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POISSON APPROXIMATION FOR LARGE

CLUSTERS IN THE SUPERCRITICAL FK MODEL

Olivier COURONNÉ1

13 May 2005

Abstract. Using the Chen-Stein method, we show that the spatial distribution of
large finite clusters in the supercritical FK model approximates a Poisson process
when the ratio weak mixing property holds.

1. Introduction.

We consider here the behaviour of large finite clusters in the supercritical FK
model. In dimension two and more, their typical structure is described by the Wulff
shape [4, 5, 6, 8, 9, 10, 11]. An interesting issue is the spatial distribution of these
large finite clusters. Because of their rarity, a Poisson process naturally comes to
mind. Indeed, we prove that the point process of the mass centers of large finite
clusters sharply approximates a Poisson process. Furthermore, considering large
finite clusters in a large box such that their mean number is not too large, we
observe Wulff droplets distributed according to this Poisson process.

Redig and Hostad have recently studied the law of large finite clusters in a given
box [20]. Their aim was different, in that they obtained accurate estimates on
the law of the maximal cluster in the box, but the intermediate steps are similar.
In the supercritical regime they considered only Bernoulli percolation and not FK
percolation.

As in [1, 13, 15, 20], our main result is based on a second moment inequality. We
have to control the interaction between two clusters. For this, we suppose that ratio
weak mixing holds [2]. This property allows us to apply the Chen-Stein method in
order to get the approximation by a Poisson process.

The ratio weak mixing holds in dimension two as soon as dual connectivities
are exponentially decreasing [2]. For dimensions at least three, we prove that ratio
weak mixing holds for p close enough to 1. Hence our main results are valid in all
dimensions for p large enough.

The following section is devoted to the statement of our results. In section 3, we
define the FK model. We recall the weak and the ratio weak mixing properties and
we state a perturbative mixing result in section 4. Section 5 contains the definition

1991 Mathematics Subject Classification. 60K35, 82B20.
Key words and phrases. FK model, ratio weak mixing.
I thank R. Cerf for suggesting the problem and for critically reading the manuscript.
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of our point process and the description of the Chen-Stein method. The core of
the article is section 6, where we study a second moment inequality. In section 7,
we deal with the probability of having a large finite cluster with its center at the
origin. In section 8, we treat the case of distant clusters and we finish the proof
of Theorem 1. The proof of Theorem 3 is done in section 9, and the proof of the
perturbative mixing result is done in section 10.

2. Statement of the results. We consider the FK measure Φ on the d-dimensio-
nal lattice Zd and in the supercritical regime. The point p̂c stands for p̂g in dimen-
sion two, and for pslab

c in dimensions three and more. For q ≥ 1 we let U(q) be the
set such that there exists a unique FK measure on Zd of parameters p and q if p is
not in U(q). By [17] this set is at most countable.

Let Λ be a large box in Zd. We fix n an integer and we consider the finite clusters
of cardinality larger than n. We call them n-large clusters. Let C be a finite cluster.
The mass center of C is

MC =

⌊
1

|C|

∑

x∈C

x

⌋
,

where ⌊x⌋ denotes the site of Zd whose coordinates are the integer part of those of
x. We define a process X on Λ by

X(x) =

{
1 if x is the mass center of a n–large cluster C

0 otherwise.

Let λ be the expected number of sites x in Λ such that X(x) = 1. We denote
by L(X) the law of a process X . For Y a process on Λ, we let ||L(X) − L(Y )||TV

be the total variation distance between the laws of the processes X and Y [7].

Theorem 1. Let q ≥ 1 and p > p̂c with p /∈ U(q). Let Φ be the FK measure on
Zd of parameters p and q. We suppose that Φ is ratio weak mixing. There exists a
constant c > 0 such that: for any box Λ, letting X be defined as above, and letting
Y be a Bernoulli process on Λ with the same one-dimensional marginals as X, we
have for n large enough

||L(X) − L(Y )||TV ≤ λ exp(−cn(d−1)/d).

As a corollary, the number of large clusters in Λ is approximated by a Poisson
variable.

Corollary 2. Let Φ be as in Theorem 1. Let N be the number of large finite
clusters whose mass centers are in the box Λ. Let Z be a Poisson variable of mean
λ, and let c > 0 be the same constant as in Theorem 1. Then for any A ⊂ Z+ and
for n large enough,

|P (N ∈ A) − P (Z ∈ A)| ≤ λ exp
(
− cn(d−1)/d

)
.

We provide next a control of the shape of the large finite clusters. Here we
consider a sequence of boxes (Λn)n. If the size of Λn is not too large, that is of
order less than exp(ρn(d−1)/d) for a certain constant ρ, then the energy created by

2



the n–large clusters of Λn dominates a term of entropy. In this case we can assert
that the shape of these n-large clusters are close to the Wulff shape.

More precisely, let W be the Wulff crystal, let θ be the density of the infinite
cluster, and let Ld(·) be the Lebesgue measure on Rd. Let

W =
1

(
θLd(W)

)1/d
W

be the renormalized Wulff crystal. For l > 0, let V∞(C, l) be the neighbourhood of
C of width l for the metric | · |∞. For two sets A and B, the notation A△B stands
for the symmetric difference between A and B.

Theorem 3. Let Φ be as in Theorem 1. Let f : N → N be such that f(n)/n → 0
and f(n)/ lnn → ∞ as n goes to infinity. Let (Λn)n be a sequence of boxes in Zd,
and let λn be the expected number of mass centers of n–large clusters in Λn. For
all δ > 0, there exists c > 0 such that if lim sup 1/n(d−1)/d lnλn ≤ c.

lim sup
n→∞

1

n(d−1)/d
ln Φ

[
Ld

(( ⋃

x∈Λn

X(x)=1

(x + W )
)
△

(
n−1

⋃

C n-large
MC∈Λn

V∞(C, f(n))
))

≥ δ
∣∣{x : X(x) = 1}

∣∣
]

< 0.

For clarity, we omit the subscript n on X .
Remark : Consider a sequence (Λn)n such that |Λn| ≃ exp(ρn(d−1)/d) and let
w1 > 0 be such that [12]:

P (n ≤ |C(0)| < ∞) ≈ exp(−w1n
(d−1)/d).

On the one hand we need ρ ≥ w1 in order to have some n–large clusters in Λn. On
the other hand the condition on λn in theorem 3 may be rewritten as ρ ≤ c + w1.

The ratio weak mixing property is a key hypothesis in our results. The following
proposition allow us to apply the three preceding results for p large enough in all
dimensions.

Proposition 4. Let d ≥ 3 and q ≥ 1. There exists p0 < 1 such that Φ satisfies the
ratio weak mixing property for p > p0.

3. FK model.

We consider the lattice Zd with d ≥ 2. We turn it into a graph by adding bonds
between all pairs x, y of nearest neighbours. We write E for the set of bonds and
we let Ω be the set {0, 1}E. A bond configuration ω is an element of Ω. A bond e
is open in ω if ω(e) = 1, and closed otherwise.

A path is a sequence (x0, . . . , xn) of distinct sites such that 〈xi, xi+1〉 is a bond
for each i, 0 ≤ i ≤ n−1. A subset ∆ of Zd is connected if for every x, y in ∆, there
exists a path included in ∆ connecting x and y. If all bonds of a path are open in
ω, we say that the path is open in ω. A cluster is a connected component in Zd

when we keep only open bonds. It is usually denoted by C. Let x be a site. We
write C(x) for the cluster containing x.
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To define the FK measure, we first consider finite volume FK measures. Let Λ
be a box included in Zd. We write E(Λ) for the set of bonds 〈x, y〉 with x, y ∈ Λ.
Let ΩΛ = {0, 1}E(Λ) be the space of bonds configuration in Λ. Let FΛ be its σ-field,
that is the set of subsets of ΩΛ. For ω in ΩΛ, we define cl(ω) as the number of
clusters of the configuration ω.

For p ∈ [0, 1] and q ≥ 1, the FK measure in Λ with parameters p, q and free
boundary condition is the probability measure on ΩΛ defined by

∀ω ∈ ΩΛ Φf,p,q
Λ (ω) =

1

Zf,p,q
Λ

( ∏

e∈E(Λ)

pω(e)(1 − p)1−ω(e)
)
qcl(ω),

where Zf,p,q
Λ is the appropriate normalization factor.

We also define FK measures for arbitrary boundary conditions. For this, let ∂Λ
be the boundary of Λ,

∂Λ = {x ∈ Λ such that ∃ y /∈ Λ, 〈x, y〉 is a bond}.

For a partition π of ∂Λ, a π–cluster is a cluster of Λ when we add open bonds
between the pairs of sites that are in the same class of π. Let clπ(ω) be the number
of π–clusters in ω. To define Φπ,p,q

Λ we replace cl(ω) by clπ(ω) and Zf,p,q
Λ by Zπ,p,q

Λ

in the above formula.
There exists a countable subset U(q) in [0, 1] such that the following holds. As

Λ grows and invades the whole lattice Zd, the finite volume measures converge
weakly toward the same infinite measure Φp,q

∞ for all p /∈ U(q) [17]. We will always
suppose that this occurs, that is p /∈ U(q). We shall drop the superscript and the
subscript on Φp,q

∞ , and simply write Φ. It is known that the FK measure Φ is
translation–invariant.

The measure Φ verify the finite energy property: for each p in (0, 1), there exists
δ > 0 such that for every finite–dimensional cylinders ω1 and ω2 that differ by only
one bond,

(1) Φ(ω1)/Φ(ω2) ≥ δ.

The random cluster model has a phase transition. There exists pc ∈ (0, 1) such
that there is no infinite cluster Φ–almost surely if p < pc, and an infinite cluster
Φ–almost surely if p > pc. Other critical points have been introduced in order to
work with ’fine’ properties. In dimension two, we define p̂g as the critical point
for the exponential decay of dual connectivities, see [14, 17]. In three and more
dimensions, let pslab

c be the limit of the critical points for the percolation in slabs
[22]. For brevity, p̂c will stand for p̂g in dimension two, and for pslab

c in dimensions
three and more. It is believed that p̂c = pc in all dimensions and for all q ≥ 1, but
in most cases we know only that p̂c ≥ pc.

We now state Theorem 17 of [12], applied to FK measures.
If q ≥ 1, p > p̂c and p /∈ U(q), there exists w1 > 0 such that

(2) lim
1

n(d−1)/d
ln Φ

(
n ≤ |C(0)| < ∞

)
= −w1,

where C(0) is the cluster of the origin.
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4. Mixing properties.

Let x and y be two points in Zd and let (xi)
d
i=1 and (yi)

d
i=1 be their coordinates.

Write |x − y|1 =
∑d

i=1|xi − yi|.

Definition 5. Following [3], we say that Φ satisfies the weak mixing property if
for some c, µ > 0, for all sets Λ, ∆ ⊂ Zd,

(3)

sup
{∣∣Φ(E | F ) − Φ(E)

∣∣ : E ∈ FΛ, F ∈ F∆, Φ(F ) > 0
}

≤ c
∑

x∈Λ,y∈∆

e−µ|x−y|1 .

Definition 6. Following [3], we say that Φ satisfies the ratio weak mixing property
for some c1, µ1 > 0, for all sets Λ, ∆ ⊂ Zd,

(4)

sup
{∣∣∣

Φ(E ∩ F )

Φ(E)Φ(F )
− 1

∣∣∣ : E ∈ FΛ, F ∈ F∆, Φ(E)Φ(F ) > 0
}

≤ c1

∑

x∈Λ,y∈∆

e−µ1|x−y|1 ,

Roughly speaking, the influence of what happens in ∆ on the state of the bonds in
Λ decreases exponentially with the distance between Λ and ∆.

In dimension two, the measure Φ is ratio weak mixing as soon as p > p̂c [3],
but such a result is not available in dimension larger than three. We provide a
perturbative mixing result, which is valid for all dimensions larger than three, and
which is similar to the weak mixing property.

Lemma 7. Let d ≥ 3 and q ≥ 1. There exists p1 < 1 and c > 0 such that: for all
p > p1, all connected sets Γ, ∆ with Γ ⊂ ∆, every boundary conditions η, ξ on ∆,
every event E supported on Γ,

|Φη,p,q
∆ (E) − Φξ,p,q

∆ (E)| ≤ 2|∂∆| exp
(
− c inf

{
|x − y|1, x ∈ Γ, y ∈ ∂∆

})
.

We are not aware of a particular reference for this result, and we give a sketch of
the proof in Section 10.

5. The Chen-Stein method.

From the percolation process, we want to extract a point process describing the
occurrence of large finite clusters. For a point x in Rd, let ⌊x⌋ denotes the site of
Zd whose coordinates are the integer parts of those of x. Assume that C is a finite
subset of Zd. Then the mass center of C is

MC =

⌊
1

|C|

∑

x∈C

x

⌋
.

Let n ∈ N. A n–large cluster is a finite cluster of cardinality larger than n. Let Λ
be a box in Z

d. We define a process X on Λ by

X(x) =

{
1 if x is the mass center of a n–large cluster C

0 otherwise.
5



In order to apply the Chen-Stein method, we define for x, y in Zd,

px = Φ(X(x) = 1),

pxy = Φ
(
∃C, C′ two clusters such that: C ∩ C′ = ∅,

n ≤ |C|, |C′| < ∞, MC = x and MC′ = y
)
,

and we let Bx = B(x, n2) be the box centered at x of side length n2. Let λ be the
expected number of sites x in Λ such that X(x) = 1. We have λ =

∑
x∈Λ px and,

because of the translation–invariance of Φ, for each site x in Λ

(5) λ = |Λ| · px.

We introduce three coefficients b1, b2, b3 by:

b1 =
∑

x∈Λ

∑

y∈Bx

pxpy,

b2 =
∑

x∈Λ

∑

y∈Bx\x

pxy,

b3 =
∑

x∈Λ

E
∣∣∣E

(
X(x) − px|σ(X(y), y /∈ Bx

))∣∣∣.

Let Z1 and Z2 be two Bernoulli processes on Λ. The total variation distance between
the laws of the processes Z1 and Z2 [7] is

||L(Z1) − L(Z2)||TV = 2 sup
{∣∣P (Z1 ∈ A) − P (Z2 ∈ A)

∣∣, A subset of {0, 1}Λ
}
.

Let Y be a Bernoulli process on Λ such that the Y (x)’s are iid and

P (Y (x) = 1) = px.

The Chen-Stein method provides a control of the total variation distance between
X and Y in terms of the bi’s. Indeed we apply Theorem 3 of [7] to obtain that

(6) ||L(X) − L(Y )||TV ≤ 2(2b1 + 2b2 + b3) + 4
∑

x∈Λ

p2
x.

To prove Theorem 1, we shall provide an upper bound on each term bi. The ratio
weak mixing property is essential to our proof of the bound of b2. Nevertheless, we
believe that one can prove the following inequality, without any mixing assumption:

(7) Φ
[
n ≤ C(x) < ∞, n ≤ C(y) < ∞, C(x) ∩ C(y) = ∅

]
≤ Φ(2n ≤ C(0) < ∞).

Let us give now an upper bound on px. By [16], there exists a constant c > 0
such that:

Φ(n ≤ |C(0)| < ∞) ≤ exp
(
− cn(d−1)/d

)
.

6



But
px ≤

∑

k≥n

Φ
(
∃C, |C| = k, MC = x

)

≤
∑

k≥n

∑

y∈B(x,2k)

Φ
(
|C(y)| = k

)

≤
∑

k≥n

(2k)d exp
(
− ck(d−1)/d

)
.

Hence there exists a constant c > 0 such that for n large enough

(8) px ≤ exp(−cn(d−1)/d).

6. Second moment inequality. In this section we bound the term pxy with the
help of the ratio weak mixing property. First we introduce a local version of pxy.
We define p̃xy by

p̃xy = Φ
(
∃C, C′ two clusters such that

n ≤ |C| < n2, n ≤ |C′| < n2, MC = x, and MC′ = y
)
.

The distance between two sets Γ and ∆ ⊂ Zd is

d(Γ, ∆) = inf{|x − y|1, x in Γ, y in ∆},

and it is the length of the shortest path connecting Γ to ∆.
We divide the term p̃xy into two parts. Let µ1 be the constant appearing in the

definition of the ratio weak mixing property and let K > 5/µ1. We define p̃ c
xy by

p̃ c
xy = Φ

(
∃C, C′ two clusters such that d(C, C′) ≤ K lnn,

n ≤ |C| < n2, n ≤ |C′| < n2, MC = x, and MC′ = y
)
.

We define also p̃ d
xy by

p̃xy = Φ
(
∃C, C′ two clusters such that d(C, C′) > K lnn,

n ≤ |C| < n2, n ≤ |C′| < n2, MC = x, and MC′ = y
)
.

The superscripts c and d stand for close and distant. So p̃xy = p̃ c
xy + p̃ d

xy and we
study separately these two terms.

First we focus on p̃ d
xy. We have

p̃ d
xy ≤

∑

C,C′ distant

Φ(C and C′ are clusters),

where the sum is over the couples (C, C′) of connected subsets of Zd such that

n ≤ |C| < n2, n ≤ |C′| < n2,

MC = x, MC′ = y, and d(C, C′) > K lnn.
7



Let c1, µ1 be the constants appearing in the definition of the ratio weak mixing
property. Let (C, C′) be a couple appearing in the sum above. We have

∑

u∈C,v∈C′

e−µ1|u−v| ≤ n4 exp(−µ1K lnn),

so for n large enough

c1

∑

u∈C,v∈C′

e−µ1|u−v| ≤ 1.

So for n large enough

Φ(C and C′ are clusters) ≤ 2Φ(C is a cluster) · Φ(C′ is a cluster),

by the ratio weak mixing property (4). Hence there exists c > 0 such that for n
large enough

(9)

p̃ d
xy ≤

∑

u∈B(x,2n2),v∈B(y,2n2)

2Φ(n ≤ |C(u)| < ∞) · Φ(n ≤ |C(v)| < ∞)

≤ exp(−cn(d−1)/d).

Now we consider p c
xy. We have

p̃ c
xy ≤

∑

C,C′ close

Φ(C and C′ are clusters),

where the sum is over the couples (C, C′) of subsets of Zd such that

n ≤ |C| < n2,n ≤ |C′| < n2,

MC = x, MC′ = y, and d(C, C′) ≤ K lnn.

For n large enough, the event {C and C′ are clusters} is FB(x,3n2)-measurable. So

we only consider bond configurations in B(x, 3n2).
We give a deterministic total order on the pairs (u, v) of Zd in such a way that

if |u1 − v1|1 < |u2 − v2|1, then (u1, v1) < (u2, v2). Let (C, C′) be a pair of sets
appearing in the above sum. Take a configuration ω in B(x, 3n2) such that C and
C′ are clusters in ω. We change the configuration ω as follows.

To start with, we take the pair (u, v) such that u ∈ C, v ∈ C′ and (u, v) is the
first such pair for the order above. For 0 ≤ i ≤ d, we define ti the point whose
d − i first coordinates are equal to those of u, and the others are equal to those of
v. Hence t0 = u, td = v, and ti and ti+1 differ by only one coordinate. We consider
the shortest path (u0, . . . , uk) connecting u to v through the ti’s. It is composed of
the segments [ti, ti+1] for 0 ≤ i ≤ d − 1.

We open all the bonds 〈ui, ui+1〉 for i = 0 . . . k − 1. In the same time, we close
all the bonds incident to ui for i = 1 . . . k − 1 distinct from the previous bonds

〈uj , uj+1〉. Let ω̃ be the new configuration in B(x, 3n2). We denote by C̃ the set

C ∪ C′ ∪ {ui}
k−1
i=1 . By construction, C̃ is a cluster in ω̃. We have

2n ≤ C̃ < 4n + K lnn.
8



The number of bonds we have changed is bounded by 2dK lnn. By the finite energy
property (1):

Φ(ω̃) ≥ n2dK ln δΦ(ω),

for a certain constant δ in (0, 1).
Now we control the number of antecedents by our transformation. Take a con-

figuration ω̃ of B(x, 3n2). To get an antecedent of ω̃, we have to
(a) choose two sites u, v in B(x, 3n2), with |u − v|1 ≤ K lnn
(b) take the path connecting u to v along the coordinate axis
(c) choose the state of the bonds that have an endpoint on this path.

In step (a), we have less than (3n2)d(2K lnn)d choices. In step (b) we have just
one choice. In step (c) the number of choices is bounded by 22dK ln n. Hence for n
large enough the number of antecedents of ω̃ is bounded by n4dK .

Finally,

∑

C,C′ close

Φ(C and C′ are clusters) ≤ n4dK · n2dK ln δ
∑

C̃

Φ(C̃ is a cluster),

where the sum is over connected subsets C̃ of Zd such that 2n ≤ |C̃| < 5n and C̃
is contained in B(x, 3n2). This sum is bounded by

|B(x, 3n2)| · Φ(2n ≤ |C(0)| < 5n).

Thus by (2), there exists c2 > w1 such that for n large enough,

(10) p̃ c
xy ≤ exp(−c2n

(d−1)/d).

To conclude, remark that

pxy − p̃xy ≤ Φ
(
∃C a cluster such that n2 ≤ |C| < ∞, MC = x

)
.

By (8), there exists c such that for n large enough the difference between pxy

and p̃xy is bounded by exp(−cn2(d−1)/d). So by (9) there exists c > 0 such that
pxy ≤ p̃ c

xy +exp(−cn). Since in (10) the constant c2 is strictly larger than w1, there
exists c3 > w1 such that for n large enough

(11) pxy ≤ exp(−c3n
(d−1)/d).

7. A control of px. We compare px and Φ(n ≤ |C(0)| < ∞).

Lemma 8. If q ≥ 1, p > p̂c, and p /∈ U(q), then

lim
1

n(d−1)/d
ln px = −w1.

We note that in [20], the authors take the left endpoints of the clusters instead of
the mass center and get the same limit.

9



Proof of Lemma 8. We begin with a lower bound for px. We recall that for all x in
Zd, px = Φ(X(0) = 1). Let α > 1. Because of (2), we have

lim
1

n(d−1)/d
ln Φ(n ≤ |C(0)| < ∞) = lim

1

n(d−1)/d
ln Φ(n ≤ |C(0)| < nα).

Then
Φ(n ≤ |C(0)| < nα) ≤

∑

x∈B(0,nα)

Φ(n ≤ |C(0)| < nα, MC = x)

≤ |B(0, nα)|Φ(X(0) = 1).

We give next an upper bound:

Φ(X(0) = 1) = Φ(∃C a cluster, MC = 0, n ≤ |C| < nα)

+ Φ(∃C a cluster, MC = 0, nα ≤ |C| < ∞)

≤
∑

x∈B(0,nα)

Φ(n ≤ |C(x)| < ∞)

+
∑

k≥nα

Φ
(
∃C a cluster, |C| = k, C ∩ B(0, 2k) 6= ∅

)

≤ |B(0, nα)|Φ(n ≤ |C(x)| < ∞) +
∑

k≥nα

|B(0, 2k)|Φ(|C(0)| = k).

Finally, we use the limit (2) to get

lim
1

n(d−1)/d
ln px = lim

1

n(d−1)/d
ln Φ(n ≤ |C(0)| < ∞) = −w1. �

8. Proof of Theorem 1.
We recall that Λ is a box and λ is the expected number of the mass centers in Λ

of n–large clusters. We write FBx
Λ for the σ–field FΛ\Bx . First, we bound the term

E
∣∣E

(
X(x) − px|F

Bx
Λ

)∣∣.

Let X̃(x) be equal to 1 if x is the mass center of a cluster C, with C such that

n ≤ |C| < n2/4, and equal to 0 otherwise. Let p̃x = Φ(X̃(x)). We have

(12)
E

∣∣E
(
X(x) − px|F

Bx
Λ

)∣∣ ≤ E
∣∣E

(
X(x) − X̃(x)|FBx

Λ

)∣∣

+E
∣∣E

(
X̃(x) − p̃x|F

Bx
Λ

)∣∣ + E
∣∣E

(
p̃x − px|F

Bx
Λ

)∣∣.

Since the quantity X(x) − X̃(x) is always positive,

E
∣∣E

(
X(x) − X̃(x)|FBx

Λ

)∣∣ = E
[
E

(
X(x) − X̃(x)|FBx

Λ

)]

= px − p̃x.

We have also
E

∣∣E
(
p̃x − px|F

Bx
Λ

)∣∣ = px − p̃x.
10



But

px − p̃x = Φ(∃C a cluster, n2/4 ≤ |C| < ∞, MC = x),

so by (8) there exists c > 0 such that px − p̃x ≤ exp(−cn2).

The variable X̃(x) is FB(x,n2/4)-measurable. The distance between B(x, n2/4)

and the complementary region of Bx is of order n2. If Φ is weak mixing, or by
lemma 7 if p is close enough to 1, there exists a constant c > 0 such that for n large
enough

E
∣∣E

(
X̃(x) − p̃x|F

Bx

Λ

)∣∣ ≤ exp(−cn2).

Putting together the estimates of the three terms on the right-hand side of (12),
we conclude that there exists c > 0 such that for n large enough

(13) E
∣∣E

(
X(x) − px|F

Bx

Λ

)∣∣ ≤ exp(−cn2).

Now observe that |Λ| = λp−1
x . Using inequality (11) and the limit of Lemma 8,

there exists c > 0 such that

b2 ≤ λp−1
x exp

(
− c3n

(d−1)/d
)
≤ λ exp

(
− cn(d−1)/d

)
.

Because of (13), there exists c > 0, c′ > 0 such that

b3 ≤ λp−1
x exp(−cn2) ≤ λ exp(−c′n2).

The term b1 is controlled by Lemma 8. We apply finally the Chen-Stein inequal-
ity (6) to obtain Theorem 1. �

9. Proof of Theorem 3.

The Wulff crystal is the typical shape of a large finite cluster in the supercritical
regime. The crystal is built on a surface tension τ . The surface tension is a
function from Sd−1, the (d − 1)–dimensional unit sphere of Rd, to R+. It controls
the exponential decay of the probability for having a large separating surface in
a certain direction, with all bonds closed. We refer the reader to [9, 12] for an
extended survey of this function.

In the regime p > p̂c and p /∈ U(q), the surface tension is positive, continuous, and
satisfies the weak simplex inequality. We denote by W the Wulff shape associated
to τ ,

W = {x ∈ R
d, x.u ≤ τ(u) for all u in S

d−1}.

The Wulff shape is a main ingredient in the proof of (2).

Let θ = Φ(0 ↔ ∞) be the density of the infinite cluster. Let f : N → N,
such that f(n)/n → 0 and f(n)/ lnn → ∞ as n goes to infinity. Let x and y
be two points of Rd, and let (xi)

d
i=1 and (yi)

d
i=1 be their coordinates. We write

|x − y|∞ = max1≤i≤d |xi − yi|. We define a neighbourhood of a cluster C by

V∞(C, f(n)) = {x ∈ R
d, ∃ y ∈ C, |x − y|∞ ≤ f(n)}.

11



Let (Λn)n be a sequence of boxes in Zd, and let λn be the expected number of
mass centers of n–large clusters in Λn. In Theorem 3, we consider the event

(14)

{
Ld

( ⋃

x∈Λn

X(x)=1

(x + θLd(W)−1/dW
)
△

n−1
⋃

C n–large
MC∈Λn

V∞(C, f(n))
)
≥ δ

∣∣{x : X(x) = 1}
∣∣
}

.

It is included in the event

{
there exists C a n–large cluster such that MC ∈ Λn,

Ld
((

MC + θLd(W)−1/dW
)
△

(
n−1V∞(C, f(n))

))
≥ δ

}
.

Taking the logarithm of its probability and dividing by n(d−1)/d, we may show that
for n large it is equivalent to the logarithm divided by n(d−1)/d of the following
quantity:

λnΦ
[
Ld

((
MC(0) +θLd(W)−1/dW

)
△

(
n−1V∞(C(0), f(n))

))
≥ δ

∣∣n ≤ |C(0)| < ∞
]
.

By [9, 12], there exists c > 0 such that if

lim sup 1/n(d−1)/d lnλn ≤ c,

then the inequality in Theorem 3 holds. �

10. A perturbative mixing result.

First we prove lemma 7, following the proof of the uniqueness of the FK measure
for p close enough to 1 in [18]. The difference is that we consider not just one but
two independent FK measures. The idea of using two independent copies of a
measure comes from [19]. Then the proof of proposition 4 follows.

Proof of lemma 7.
Let ∆ be a connected subset of Zd. There is a partial order � in Ω∆ given by

ω � ω′ if and only if ω(e) ≤ ω′(e) for every bond e. A function f : Ω∆ → R

is called increasing if f(ω) ≤ f(ω′) whenever ω � ω
′

. An event is an element of
Ω∆. An event is called increasing if its characteristic function is increasing. For a
pair of probability measures µ and ν on (Ω∆,F∆), we say that µ (stochastically)
dominates ν if for any F∆-measurable increasing function f the expectations satisfy
µ(f) ≥ ν(f) and we denote it by µ � ν. Let Pp be the Bernoulli bond–percolation
measure on Zd of parameter p. The FK measures on ∆ dominate stochastically a
certain Bernoulli measure restricted on E(∆):

(15) Φη,p,q
∆ � Pp/[p+q(1−p)]

∣∣
E(∆)

.

12



For (ω1, ω2) ∈ Ω2, we call a site x white if ω1(e)ω2(e) = 1 for all bond e incident
with x, and black otherwise. We define a new graph structure on Zd. Take two sites
x and y and label xi, yi their coordinates. If maxi=1...d |xi − yi| = 1, then 〈x, y〉 is
a ⋆-bond and y is a ⋆-neighbour of x. A ⋆-path is a sequence (x0, ..., xn) of distinct
sites such that 〈xi, xi+1〉 is a ⋆-bond for 0 ≤ i ≤ n − 1.

For any set V of sites, the black cluster B(V ) is the union of V together with
the set of all x0 for which there exists a ⋆-path x0, . . . , xn such that xn ∈ V and
x0, . . . , xn−1 are all black. Let Γ, ∆ be two connected sets with Γ ⊂ ∆. The
’interior boundary’ D(B(∂∆)) of B(∂∆) is the set of sites x satisfying:

(a) x /∈ B(∂∆)
(b) there is a ⋆-neighbour of x in B(∂∆)

(c) there exists a path from x to Γ that does not use a site in B(∂∆).
Let I be the set of sites x0 for which there exists a path x0, . . . , xn with xn ∈ Γ,
xi /∈ B(∂∆) for all i, see figure 1.

Γ

∆

D(B(∂∆))

I

figure 1: The set I inside ∆

Let

KΓ,∆ =
{(

B(∂∆) ∪ D(B(∂∆))
)
∩ Γ = ∅

}
.

If KΓ,∆ occurs, we have the following facts:

(a) D(B(∂∆)) is connected
(b) every site in D(B(∂∆)) is white
(c) D(B(∂∆)) is measurable with respect to the colours of sites in Zd \ I
(d) each site in ∂I is adjacent to some site of D(B(∂∆)).

These claims have been established in the proof of Theorem 5.3 in [18].

Pick η, ξ two boundary conditions of ∆. For brevity let P = Φη,p,q
∆ × Φξ,p,q

∆ .
We shall write X, Y for the two projections from Ω∆ × Ω∆ to Ω∆. Then for any

13



E ∈ FΓ, we have by the claims above

P(X ∈ E, KΓ,∆) = P(Y ∈ E, KΓ,∆) = P(Φw,p,q
I (E)1KΓ,∆

).

Hence
|Φη,p,q

∆ (E) − Φξ,p,q
∆ (E)| ≤

(
1 − P(KΓ,∆)

)
.

Because of inequality (15) and by the stochastic domination result in [21], the
process of black sites is stochastically dominated by a Bernoulli site–percolation
process whose parameter is independent of Γ, ∆, η, ξ and decreases to 0 as p goes
to 1. There exists p1 < 1 such that this Bernoulli process is subcritical for the
⋆-graph structure of Zd and for p ≥ p1. Hence there exists c > 0 such that for
p > p1, for all Γ, ∆, η, ξ,

P(KΓ,∆) ≥ 1 − |∂∆| exp
(
− c d(Γ, ∂∆)

)
. �

Proof of proposition 4. The domination inequality (15) implies that for p large
enough, the mesures Φη,p,q

∆ have exponentially bounded controlling regions in the
terminology of [2]. Thus by theorem 3.3 of [2], lemma 7 implies the ratio weak
mixing property for the mesures Φη,p,q

∆ . �
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