of the configuration of the ANNs
is always a matter of trial and error.

Although it is theoretically possible to create a single
ANN that would give �, HS, and LE at the same time,
several ANNs were used because of the complexity of
the relationships between bulk variables and fluxes.
Two ANN were dedicated to the calculation of �, two
others were used for HS (according to the sign of SST �
��), and four ANNs were necessary for LE. One ANN
was designed for the calculation of negative values of
LE (negative qS � qA), and another for the positive LE

smaller than �150 W m�2. Beyond �150 W m�2, two
ANNs were used for the calculation of LE. These two
ANNs correspond to positive and negative values of
SST � �A, respectively. Note that the combination of a
negative HS value and a value of LE larger than 150 W
m�2 is not common over the World Ocean, but it is not
unphysical. The eight ANNs, which are called ANN1–
ANN8 in the following, are independent from each
other. They use 8–10 input variables and have 4 layers,
as reported in Table 1. The transfer functions are log-
sigmoïd for all the neurons, except for those of the
output layers, which are linear. The input variables of
the ANNs include not only the bulk variables, but also
combinations of them that were helpful to increase the
accuracy of the calculated fluxes (Table 1). In particu-
lar, the reader may notice the presence of the following
quantities zA[(�A � SST) � 0.608�A(qA � qS)] and
�Au2

A, in Table 1. They correspond to the numerator
and the denominator of the Richardson number, which
may be considered as an estimator of 
.

4. Datasets

Five datasets are presented in this section; namely,
four datasets that were used to create the ANNs (one
learning dataset and three testing datasets) and one
validation dataset intended to assess the accuracy of the
ANN fluxes for global-scale applications. Note that the
term dataset is used for simplicity and does not only
mean “set of observations.” For instance, the validation
dataset consists of model analyses, not data. Each of the
datasets described hereafter is an ensemble of values of
bulk variables (and/or combinations of them) used as
inputs of the ANNs, and the corresponding fluxes cal-
culated with the MC algorithm (MC fluxes).

a. Learning dataset

The learning dataset consists of 60 000 uniformly dis-
tributed values of bulk variables and zA that were ran-
domly selected between the minima and maxima re-
ported in Table 2 (rows 1–6). The extrema of uA, �A, qA,
SLP, and SST were chosen according to ECMWF
analyses. The range of zA corresponds to most of the
possible range of application of the model, from 3.5 to
35 m. As they were selected in a random manner, many
combinations of the bulk variables were unrealistic. To
avoid at least part of these combinations, the values of
the bulk variables that corresponded to MC fluxes and
values of 
 outside the extrema specified in Table 2,
lines 7–10 were rejected.

b. Testing datasets

The first testing dataset is identical to the learning
dataset, except that its size is larger (100 000 situations).
This dataset—named the “all-conditions dataset” in the
following—covers every possible type of environmental

TABLE 1. Characteristics of the ANNs.

Name
Variable

calculated
Application
conditions

Neurons of
layers 1, 2, 3, 4 Input variables

ANN1 � (N m�2) � ∈ [0, 0.5] 8, 14, 7, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2
A, uA, SST��A, �A, qA, zA, SLP

ANN2 � (N m�2) � � 0.5 8, 14, 7, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2
A, uA, SST � �A, �A, qA, zA, SLP

ANN3 HS (W m�2) SST � �A 9, 14, 7, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2
A, uA, SST � �A, �A, qA, zA, SLP,

uA(SST � �A)
ANN4 HS (W m�2) SST � �A 9, 14, 7, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2

A, uA, SST � �A, �A, qA, zA, SLP,
uA(SST � �A)

ANN5 LE (W m�2) qS � qA 9, 14, 7, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2
A, uA, SST � �A, �A, qA, zA, SLP,

uA(qS � qA)
ANN6 LE (W m�2) qS � qA 9, 13, 6, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2

A, uA, SST � �A, �A, qA, zA, SLP,
uA(qS � qA)LE ∈ [0, 150]

ANN7 LE (W m�2) qS � qA 9, 14, 7, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2
A, uA, SST � �A, �A, qA, zA, SLP,

uA(qS � qA)LE � 150
ANN8 LE (W m�2) qS � qA 10, 13, 6, 1 zA[(�A � SST) � 0.608�A(qA � qS)], �Au2

A, uA, qS � qA, SST � �A, �A, qA,
zA, SLP, uA(qS � qA)LE � 150

SST � �A
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conditions within the limits reported in Table 2. To
specifically assess the accuracy of the ANNs in midlati-
tude and equatorial regions, two other testing datasets
based on in situ observations were created. Data col-
lected during the POMME experiment were gathered
for the first dataset. POMME was conducted in the
North Atlantic, from February to April 2001, in a mid-
latitude region from 35°N, 38°W to 49°N, 33°W. We
used data that gather thermosalinograph SST measure-
ments and meteorological observations made at 17.5 m
above the sea surface, which were performed onboard
the R/V Atalante, a French research vessel (Caniaux et
al. 2005). During POMME, various stability conditions
were encountered, from very unstable (
 � �47) to
stable (
 � 0.24), with winds from 0 to 20 m s�1 and
moderate humidity (4–10 g kg�1). In contrast, the sec-
ond testing dataset represents equatorial conditions,
with free-convection episodes, low winds (5.9 m s�1 on
average), and large humidity (19.6 g kg�1 for the whole
dataset). Data are 10-min-averaged observations from
22 January 1998 to 2 May 2001, transmitted by one
moored buoy of the PIRATA network, located at 0°,
35°W. The height of measurement of the meteorologi-
cal variables was 3.5 m. Note that the PIRATA buoys
did not measure SLP, which was thus assumed to be
constant (1013.15 hPa) for this study.

c. Validation dataset

The validation dataset consists of 12 ECMWF opera-
tional analyses whose dates and hours were selected
between 1997 and 1998. Global analyses were chosen
because they correspond to the intended context of ap-
plication of the ANNs, which is initializing numerical
models of the global ocean. The choice of 12 fields is a
compromise between a good representation of all the
possible environmental conditions at global scale and
the maximum number of data that could reasonably be
processed. Two useful features of this dataset are its
large size (268 227 flux values) and its spatial consis-

tency, which means that it is possible to analyze the
performance of the ANNs as a function of latitude and
longitude. The spatial resolution of the analyses is
1.125° � 1.125°. Bulk variables were extracted at the
lowest level of the ECMWF model, and fluxes were
calculated with the MC algorithm.

5. Learning of the ANNs

In this section, we present the results of the learning
phase of the eight ANNs described in section 3, that is
the comparison between ANN fluxes and MC fluxes for
the learning and testing datasets. In the following, the
estimates of �, HS, and LE obtained after application of
the ANNs to bulk variables are called �ANN, HSANN,
and LEANN, respectively. Similarly, the values of �, HS,
and LE calculated with the MC algorithm are called
�MC, HSMC, and LEMC, respectively. The rms deviations
and biases between ANN fluxes and MC fluxes are
given in flux units (N m�2 and W m�2) as well as in
percentage, with respect to the following reference
fluxes: 0.1 N m�2 for the momentum flux, 30 W m�2 for
the sensible heat flux, and 70 W m�2 for the latent heat
flux. These values correspond to an average over the
World Oceans, calculated with the 12 analyses of the
validation dataset.

The comparisons between the ANN fluxes of the
learning and testing datasets and the corresponding MC
fluxes are reported in Table 3 and suggest a very good
performance. Specifically, the rms deviation between
�ANN and �MC for the learning dataset is 0.003 N m�2 or
3%. The rms deviation between �ANN and �MC is even
smaller for the all-conditions dataset and POMME
(0.002 N m�2), and is negligible for PIRATA (0.001
N m�2). One may notice a positive bias between �ANN

and �MC for this dataset (�0.004 N m�2, or 4%), and a
small negative bias for POMME (�0.001 N m�2). It
was found that the bias slightly depended on the sign of

, revealing a nonperfect learning.

The rms deviations between HSANN and HSMC vary
between 0.33 and 1.1 W m�2, or 1.1% and 3.7%, de-
pending on the dataset. The performance of the ANNs
is the poorest for PIRATA in terms of bias (1.1 W m�2),
whereas it is negligible for POMME (0.2 W m�2) and
the all-conditions dataset (�0.1 W m�2).

The comparison between LEANN and LEMC indicates
that the rms error of the ANN estimates is 1.6 W m�2

for the learning dataset (2.3%), which is adequate. The
rms is also small for POMME and PIRATA (i.e., 0.6–
1.1 W m�2). One may notice that the rms deviation is
larger for the all-conditions dataset (2.1 W m�2, or 3%)
than for the learning dataset. This means that parts of
the situations of the learning dataset were not correctly

TABLE 2. Minimum and maximum values selected for the bulk
variables and fluxes of the learning datasets.

Variable Units Min value Max value

uA m s�1 0.1 27
�A °C �20 32
SST °C 0.1 36
qA g kg�1 0.1 24
SLP hPa 900 1040
zA m 3.5 35
� N m�2 0 1.5
HS W m�2 �150 600
LE W m�2 �100 800

 — �50 0.25
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accounted for during the learning phase, which could
possibly be solved by using a larger learning dataset.
The bias of LEANN with respect to LEMC is negligible
for all the testing datasets (0%–0.2%).

An extended version of the all-conditions dataset
whose size was 1 000 000 000 fluxes was used for com-
paring the computational speed of the MC and ANN
algorithms. The algorithms were implemented in

FIG. 3. Comparison between ANN estimates
and MC values for (a) �, (b) HS, and (c) LE

with the validation dataset.

TABLE 3. Comparison between �ANN, HSANN, LEANN, and �MC, HSMC, LEMC for the learning dataset, the all-conditions dataset, the
POMME, and the PIRATA datasets.

Variables compared
(units) Statistics

Learning
dataset

All-conditions
dataset POMME PIRATA

�ANN, �MC (N m�2) Correlation 1 1 1 0.999
Rms diff 0.003 0.002 0.002 0.001
Bias 0 0 �0.001 0.004
Linear fit x x 0.996x 0.984x � 0.004

HSANN, HSMC (W m�2) Correlation 1 1 1 0.992
Rms diff 1.031 1.106 0.33 0.53
Bias 0 �0.05 0.232 1.056
Linear fit x x � 0.04 0.985x � 0.368 1.002x � 1.05

LEANN, LEMC (W m�2) Correlation 1 1 1 0.999
Rms diff 1.638 2.137 1.082 0.606
Bias 0 0.038 �0.144 0.007
Linear fit x � 0.007 x � 0.045 0.985x � 0.886 1.02x � 0.015
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FORTRAN, on a workstation with a 2-GHz processor.
The computation time found was 1 min 12 s for the MC
algorithm against 9.6 s for its ANN version, which
means that the ANN fluxes were calculated more than
7 times faster than the MC fluxes. With the same data
as input, it took 16.8 s for the COARE3.0 (three-
iteration version) to compute the fluxes. This means
that the COARE3.0 algorithm is very fast compared
with the MC algorithm. However, the ANN is still
faster than the COARE3.0 algorithm by a factor of 1.75
(�43%). Furthermore, the execution time increased to
21.6 s when the COARE3.0 algorithm was used with
five iterations (which corresponds to �55% speed gain
for the ANN, or a factor of 2.2), and 33.7 s with 10
iterations (71%, or �3.5).

6. Accuracy of the method for large-scale
applications

In this section, the ANN flux estimates are compared
with the MC fluxes of the validation dataset. Next, the

deviation between MC and ANN fluxes is analyzed in
terms of spatial variations. Last, the accuracy of the
ANN flux estimates is assessed for the cases where the
MC algorithm did not converge.

a. Comparison between ANN and MC fluxes

The accuracy of the ANN fluxes is noticeably close
for both the learning and the validation dataset (Table
3; Fig. 3). It confirms that the learning of the ANNs was
overall correct. The rms error between �ANN and �MC is
0.003 N m�2 for the validation dataset, against 0.003
N m�2 for the learning dataset. For HS , the rms devia-
tion is even smaller for the validation dataset (0.5 W
m�2) than for the learning dataset (1.0 W m�2). The
rms deviation between LEANN and LEMC is 1.76 W m�2

for the validation dataset, which is 0.1 W m�2 more
than the rms deviation on the learning dataset. The
biases between ANN fluxes and MC fluxes are all nega-
tive, though small, namely �0.001 N m�2 (1%) in �,
�0.12 W m�2 (�1%) for HS, and �0.41 W m�2 (�1%)
for LE.

FIG. 4. Same as Fig. 3, but
with a subset of the valida-
tion dataset for which the
flux ranges correspond to
frequently observed values.
The smaller flux ranges re-
veal jumps at the transition
between ANNs.
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Although encouraging, these results could be mis-
leading because 90% of the fluxes in the validation
dataset are within smaller limits: 0 to 0.3 N m�2 for �,
�20 to 40 W m�2 for HS , and �10 to 150 W m�2 for LE.
The comparisons between ANN fluxes and MC fluxes
in these ranges are shown in Fig. 4. The rms deviations
between ANN and MC fluxes are 0.003 N m�2 for �, 0.4
W m�2 for HS , and 1.5 W m�2 for LE , which is either
smaller or equal to the deviations found with the whole
dataset. On the other hand, the biases are larger in Figs.

4a,c than in Fig. 3, namely �0.002 N m�2 (2%) for � and
�0.8 W m�2 (1.2%) for LE. These results show that the
linearity of the relationships between MC and ANN
fluxes is not perfect, that is, the bias between ANN and
MC fluxes depends on the value of the flux. The reason
is twofold. First, the biases are related to the use of
different ANNs. Furthermore, the clusters of points in
Figs. 4b,c clearly show the delimitations between the
areas where ANN3–ANN8 were used. In particular,
Fig. 4c shows a steplike bias of 4 around 0 W m�2,

FIG. 5. Spatial representation of the difference between ANN estimates and MC values for
(a) �, (b) HS, and (c) LE.
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which corresponds to the transition from ANN5 to
ANN6. Next, to a lesser extent, the biases result from a
nonperfect learning of the ANNs, that is, the relation-
ships between the ANN fluxes and some of the input
variables were not perfectly accounted for by the ANNs
during the learning phase. This is noticeable in Fig. 4c,
where LE values calculated with ANN6 have a bias of
�0.96 W m�2 with respect to LEMC between 0 and 80
W m�2, while their bias is smaller (�0.90 W m�2) be-
tween 80 and 150 W m�2.

b. Spatial analysis

The 12 ANN and MC flux fields of the validation
dataset were averaged. The rms deviation between the
averaged �ANN and �MC is 0.001 N m�2, and the bias is
�0.0016 N m�2 or �1.78%. As shown in Fig. 5, the
spatial distribution of the deviation between �ANN and
�MC is not perfectly homogeneous over the global
ocean, although the deviation is smaller than �0.003
N m�2 for 90% of the ocean. This occurs mostly at
latitudes from 0° to �45°, with a trend to underestimate
� in the Tropics (10°–20°) and overestimate it near the
equator (�5°) and in the subtropics (20°–30°). The re-
maining 10% cases correspond to fluxes that are under-
estimated by 0.008 N m�2 (or 8.5%) at maximum.
These maxima are located in the higher midlatitudes
and high-latitude regions (beyond �45°), where the
variability of �MC is large (not shown).

The rms and mean deviations between averaged
HSANN and HSMC are 0.22 and �0.12 W m�2, respec-
tively, or �0.4% � 0.7%. An analysis of the deviation
between HSANN and HSMC as a function of HSMC re-
vealed that the ANNs tended to overestimate negative
flux values by 0–0.8 W m�2, while it underestimated up
to �0.5 W m�2 the positive fluxes smaller than 25
W m�2. Beyond this threshold, the deviation did not
depend on HSMC. These biases are clearly visible in Fig.
5b, where the underestimation of HS is maximum (�1
W m�2) in the neighborhood of the Gulf Stream and
the Kuroshio, as well as near 40°S, at locations where
HS is large. Larger biases in HS are observed at lati-
tudes larger than �45°, where the variability of HS is
large. Specifically, regions of strong underestimation
and overestimation of HS are sometimes close to
each other, like at 45°S and 50°S. For instance, the
maximum deviation between HSANN and HSMC is 2 W
m�2 along a cross section from 45°S, 80°E to 60°S,
80°E. However, this represents only 2.5% of the error
because the flux variation is large, �80 W m�2, along
this cross section.

The LEANN is underestimated by 0.42 W m�2 in av-
erage with respect to the MC fluxes. The negative bias
is found over most of the ocean with peak values of

�3 W m�2 at the equator and in the subtropics. On the
other hand, the ANN fluxes are overestimated by 2.8
W m�2 maximum in the Tropics. These results imply
that in the Pacific, spatial gradients of HS along latitu-
dinal cross sections from 0° to �30° are overestimated
by 6 W m�2. This is, however, reasonable given that the
flux variation exceeds 180 W m�2 along such cross sec-
tions, that is the maximum error is 3.33%.

c. Cases of no convergence

An analysis of the convergence of the MC algorithm
was conducted with data from the all-conditions
dataset. It revealed that stable boundary layers were
most problematic. Convergence was specifically more
difficult to obtain for uA smaller than 6 m s�1 and nega-
tive values of SST minus �A, as shown in Fig. 6. When
the MC algorithm was applied to the validation dataset,
convergence was not achieved in 4855 cases out of 268
227, which represents only �1.8% of the cases. Al-
though this figure is small, this particularity of the MC
algorithm may be problematic for certain applications.
This is best shown in Fig. 7a, which represents one of
the MC flux fields of the validation dataset (0600 UTC
6 April 1997). The numerous black areas in Fig. 7a
correspond to the cases for which the MC algorithm did
not converge. If this flux field was used to force an
ocean model, it would be necessary to use an interpo-
lation scheme to fill the gaps (black areas). Note that
although Fig. 7a represents HSMC only, the gaps appear
as well in the fields of �MC and LEMC (not shown). It is
difficult to firmly state the accuracy of the ANN fluxes
for those cases because no reference flux values are
available. However, one may show that the flux values

FIG. 6. Representation of the cases for which the MC algorithm
did not converge. Only the sensible heat flux is represented, as a
function of the wind speed and air–sea temperature difference.
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given by the ANNs are spatially consistent, and are
consistent with rough flux estimates obtained with a
modified version of the MC algorithm that uses a con-
stant 
. Indeed, if the stability is imposed on the MC
algorithm (which of course leads to nonaccurate
fluxes), the algorithm converges every time.

Figure 7b shows the field of sensible heat flux that
corresponds to the field of Fig. 7a, except that the MC
algorithm was applied with a constant stability, equal to
�0.05 if SST was smaller than �A, and �0.05 in the
opposite case. This modified version of the MC algo-

rithm is called the stability controlled MC (SCMC) al-
gorithm. Figures 7a,b exhibit similar spatial structures
of sensible heat flux. Moreover, the correlation coeffi-
cient and rms deviation between the SCMC and MC
fluxes are 0.994 and 4.2 W m�2, respectively. These
results show that the fluxes calculated with the SCMC
algorithm are a reasonably good estimator of the MC
fluxes. This is, however, not as good as ANN fluxes, for
which we have found an rms deviation of 0.55 W m�2

with respect to MC fluxes. Figures 7b,c reveal similar
structures of sensible heat flux in the cases where the

FIG. 7. Spatial distribution of the sensible heat flux HS issued from (a) MC values, (b) SCMC
values, and (c) ANN estimates. The SCMC fluxes correspond to a special version of the MC
algorithm, for which 
 is prescribed.
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MC algorithm did not converge, which suggests that the
ANN fluxes do not diverge significantly from reason-
able values of the heat fluxes. Furthermore, the statis-
tical comparison between SCMC fluxes and ANN
fluxes in these nonconvergent areas give acceptable de-
viations for �, HS, and LE, as reported in Table 4. In
Figs. 7a–c, a zoom was made on a region of the South
Atlantic that corresponds to strong downward sensible
heat fluxes (�75 W m�2). The MC algorithm did not
converge systematically everywhere in this region
(black areas in Fig. 7a). On the other hand, the SCMC
algorithm strongly underestimated the negative fluxes,
with respect to the MC fluxes (Fig. 7b). Only the ANNs
gave a result that was consistent with MC fluxes, but
with no gaps. In this particular case, the ANN field was
thus a good compromise with respect to the other al-
gorithms, in terms of near-surface stability effects and
convergence.

7. Conclusions

An accurate and computationally fast method was
proposed for calculating turbulent fluxes at the air–sea
interface. The method is a statistical model of a bulk
algorithm that is here supposed to be perfect. It is 7
times faster than the bulk algorithm and 40% faster
than the recent COARE3.0 algorithm. The accuracy of
the method was checked with four datasets represent-
ing global, equatorial, and midlatitude environmental
conditions, with heights of bulk variables ranging from
3.5 to 35 m. The results indicated that the rms accuracy
of the flux estimates was 0.003 N m�2 for the momen-
tum flux, 0.5 W m�2 for the sensible heat flux, and on
the order of 1.8 W m�2 for the latent heat flux, for the
World Oceans. The systematic errors of the ANNs are
�0.001 N m�2, �0.1 W m�2, and �0.4 W m�2, for the
momentum, sensible, and latent heat fluxes, respec-
tively.

The comparisons also revealed some learning faults,
which result in rms and systematic deviations that de-
pend on environmental conditions and flux values. The
learning faults are related to the choice of the configu-

ration and input variables of the ANNs, as well as the
selection of the learning datasets. These faults are very
difficult to avoid because a very large range of fluxes
must be accounted for during the learning phase, while
a small range is eventually used when the ANNs are
applied. In this context, the linearity of the estimated
fluxes must be very good, which is a challenge because
it is by essence difficult to control with ANNs. The
solution chosen was to use several ANNs for the calcu-
lation of each of the three fluxes. As a result, each ANN
had a limited range of application, and the linearity and
biases were subsequently better controlled. The limita-
tion of this approach is the presence of jumps at the
transitions between the use of two ANNs. However, it
seems to be a reasonable choice because the resulting
errors are acceptable, compared with the uncertainties
associated with the use of bulk parameterizations.

The spatial distribution of the systematic errors in
ANN fluxes is not homogeneous over the global ocean,
with peak deviations at latitudes where the variability
of the fluxes is large. However, these peak deviations
are acceptable, namely �0.008 N m�2 for the momen-
tum flux, �1 W m�2 for the sensible heat flux, and �3
W m�2 for the moisture flux. It was also shown that the
fluxes produced by the ANN at the locations where the
bulk algorithm did not converge were spatially consis-
tent, and were consistent with fluxes calculated with a
special version of the bulk algorithm whose stability
was controlled (i.e., a version that gave fluxes even if
the bulk algorithm did not converge), but that was glo-
bally not as efficient as the ANN method. The pro-
posed approach seems thus particularly well suited for
calculating fluxes in ocean, atmosphere, and ocean–
atmosphere coupled models, an effort that is under way
at the Centre National de Recherches Météoro-
logiques.

REFERENCES

Bishop, C. M., 1995: Neural Networks for Pattern Recognition.
Oxford University Press, 482 pp.

Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A.
Curry, 2003: Which bulk aerodynamic algorithms are least
problematic in computing ocean surface turbulent fluxes? J.
Climate, 16, 619–635.

Businger, J. A., J. C. Wyngaard, and Y. Izumi, 1971: Flux profile
relationships in the atmospheric surface layer. J. Atmos. Sci.,
28, 181–189.

Caniaux, G., A. Brut, D. Bourras, H. Giordani, A. Paci, L. Prieur,
and G. Reverdin, 2005: A 1 year sea surface heat budget in
the northeastern Atlantic basin during the POMME experi-
ment: 1. Flux estimates. J. Geophys. Res., 110, C07S02,
doi:10.1029/2004JC002596.

Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S.
Young, 1996: Bulk parameterization of air-sea fluxes for
TOGA COARE. J. Geophys. Res., 101, 3747–3767.

TABLE 4. Comparison between ANN fluxes and SCMC fluxes
for the cases where the MC algorithm did not converge. The
SCMC fluxes correspond to a special version MC algorithm, for
which 
 is prescribed.

Variable
(units) Correlation Rms Bias Linear fit

� (N m�2) 0.989 0.009 �0.004 0.97x � 0.003
HS (W m�2) 0.989 3.78 2.35 0.69x � 0.77
LE (W m�2) 0.998 3.36 0.38 1.08x � 2.15

1088 M O N T H L Y W E A T H E R R E V I E W VOLUME 135

Unauthenticated | Downloaded 12/22/20 01:28 PM UTC



——, ——, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk
parameterization of air–sea fluxes: Updates and verification
for the COARE algorithm. J. Climate, 16, 571–591.

Grachev, A. A., and C. W. Fairall, 1997: Dependence of the
Monin–Obukhov stability parameter on the bulk Richardson
number over the ocean. J. Appl. Meteor., 36, 406–414.

Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk param-
eterization of air-sea exchanges of heat and water vapor in-
cluding the molecular constraints at the interface. J. Atmos.
Sci., 36, 1722–1735.

Mehrotra, K., K. M. Chilukuri, and S. Ranka, 1996: Elements of
Artificial Neural Networks. MIT Press, 344 pp.

Mémery, L., G. Reverdin, J. Paillet, and A. Oschlies, 2005: Intro-

duction to the POMME special section: Thermocline venti-
lation and biogeochemical tracer distribution in the northeast
Atlantic Ocean and impact of mesoscale dynamics. J. Geo-
phys. Res., 110, C07S01, doi:10.1029/2005JC002976.

Monin, A. S., and A. M. Obukhov, 1954: The main features of
turbulent mixing in the surface atmospheric layer. Tr. Inst.
Geophys. Acad. Sci. USSR, 24, 163–187.

Servain, J., A. J. Busalacchi, M. J. McPhaden, A. D. Moura, G.
Reverdin, M. Vianna, and S. E. Zebiak, 1998: A Pilot Re-
search Moored Array in the Tropical Atlantic (PIRATA).
Bull. Amer. Meteor. Soc., 79, 2019–2031.

Smith, S. D., 1980: Wind stress and heat flux over the ocean in
gale force winds. J. Phys. Oceanogr., 10, 709–726.

MARCH 2007 B O U R R A S E T A L . 1089

Unauthenticated | Downloaded 12/22/20 01:28 PM UTC


