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Abstract

We study the existence, smoothing properties and the long time be-
haviour for a class of nonlinear Cauchy problems in infinite dimensions
under the assumption of F-Sobolev inequalities.
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1 Markovian Semilinear Cauchy Problems: Intro-
duction.

In the bulk of this work we consider the following formal Cauchy problem{
∂
∂tu(t) = Lu(t) + λu(t)G

(
u2(t)

µ(u(t)2)

)
u(0) = f.

(MCP)

where L is a (linear) Markov generator and G is a certain nonlinearity,
(vanishing at one), to be specified later and µ is a probability measure. In
the next paragraph we are going to explain what is needed to understand
the meaning of this equation. Let us nevertheless note here that under
our hypothesis, constants are global solutions of (MCP) and positivity of
the initial data results with positive solutions which supremum norms are
bounded by those at time zero. This partially justifies to call it a Markovian
Cauchy Problem.

Our analysis is carried out in suitable functional spaces (involving a
probability measures) which have no polynomial volume growth. This is
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necessary as we are in particular interested in infinite dimensional problems.
In such situation the Sobolev inequality which provides a cornerstone for
classical PDE analysis cannot be satisfied and we have to rely on weaker
coercive inequalities which survive the infinite dimensional limit and are of
the following form

µ

(
g2F

(
g2

µg2

))
≤ cµ|∇g|2

with a constant c ∈ (0,∞) independent of a function g and the right hand
side involving the quadratic form of the elliptic operator L. Inequalities of
this type, called later on F-Sobolev inequalities, have been recently studied
in [BCR04], [BR03], [RZ05], [LZ],(see also references therein), for probabil-
ity measures with tails decaying more slowly than the Gaussian ones but
faster than exponentially.
In our setup the linear operator L is monotone in the usual sense while the
nonlinear part may work to an opposite effect. Our study determines how
large the coupling constant λ > 0 can be, so that the system is still stable
in the sense of existence, uniqueness, smoothing properties and the ergodic
long time behaviour of a (weak) solution.
We note that the linear semigroup corresponding to L is hypercontractive
in an appropriate family of Orlicz spaces; in fact as shown in [BCR04],
(generalising the cellebrated result of Gross [Gross]), such hypercontrac-
tivity is equivalent to F-Sobolev inequality. Under suitable conditions, we
show that the C0, positivity and unit preserving, semigroup obtained as
the solution of the (MCP) is hypercontractive in the appropriate family of
Orlicz spaces. The key ingredients in our programme are provided by the
F-Sobolev inequality and the fact that quantity on its left hand side has
similar properties to the relative entropy.

In recent years an extensive effort was made to understand better the co-
ercive inequalities in infinite dimensional functional spaces, (see e.g. [GZ03],
[BCR04], [RZ05], [LZ] and references therein). This provides a basis and a
part of motivation to study nonlinear problems. One may hope that the
study in this direction may in the future shed also some light/or provide
a complementary systematic understanding for a class of problems in infi-
nite dimensions for which some understanding was achieved in the past (as
e.g. problems from mathematical physics). This work is also partially mo-
tivated by [FZ04] where certain preliminary results where obtained for the
case when logarithmic Sobolev inequalities are true.

The organisation of our paper is as follows. In section 2 we introduce
the general setting and describe in detail conditions imposed on the linear
and nonlinear operators appearing in our problem.

In section 3 we prove the existence and uniqueness of the weak solution
of (MCP). In short our strategy is as follows. We first consider a mollified
problem with initial data in L2(µ) defined by smoothing the nonlinear part
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with the linear semigroup Pε, ε > 0, generated by L. Then under the as-
sumption that the coupling constant λ > 0 is sufficiently small, we employ
the F-Sobolev inequality to prove the existence and uniqueness of the molli-
fied problem via a nonlinear iteration scheme. The estimates and technique
developed there help us later to remove the mollification and to demonstrate
that in the limit ε → 0 we obtain a unique solution of our original problem.
The essential part of the analysis which allows us to arrive to that conclusion
is based on the fact that for initial data from a suitable Orlicz space (dense
in L2(µ)) the solution lives within a much finer space.

In section 4 we show that the solution of (MCP) defines a C0-semigroup
which preserves positivity and is contractive in L∞ norm, (while L2(µ) con-
tractivity was already proven in section 3). Moreover we demonstrate that
the solution decays exponentially to a constant in L2(µ) space and conse-
quently the time average of the solution converges almost everywhere to that
constant.

In section 5 we prove that the semigroup is uniformly hypercontractive
in certain family of Orlicz norms, i.e. hypercontractive in the corresponding
metrics; (as we are dealing with nonlinear semigroup hypercontractivity in
the norms is in general a weaker property).

In section 6 we consider briefly the corresponding local problem (in which
normalisation by mean value with the measure µ is not present). The anal-
ysis here is entirely based on smoothing properties of the linear semigroup
generated by L which follows directly from corresponding F -Sobolev in-
equality. Therefore it allows us to consider essentially weaker nonlinearities
than the ones considered earlier for (MCP).

Finally in section 7 we demonstrate that the coercive inequalities which
formed a basis for our studies hold true in a large class of infinite dimensional
models, and the Appendix collects all the definitions and properties we need
on Orlicz spaces.

2 General setting and meaning of the equation

Analysis of problem (MCP) will be developed in a setting on which PDE
methods may be extended. The linear operator L involved in (MCP) is a
Markov generator given by a Dirichlet structure, that is a measure space
(M,BM, µ) and a (conservative) Dirichlet form (E ,D(E)) on M (see [FOT],
[MZR]). Analytical regularity of this Dirichlet structure will be given by a
functional inequality (replacing classical Sobolev inequalities used in PDE
problems) which makes sense in the case when µ is a probability measure
and with which the nonlinear perturbation is highly related. Usual Gelfand
triple for Sobolev spaces W 1,2◦ (Ω) ⊂ L2(Ω) ⊂ W−1,2(Ω) (see [Wlo87]) has to
be replaced by D(E) ⊂ L2(µ) ⊂ D′(E), where the domain D(E) is equipped
with Hilbertian structure 〈·, ·〉E ≡ 〈·, ·〉L2 + E(·, ·). To recall this and also
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to make the reading easier for most, we’ll often use notation W 1,2(E) for
the domain D(E), W−1,2(E) = D′(E) for its dual, and ‖ · ‖W 1,2(E) or even
‖ · ‖W 1,2 for the corresponding norms. We’ll also write abusively E(f, f) ≡
µ(|∇f |2) =

∫
|∇f |2 dµ, for natural reasons (see below).

As mentioned in the introduction, our approach of existence for (MCP)
rely on considering first a mollified problem and then removing the molli-
fication thanks to regularity results for the mollified solutions in a suitable
Orlicz space. (MCP) may be stated and weak solutions may be considered
for general Dirichlet forms defining the linearity. And, as long as mollified
problem is only under consideration, existence and uniqueness will follow
from our approach. Nevertheless, to be able to prove regularity and remove
the mollification, we’ll assume that (E ,D(E)) is a diffusion Dirichlet form.

In a finite dimensional setting, that is when M is a locally compact
topological space, this diffusion property is satisfied by local (conservative)
regular Dirichlet forms. Following Beurling-Deny formula (see [FOT]), this
means that E has neither jumping nor killing part. Recall that when M is
a domain Ω ⊂ Rd (and supp(µ) = Ω) such forms (possessing C∞

c (Ω) as a
core) may be expressed on compactly supported smooth functions as

E(f) ≡ E(f, f) =
d∑

i,j=1

∫
Ω

∂f

∂xi
(x)

∂f

∂xj
(x)νi,j(dx)

with some Radon measures νi,j . This emphasizes the links with PDE prob-
lems (see also [Dav95]).

In infinite dimensional analysis, regularity has to be replaced by quasi-
regularity (see [MZR]). Our approach could be developed in this generality.
Nevertheless for simplicity reasons, we will restrict ourselves to two partic-
ular cases : either E is a local regular Dirichlet form on a locally compact
space or it is given by the following infinite dimensional models coming from
interacting spins systems.

Gibbs measures on infinite product of manifolds and generalized
Sobolev space. Let M =

∏
i∈R Mi be an infinite product of Riemannian

manifolds (Mi, gi), where R is a countable set (an infinite graph).
Given z ∈ Mi and x = (xi)i∈R ∈ M we define z •i x ≡ {(z •i x)k ≡

δikz + (1− δik)xk : k ∈ R}. We say that a function f on M is cylindrically
smooth if f is localized on some finite subset Λ ⊂ R (we write Λ b R)
and is smooth when considered as a function on MΛ =

∏
i∈Λ Mi. For such

cylindrically smooth functions, we consider the following quadratic operator,
called the square field operator,

|∇f |2 =
∑
i∈R

|∇if |2i
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where for each site i ∈ R, |∇if |i (x) ≡ |∇ifi(·|x)| (xi) is the length of
the usual gradient ∇i for the metric gi at xi of the function Mi 3 z 7→
fi(·|x)(z) ≡ f({z •i x}).

Let µ be a probability measure on M. For an integrable (or nonnegative)
function f we will use the notation µf ≡ µ(f) ≡

∫
fdµ. For (compactly

supported) cylindrically smooth functions, µ(|∇f |2) makes sense. Actually,
provided µ is a Gibbs measure, this can be defined on a wider class of
functions on M generalizing the Sobolev space W 1,2.

Briefly speaking, a Gibbs measure is defined as follows. A specification
is a family µξ

Λ(dxΛ), Λ b R and ξ ∈ M, of absolutely continuous probability
kernels on MΛ ≡

∏
i∈Λ Mi, that we extend to kernels Eξ

Λ on M by taking
product with ⊗i/∈Λδξi

. These kernels are supposed to satisfy compatibility
conditions (see section 7 or [GZ03] and references therein) making them
possible candidates for being versions of laws (w.r.t. a probability measure
µ on M) conditionally to πR\Λ(ξ) ≡ (ξi)i∈R\Λ. Measures µ on M for which
this holds are called Gibbs measures and can be multiple in general. They are
characterized by the Dobrushin-Landford-Ruelle (DLR) conditions µ = µE·

Λ

(when acting on bounded measurable functions).

Let µ be a fixed Gibbs measure. The generalized Sobolev space W 1,2(µ)
can be defined as the space of functions f ∈ L2(µ) such that, for any i ∈ R,
|∇ifi(·|ξ)| in the sense of distributions in Mi belongs to L2(Mi, µ

ξ
{i}) and

one has

E(f, f) ≡
∫

M

∑
i∈R

µξ
{i}

(
|∇ifi(·|ξ)|2

)
µ(dξ) < ∞.

We will formally write E(f, f) = µ(|∇f |2) and E(f, g) = µ(∇f · ∇g) for the
associated bilinear form. One can check that this coincides with the similar
quantity for cylindrically smooth compactly supported functions.
We will assume that E is closed on the domain W 1,2(E) ≡ W 1,2(µ) so that it
is a diffusion Dirichlet form. Then the corresponding Markov generator L is
well defined selfadjoint operator on the corresponding domainD(L) ⊂ L2(µ).
The C0 semigroup generated by L is denoted by Pt ≡ etL. It follows from our
setup that for any ε > 0 and f ∈ L2(µ) we have Pεf ∈ D(L) and t 7→ PtPεf
is differentiable. Moreover Pεf → f in L2(µ) as ε → 0.

Coercive inequalities as analytic regularity of Dirichlet Structures.
To ensure a nice behaviour of the Dirichlet structure, as well as to specify
later the admissible nonlinearity, we introduce the following requirements.

Condition (C1) : In all what follows F : [0,∞) → R+ denotes a non de-
creasing C2 function. We assume that there exist constants θ > θ̄ ≥ 1 and
B̄,K > 0 such that
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(C1)


(i) F ≡ 0 on [0, θ̄],
(ii) F is concave on [θ, +∞),
(iii) ∀x ≥ 0 , xF ′(x) ≤ B̄ and F (x) ≤ Kx.

We assume also that (µ, E) satisfies F-Sobolev inequality, that is that there
exists a constant cF ∈ (0,+∞) such that∫

f2F

(
f2

µ(f2)

)
dµ ≤ cF

∫
|∇f |2 dµ. (FS)

for any sufficiently smooth function f . In this case we will use a shorthand
notation µ ∈ FS(cF ).

Note that since F (1) = 0 such inequality is tight in the sense that both
sides are zero for constant functions.

Lemma 1 (Generalized Relative Entropy Inequality).
Suppose a function F satisfies condition (C1). Then for any x, y ≥ 0,
xF (y) ≤ xF (x) + By, for B = max(B̄,Kθ).
Therefore for any probability measure µ, and any f, g ∈ L2(µ),

∫
f2F

(
g2

µ(g2)

)
dµ ≤

∫
f2 F

(
f2

µ(f2)

)
dµ + Bµ(f2). (GREI)

Proof. As F is non decreasing, this is trivial if x ≥ y. This is also trivial if
y ≤ θ̄. So assume x ≤ y and y ≥ θ̄. Now, if x ≥ θ, then

x (F (y)− F (x)) = x
F (y)− F (x)

y − x
(y − x) ≤ xF ′(x)y ≤ B̄y.

And if on the contrary x ≤ θ, xF (y) ≤ θF (y) ≤ θKy. This ends the proof
of the bound xF (y) ≤ xF (x) + By from which inequality (GREI) easily
follows. 2

Lemma 2. Assume F satisfies condition (C1). Then

µ

(
f2F

(
f2

µf2

))
≤ µ

(
f̃2F

(
f̃2

µf̃2

))
+ Cµ(f̃2)

where f̃ = f − µf and C ≡ 4B̄ + B.

Proof. The proof is similar to the one of the Rothaus’ inequality when F =
log. It is sufficient to consider the case when µf > 0. Setting f̂ ≡ ef

|| ef ||2 , it

suffices to prove that for any t ∈
[
0, ||

ef ||2
µf

]
,

A(t) ≡ µ

(
(1 + tf̂)2F

(
(1 + tf̂)2

1 + t2

))
≤ t2µ

(
f̂2F (f̂2)

)
+ Ct2
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To this end note that A(0) = 0 and A′(0) = 0, while by concavity of F and
Lemma 1

A′′(t) = 2µ

(
f̂2F

(
(1 + tf̂)2

1 + t2

))

+ 2µ

(
f̂(1 + tf̂)F ′

(
(1 + tf̂)2

1 + t2

)
·

[
2f̂(1 + tf̂)

1 + t2
− (1 + tf̂)22t

(1 + t2)2

])

+ µ

(1 + tf̂)2F ′′

(
(1 + tf̂)2

1 + t2

)
·

[
2f̂(1 + tf̂)

1 + t2
− (1 + tf̂)22t

(1 + t2)2

]2


≤ 2µ

(
f̂2F

(
(1 + tf̂)2

1 + t2

))

+ 4µ

(
f̂F ′

(
(1 + tf̂)2

1 + t2

)
·

[
f̂(1 + tf̂)2

1 + t2
− (1 + tf̂)32t

(1 + t2)2

])

≤ 2 µ

(
f̂2F

(
(1 + tf̂)2

1 + t2

))
+ 8B̄ µ

(
f̂2
)
≤ 2µ

(
f̂2F

(
f̂2

µf̂2

))
+ [8B̄ + 2B]

2

Example 3. We introduce now an example the reader may keep in mind
as a guideline. Fix θ > 2, α ∈ (1, 2] and consider a function Fα : R+ → R

x 7→ Fα(x) =
{

0 if x ∈ [0, θ]
(log(x))β − (log θ)β if x ≥ θ.

where β ≡ 2(1 − 1
α) ∈ (0, 1). Note that Fα is continuous, but not C2. To

deal with differentiability at x = θ we introduce a C∞ non-negative function
g with compact support in [−1, 0] and such that

∫
g(y)dy = 1. For ε > 0,

define gε(x) = 1
εg(x

ε ). Note that F (x) ≡ Fα ∗ gε(x) :=
∫

Fα(x− y)gε(y)dy is
a C∞ function vanishing on [0, θ − ε]. Fix ε ≤ 1 and set θ̄ = θ − ε > 1.
One can see that F satisfies the Assumptions (i) and (ii) described above.
On the other hand a simple computation gives that for any ε > 0, any x ≥ 0,

x(Fα ∗ gε)′(x) ≤ β(log θ)β−1 ≤ β(1/2)β−1 ≤ 1. (1)

Moreover we have for any x ≥ 0,

Fα(x) ≤ F (x) ≤ Fα(x + ε) ≤ Fα(x) + log
(

max(θ, e) + ε

θ

)
. (2)

The last inequality comes from the fact that for x ≥ e, log(ε+x)β−log(x)β ≤
log(ε + x) − log(x) ≤ log([θ + ε]/θ). While for θ ≤ x ≤ e, we have log(ε +
x)β − log(x)β ≤ log(ε + e)β − log(θ)β ≤ log(ε + e)− log(θ).
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In particular, since log(ε + x)β ≤ x when x ≥ 1, we have F (x) ≤ x for any
x ≥ 0.
Thus F satisfies Assumption (iii) with B̄ = 1 and K = 1. Note that B = θ.
Finally we remark that for Fα and a measure dµα ≡ exp{−|x|α}dx/Zα, the
inequality (FS) is true, [BR03]. Hence, using the far right inequality in
(2) together with the Lemma 2, we conclude that corresponding coercive
inequality is satisfied also with the function F (possibly with a different
constant).

Nonlinearity. The nonlinear part in equation (MCP) is described by a
function G. We assume that G satisfies the following properties.
Condition (C2) : With F satisfying condition (C1), we assume that

G = F + J

with J such that

• J : [0,∞) → R− is a bounded C1 function.

• J (1) = 0

• supx|J ′(x)| < ∞.

Note that G(0) is well defined and G is Lipschitz at 0 (for a non-Lipschitz
at 0 example, see [FZ04]).

Since G(1) = 0, constants are global solutions of the corresponding
parabolic problem. Clearly G ≤ F .

Under these hypothesis, B̃ ≡ supx≥0 x|G′(x)| < ∞.

Convexity assumption.

Condition (C3) : Let F satisfy condition (C1). We assume furthermore
that xF (x) is convex.

Under condition (C3) (and (C1)), one may prove that, for any q ≥ 0,
the function Ψq(x) given by Ψq(x) ≡ x eq F (x) is a Young function so that
Φq(x) ≡ Ψq(x2) is a Nice Young function (or N -function as called in [RR91]).
The associated Orlicz space satisfies LΦq(µ) ⊂ L2(µ) with continuous em-
bedding. Such Orlicz spaces will appear later when more regularity on the
initial value will be assumed.

Without further mention we will assume that conditions (C1) − (C3) are
satisfied throughout the rest of the paper. Most of our results are valid
under only these hypothesis. Note nevertheless that the argument we give in
section 3.1.1 to complete proof of existence assume more on F . In particular,
we will sometimes use the following additional condition.
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Condition (C4) : There exists a constant 0 ≤ R < ∞ such that, for any
a, b ∈ (0,∞),

F (a b) ≤ F (a) + F (b) + R.

An immediate consequence of condition (C4) is the striking sub-multiplicativity
property for the N -function Φq:

Φq(x y) ≤ eRqΦq(x) Φq(y). (3)

Example 3 continued. The function F described in Example 3 satisfies
condition (C4), and also (C3) provided θ ≥ e.

Let us prove first that (C4) occurs. To do so first note that, for any
a ≥ 0 and b ≥ 1,

Fα(ab) ≤ Fα(a) + (log b)β . (4)

This comes from the computations detailed below. If 0 < a ≤ θ and ab ≥
θ > 1, then

Fα(ab) = (log(ab))β − (log θ)β

≤ (log(max(a, 1)) + log b)β − (log θ)β

≤ (log b)β + (log max(a, 1))β − (log θ)β ≤ (log b)β .

In the case a ≥ θ, Fα(ab) = (log a + log b)β − (log θ)β ≤ (log b)β + (log a)β −
(log θ)β = Fα(a) + (log b)β .

Now, inequality (4) also holds for F . Indeed, if a ≥ 0 and b ≥ 1,

F (ab) =
∫ 0

−ε
Fα

(
b (a− y

b
)
)

gε(y) dy ≤ (log b)β +
∫ 0

−ε
Fα(a− y

b
) gε(y) dy

≤ (log b)β +
∫ 0

−ε
Fα(a− y) gε(y) dy = F (a) + (log b)β

thanks to (4), (remind that
∫ 0
−ε gε(y) dy = 1), and a− y

b ≤ a−y when y ≤ 0.
As a consequence, (C4) holds true with R = (log θ)β as, for any b > 0,
(log b)β ≤ Fα(b) + (log θ)β ≤ F (b) + (log θ)β.

Now, let us focus on condition (C3). One has F ′(x) = Fα ∗ g′ε(x) =∫ x−θ
−ε Fα(x − y)g′ε(y)dy so that, after simple integration by parts, one gets

also F ′ = F ′
α ∗ gε with the function (L1

loc but discontinuous at θ)

F ′
α(x) def.=

{
β
x (log x)β−1 if x ≥ θ
0 x < θ

.

Note that there is no boundary terms as Fα(θ) = 0 and gε(−ε) = 0.
As a consequence, F ′′ = F ′

α ∗ g′ε and a further integration by parts leads
to

F ′′(x) = F ′
α(θ) gε(x− θ) + F ′′

α ∗ gε(x)
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with the L1
loc function

F ′′
α(x) def.=

{
β
x2 (log x)β−2 [β − 1− log x] if x ≥ θ
0 x < θ

.

Hence,

(xF (x))′′ = xF ′
α(θ) gε(x− θ) +

∫ min(x−θ,0)

−ε
yF ′′

α(x− y) gε(y)dy

+
∫ min(x−θ,0)

−ε

[
2F ′

α(x− y) + (x− y) F ′′
α(x− y)

]
gε(y)dy.

Note first that, for any z ≥ θ,

2F ′
α(z) + z F ′′

α(z) =
β

z
(log z)β−2 [β − 1 + log z] ≥ 0

provided θ ≥ e1−β and secondly that, for y ≤ min(x− θ, 0), yF ′′
α(x− y) ≥ 0.

Hence each term of the above sum expressing (xF (x))′′ is nonnegative.

3 Existence problem

To prove the existence of a weak solution for Cauchy problem (MCP) we
implement a constructive nonlinear approximation procedure.

3.1 Weak solutions and preliminary regularity result

Given T ∈ (0,∞), define HT,+(E) ≡ L2([0, T ],W 1,2(E)), as a Banach space
of (classes of) functions v : [0, T ]×M → R, such that

||v||2HT,+
≡
∫ T

0
ds µv2 +

∫ T

0
ds µ|∇v|2 < ∞,

By HT,−(µ) ≡ L2([0, T ],W−1,2(E)), we’ll denote the dual space of HT,+(E).

Let A : HT,+(E) → HT,−(µ) be an abstract nonlinear operator. We say
that a function u ∈ HT,+(E) is a weak solution (on [0, T ]) of the following
Cauchy problem {

∂tu = Lu +A(u)
u|t=0 = f

(5)

with f ∈ L2(µ), if and only if

1. u ∈ C([0, T ], L2(µ)),
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2. For any v ∈ C∞([0, T ];W 1,2(E)) and any t ∈ [0, T ], we have∫ t

0
µ (u(s)∂sv(s)) ds = µu(t)v(t)− µfv(0) +

∫ t

0
µ∇u(s) · ∇v(s)ds

−
∫ t

0
〈A(u)(s), v(s)〉W−1,2,W 1,2ds,

where 〈·, ·〉W−1,2,W 1,2 stands for the duality bracket.

Recall from classical results (see [Eva98] for instance) that a function u
satisfying condition 2. admits a weak derivative ∂tu ∈ L1([0, T ],W−1,2(E))
which belongs in fact to L2([0, T ],W−1,2(E)), and so u ∈ C

(
(0, T ), L2(µ)

)
.

A weak solution satisfies additionally that u(t) goes to f in L2 as t goes
to 0. Note also that condition 2. may be extended by density to any
v ∈ L2

(
[0, T ],W 1,2(E)

)
∩W 1,2

(
(0, T ), L2(µ)

)
.

Later on in this paper we discuss a situation when the operator A is
given by A(u) ≡ λV(u) with a parameter λ ∈ R and

V(u)(s) ≡ V(u(s)) ≡ u(s)G(σ2(u(s)))

where σ(u) ≡ u(
µ(u2)

)1/2 for u ∈ L2(µ), u 6= 0, and σ(0) ≡ 0.

With this definition of A, it makes sense to consider weak solutions for
Cauchy problem (5) thanks to the following basic regularity result.

Lemma 4. Regularity for the nonlinear operator.
Suppose µ ∈ FS(cF ). Then, for any u ∈ HT,+(E), V(u) ∈ HT,−(µ). More-
over, V : HT,+(E) −→ HT,−(µ) is Lipschitz continuous.

Proof. Suppose u and g in W 1,2(E). Then one has∣∣µ (g uG
(
σ2(u)

))∣∣ ≤ ‖J ‖∞ µ (|g| |u|) + µ
(
|g| |u|F

(
σ2(u)

))
≤ ‖J ‖∞ ‖u‖2 ‖g‖2 +

(
µ
(
g2F

(
σ2(u)

))) 1
2
(
µ
(
u2F

(
σ2(u)

))) 1
2

where we used jointly that F is non negative and Cauchy-Schwarz inequality.
Making use of (GREI) and then of F-Sobolev inequality (1), one gets

µ
(
g2F

(
σ2(u)

))
≤ µ

(
g2F

(
σ2(g)

))
+ Bµg2 ≤ max(cF , B) ‖g‖2

W 1,2

so that finally∣∣µ (g uG
(
σ2(u)

))∣∣ ≤ (‖J ‖∞ + max(cF , B)) ‖g‖W 1,2 ‖u‖W 1,2 .

That means that, when acting on W 1,2 with L2-type pairing, the operator
V(u) = uG

(
σ2(u)

)
belongs to W−1,2(E) and

‖V(u)‖W−1,2(E) ≤ C ‖u‖W 1,2
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with C = (‖J ‖∞ + max(cF , B)).
Let us now turn to Lipschitz estimate. Suppose v 6= u and g are still in

W 1,2(E). From the first part of the proof and V(0) = 0, one may assume
that u 6= 0 and v 6= 0. Let us set uα ≡ αu + (1 − α)v, α ∈ [0, 1], and let
w ≡ u− v. Assume first that uα 6= 0 for any α. Then we have

∣∣µ (g [uG
(
σ2(u)

)
− vG

(
σ2(v)

)])∣∣ ≤ ∫ 1

0
dα

∣∣∣∣µ(g
d

dα

[
uαG

(
σ2(uα)

)])∣∣∣∣ ,
with d

dαuαG
(
σ2(uα)

)
explicitly given by

wG
(
σ2(uα)

)
+ 2 σ2(uα) G′ (σ2(uα)

)
w − 2 σ3(uα) G′ (σ2(uα)

)
µ
(
σ(uα) w

)
.

Since by our assumption σ2
∣∣G′(σ2)

∣∣ ≤ B̃, we get

∣∣µ (g [uG
(
σ2(u)

)
− vG

(
σ2(v)

)])∣∣ ≤ ∫ 1

0
dα
∣∣µ (gwG

(
σ2(uα)

))∣∣
+ 2B̃µ (|g| |w|) + 2 B̃

∫ 1

0
dα µ (|g| |σ(uα)|) µ (|σ(uα)| |w|) .

Now, by similar arguments as above, one has∣∣µ (g wG
(
σ2(uα)

))∣∣ ≤ (‖J ‖∞ + max(cF , B)) ‖g‖W 1,2 ‖w‖W 1,2 . (6)

On the other hand, Cauchy-Schwarz inequality applied twice gives

µ (|g| |σ(uα)|) µ (|σ(uα)| |w|) ≤ ‖w‖L2 ‖g‖L2 ,

so that finally∣∣µ (g [uG
(
σ2(u)

)
− vG

(
σ2(v)

)])∣∣ ≤ C ‖g‖W 1,2 ‖w‖W 1,2

with a constant C = ‖J ‖∞+max(cF , B)+4B̃. We conclude by noting that,
in the case when uα = 0 for some α ∈ (0, 1), one has σ2(u) = σ2(v) so that
(6) with u instead of uα provides the corresponding estimate. 2

3.1.1 Existence

Given f ∈ L2(µ) and a fixed parameter λ ∈ R, we define a sequence
un : R+ ×M → R, n ∈ Z+, such that u0 is a unique solution of{

∂tu0 = Lu0

u0|t=0 = f

and {
∂tun+1 = Lun+1 + λV(un)

un+1|t=0 = f,
(A)
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We would like to argue that, for any T ∈ (0,∞), un ∈ HT,+, and a function
given by

un+1(t) ≡ Ptf + λ

∫ t

0
ds Pt−sV(un(s)) (7)

is a weak solution of (A) on [0, T ] and un+1 ∈ HT,+(E) provided (FS) with a
constant cF is satisfied, if we take λ ∈ [0, 1/cF ) and T > 0 sufficiently small.
Later we will show that such sequence of solutions converges strongly to a
weak solution of our problem in a corresponding small time interval.
In fact, equation (7) has only a formal meaning as in general ‖Pt−s‖W−1,2→W 1,2

≤ C/(t − s) and not better. For that reason one has to introduce an
additional smoothing by replacing V by V(ε)(u) = PεV(u). Now, V(ε) is
a Lipschitz continuous operator from W 1,2 to itself. Thus, if we define
V(ε)(u)(s) ≡ V(ε)(u(s)), then, for any ε > 0, we have V(ε)(u) ∈ HT,+(E)
when u ∈ HT,+(E). It allows us to consider an ε-mollified approximate
solution ūn = u

(ε)
n on the whole half-line [0,+∞).

Mollified problem. We introduce the following sequence of functions
(ūn)n∈N. For f ∈ L2, we set ū0(t) ≡ u0(t) ≡ Ptf , and for n ∈ N, we
define ūn ≡ ū

(ε)
n inductively as follows

ūn(t) ≡ Ptf + λ

∫ t

0
ds Pt−sV(ε)(ūn−1)(s)

Then, for any T > 0, ūn ∈ L2
(
[0, T ],W 1,2(E)

)
∩C

(
[0, T ], L2(µ)

)
. Moreover,

for any t > 0, ūn(t) (which is well defined) belongs to the domain D(L) of
L and is differentiable with respect to t. More particularly, for any T > 0,
ūn ∈ W 1,2

(
(0, T ),W 1,2(E)

)
.

And we have in a strong sense (in L2(µ)){
∂tūn = Lūn(t) + λV(ε)(ūn−1(t))

ūn(0) = f
(Aε)

Using that we show the following uniform boundedness property.

Proposition 5. Uniform bound in C([0,T], L2) ∩HT,+(E) .
Suppose µ ∈ FS(cF ) with a constant cF ∈ (0,∞) and let λ ∈ [0, c−1

F
). Then

for any T ∈ (0,∞) such that

ηT ≡
{

λcF

2− λcF

+ λ||J ||∞T

}
eλDT < 1

where D ≡ B + ||J ||∞, we have, for any n ∈ N,

sup
0≤t≤T

(
µū2

n(t) + (2− λcF )
∫ t

0
µ|∇ūn|2(s)ds

)
≤ 2eλDT

1− ηT
µ(f2). (8)
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Hence we have in particular

||ūn||2C([0,T ],L2) + ||ūn||2HT,+
≤ 2(T + 2)eλDT

1− ηT
µ(f2)

with the right hand sides independent of ε > 0.

Remark 6. Note here that time T > 0 for which ηT < 1, and so uniform
bound (8) holds, only depends on λ, cF and ||J ||∞ but not on the initial
condition f . This will be a crucial step for global existence for weak solutions
of (MCP) .

Proof. We note first that

1
2

d

dt
µ(ū2

n) = µ(ūn∂tūn) = −µ|∇ūn|2 + λµ
(
ūnV(ε)(ūn−1)

)
= −µ|∇ūn|2 + λµ (Pε(ūn)V(ūn−1))

where in the last line we used the symmetry of Pε in L2(µ). Simplifying the
notation by setting ũn ≡ Pε(ūn) we have

1
2

d

dt
µ(ū2

n) =
∫

ūnLūndµ + λ

∫
ũnūn−1G(σ2(ūn−1))dµ

≤ −
∫
|∇ūn|2dµ + λ||J ||∞

∫
|ũnūn−1|dµ (9)

+ λ

∫
ũnūn−1F (σ2(ūn−1))dµ.

To estimate the second term on the right hand side of (9), we use the simple
bound ∫

|ũnūn−1|dµ ≤ 1
2
µ
(
ũ2

n

)
+

1
2
µ
(
ū2

n−1

)
.

Next, because F is nonnegative, we can estimate the third term on the right
hand side of (9) as follows∣∣∣∣∫ ũnūn−1F

(
σ2(ūn−1)

)
dµ

∣∣∣∣ ≤ ∫ |ũnūn−1|F
(
σ2(ūn−1)

)
dµ

≤ 1
2

∫
ũ2

nF
(
σ2(ūn−1)

)
dµ +

1
2

∫
ū2

n−1F
(
σ2(ūn−1)

)
dµ

≤ 1
2

∫
ũ2

nF
(
σ2(ũn)

)
dµ +

B

2
µ
(
ũ2

n

)
+

1
2

∫
ū2

n−1F
(
σ2(ūn−1)

)
dµ

≤ cF

2
µ|∇ũn|2 +

B

2
µ
(
ũ2

n

)
+

cF

2
µ|∇ūn−1|2

≤ cF

2
µ|∇ūn|2 +

B

2
µ
(
ū2

n

)
+

cF

2
µ|∇ūn−1|2
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thanks to (GREI) and the (FS) inequality. Combining our bounds, after
simple rearrangement we arrive at the following differential inequality

d

dt
µ(ū2

n)+(2−λcF )µ|∇ūn|2 ≤ λ||J ||∞µ
(
ū2

n−1

)
+λcF µ

(
|∇ūn−1|2

)
+λDµ

(
ū2

n

)
with the constant D ≡ ||J ||∞ + B. After integration with respect to time,
using 2− λcF ≥ 0, for any t ∈ R+, we obtain

µ
(
ū2

n(t)
)

+ (2− λcF )
∫ t

0
µ
(
|∇ūn(s)|2

)
ds

≤ µ(f2) + λ||J ||∞
∫ t

0
µ
(
ū2

n−1(s)
)
ds + λcF

∫ t

0
µ
(
|∇ūn−1(s)|2

)
ds

+ λD

∫ t

0
µ
(
ū2

n(s)
)
ds

≤ µ(f2) + λ||J ||∞
∫ t

0
µ
(
ū2

n−1(s)
)
ds + λcF

∫ t

0
µ
(
|∇ūn−1(s)|2

)
ds

+ λD

∫ t

0

(
µ
(
ū2

n(s)
)

+ (2− λcF )
∫ s

0
µ
(
|∇ūn(r)|2

)
dr

)
ds.

Hence by Gronwall type arguments, we get

µ
(
ū2

n(t)
)

+ (2− λcF )
∫ t

0
µ
(
|∇ūn(s)|2

)
ds

≤ eλDt ·
{

µ(f2) + λ||J ||∞
∫ t

0
µ
(
ū2

n−1(s)
)
ds + λcF

∫ t

0
µ
(
|∇ūn−1(s)|2

)
ds

}
Setting

Zn(t) ≡ µ
(
ū2

n(t)
)

+ (2− λcF )
∫ t

0
µ
(
|∇ūn(s)|2

)
ds

we can see that the following inductive inequality is true

Zn(t) ≤ µ(f2)eλDt +
λcF

2− λcF

eλDtZn−1(t) + λ||J ||∞eλDt

∫ t

0
Zn−1(s)ds

Using this for all t ∈ [0, T ], with Zn ≡ Zn(T ) ≡ supt∈[0,T ]Zn(t), we obtain

Zn ≤ µ(f2)eλDT + ηT Zn−1 (10)

with

ηT ≡
{

λcF

2− λcF

+ λ||J ||∞T

}
eλDT

Assuming that 0 < λcF < 1, ηT ∈ (0, 1) for all T ∈ (0,∞) small enough.
In this case (10) can be iterated to obtain the following bound uniform in
n ∈ N as well as ε > 0

Zn ≤
2eλDT

1− ηT
µ(f2) (11)
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as Z0 ≡ Z0(u0) ≤ 2µ(f2). That is we have shown that, for 0 < λcF < 1 and
T ∈ (0,∞) sufficiently small, we have

sup
0≤t≤T

(
µū2

n(t) + (2− λcF )
∫ t

0
µ|∇ūn|2(s)ds

)
≤ 2eλDT

1− ηT
µ(f2)

This naturally implies that, under the same conditions for t ∈ [0, T ], we
have

||ūn||2HT,+
≤ 2(1 + T )eλDT

1− ηT
µ(f2) and ||ūn||2C([0,T ],L2(µ)) ≤

2eλDT

1− ηT
µ(f2)

uniformly in n ∈ N and ε > 0. 2

Proposition 7. Convergence scheme in C([0,T], L2) ∩HT,+(E) .
Suppose µ ∈ FS(cF ) with a constant cF ∈ (0,∞) and let λ ∈ [0, c−1

F
). For

T ∈ (0,∞), let

η∗(T ) ≡
[
λaT +

λcF

2− λcF

]
eλaT ,

where a =
(
‖J ‖∞ + B + 4B̃

)
. Let T0 ∈ (0,∞) be small enough so that

η∗(T0) < 1. Then, for any 0 < T ≤ T0, the function wn ≡ ūn+1 − ūn,
satisfies the following bound

sup
t∈[0,T ]

(
µ
(
w2

n(t)
)

+ (2− λcF )
∫ t

0
µ
(
|∇wn(s)|2

)
ds

)
≤ C(η∗(T ))n−1µf2,

with a constant C ∈ (0,∞) independent of ε > 0 and T . As a consequence,

‖ūn+1 − ūn‖2
C([0,T ],L2) + ||ūn+1 − ūn||2HT,+

≤ C (T + 2) µ(f2) (η∗(T ))n−1

uniformly in ε > 0.

Proof. Since ūn is a strong solution of (Aε), the difference wn ≡ ūn+1 − ūn

is a strong solution of{
∂twn = Lwn + λPε

[
ūnG

(
σ2(ūn)

)
− ūn−1G

(
σ2(ūn−1)

) ]
wn(0) = 0.

Hence, with w̃n ≡ Pεwn we have

1
2

d

dt
µ(w2

n) =
∫

wnLwndµ

+λ

∫
w̃n

[
ūnG

(
σ2(ūn)

)
− ūn−1G

(
σ2(ūn−1)

) ]
dµ

= −
∫
|∇wn|2dµ + λ

∫ ∫ 1

0
w̃n

d

dα
vαG

(
σ2(vα)

)
dαdµ
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where vα = αūn + (1− α)ūn−1. As already seen in the proof of lemma 4

d

dα
vαG

(
σ2(vα)

)
= wn−1G

(
σ2(vα)

)
+ 2 σ2(vα) G′ (σ2(vα)

)
wn−1

− 2 σ3(vα) G′ (σ2(vα)
)

µ
(
σ(vα) wn−1

)
. (12)

We will deal with the corresponding three different terms as follows. For
the first term, using our assumption G = J + F , we have∣∣∣∣∫ w̃nwn−1G

(
σ2(vα)

)
dµ

∣∣∣∣ ≤ ∫ |w̃nwn−1| ·
∣∣J (σ2(vα)

)∣∣ dµ

+
1
2

∫
w̃2

nF
(
σ2(vα)

)
dµ +

1
2

∫
w2

n−1F
(
σ2(vα)

)
dµ

≤ 1
2

(‖J ‖∞ + B)
(
µ
(
w̃2

n

)
+ µ

(
w2

n−1

))
+

1
2

∫
w̃2

nF
(
σ2(w̃n)

)
dµ +

1
2

∫
w2

n−1F
(
σ2(wn−1)

)
dµ

where we used |xy| ≤ 1
2x2 + 1

2y2, boundedness of J and (GREI). Hence,
using (FS) and the fact that µ

(
w̃2

n

)
≤ µ

(
w2

n

)
and µ

(
|∇w̃n|2

)
≤ µ

(
|∇wn|2

)
,

we arrive at

∣∣∣∣∫ w̃nwn−1G
(
σ2(vα)

)
dµ

∣∣∣∣ ≤ 1
2

(‖J ‖∞ + B)
(
µ
(
w2

n

)
+ µ

(
w2

n−1

))
+

cF

2
(
µ
(
|∇wn|2

)
+ µ

(
|∇wn−1|2

))
.

For the second term, since by condition (C2) we have |xG′(x)| ≤ B̃, we get∣∣∣∣∫ w̃n σ2(vα)G′ (σ2(vα)
)
wn−1dµ

∣∣∣∣ ≤ 1
2
B̃
(
µ
(
w2

n

)
+ µ

(
w2

n−1

))
.

For analysis of the third term, recall that µ(σ2(vα)) = 1, so that

∣∣∣∣∫ w̃nσ3(vα) G′ (σ2(vα)
)

µ
(
σ(vα) wn−1

)
dµ

∣∣∣∣
≤ B̃ µ

(
|w̃n σ(vα)|

)
µ
(
|σ(vα) wn−1|

)
≤ B̃µ

(
w̃n

2
) 1

2
µ
(
w2

n−1

) 1
2 ≤ 1

2
B̃
(
µ
(
w2

n

)
+ µ

(
w2

n−1

))
.

Combining all bounds we obtain a differential inequality which after integra-
tion with respect to time and taking into the account the time zero condition
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wn(0) = 0, leads to

µ
(
w2

n(t)
)

+ (2− λcF )
∫ t

0
µ
(
|∇wn(s)|2

)
ds

≤ λa

∫ t

0
µ
(
w2

n−1(s)
)
ds + λcF

∫ t

0
µ
(
|∇wn−1(s)|2

)
ds

+λa

∫ t

0
µ
(
w2

n(s)
)
ds

≤ λa

∫ t

0
µ
(
w2

n−1(s)
)
ds + λcF

∫ t

0
µ
(
|∇wn−1(s)|2

)
ds

+λa

∫ t

0

(
µ
(
w2

n(s)
)

+ (2− λcF )
∫ s

0
µ
(
|∇wn(r)|2

)
dr

)
ds

with a constant a =
(
‖J ‖∞ + B + 4B̃

)
for every t ∈ [0, T ]. Setting

Ξn(t) ≡ µ
(
w2

n(t)
)

+ (2− λcF )
∫ t

0
µ
(
|∇wn(s)|2

)
ds

the last bound implies the following relation

Ξn(t) ≤ λcF

2− λcF

Ξn−1(t) + λa

∫ t

0
Ξn−1(s)ds + λa

∫ t

0
Ξn(s)ds (13)

Applying Gronwall type arguments, we get for any t ∈ [0, T ],

Ξn(t) ≤ λcF

2− λcF

eλatΞn−1(t) + λaeλat

∫ t

0
Ξn−1(s) ds. (14)

This leads to the following inductive bound

sup
t∈[0,T ]

Ξn(t) ≤ η∗(T ) sup
t∈[0,T ]

Ξn−1(t) (15)

with η∗(T ) ≡
[
λaT + λc

F
2−λc

F

]
eλaT . If 0 < λcF < 1, then there exists T0 > 0

such that η∗(T ) ∈ (0, 1) for any 0 < T < T0. In this situation using the
uniform bound of Proposition 5, we arrive at

sup
t∈[0,T ]

Ξn(t) ≤ Cµ(f2) (η∗(T ))n−1

with a constant C ∈ (0,∞) independent of ε > 0. As a consequence we
conclude that there exists T ∈ (0,∞), independent of ε > 0 and of the initial
value f ∈ L2(µ), such that the sequence (ūn(t))n∈N, t ∈ [0, T ], converges in
HT,+(E) ∩ C

(
[0, T ], L2(µ)

)
uniformly in ε > 0. 2
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Proposition 8. Uniqueness for Mollified Problem.
Assume µ ∈ FS(cF ) with a constant cF ∈ (0,∞), let λ ∈ [0, c−1

F
). Then, for

any T > 0, there exists at most one weak solution on [0, T ] of the mollified
Cauchy problem 

∂tu
(ε) = Lu(ε) + λV(ε)(u(ε))

u(ε)
|t=0 = f

(Cε)

Proof. Assume there are two distinct weak solutions u(ε) and v(ε) on [0, T ]
with the same initial value f . Let w = u(ε) − v(ε). Then w belongs to the
space L2

(
[0, T ],W 1,2(E)

)
∩C
(
[0, T ], L2(µ)

)
, admits a weak derivative ∂tw in

L1
(
[0, T ],W−1,2(E)

)
and one has ∂tw = ν with

ν ≡ Lw + λ
[
V(ε)(u(ε))− V(ε)(v(ε))

]
∈ L2

(
[0, T ],W−1,2(E)

)
and w(0) = 0. Extend w to L2

(
R,W 1,2(E)

)
by setting w ≡ 0 outside [0, T ].

Making use of regularization via convolution with mollifiers ρδ ∈ C∞(R)
with support in [−δ, δ], δ > 0, one has ρδ ∗ w ∈ C∞(R,W 1,2(E)) and, for
any t ∈ R, d

dt(ρδ ∗ w)(t) = ( d
dtρδ) ∗ w(t) in W 1,2(E). For any 0 < δ < δ0,

and any t ∈ (δ0, T − δ0), one has furthermore d
dt(ρδ ∗ w)(t) = ρδ ∗ ∂tw(t) as

ρδ(t− ·) ∈ C∞
c

(
(0, T )

)
. As a consequence, for any t ∈ (δ0, T − δ0), one gets

d

dt
µ
(
(ρδ ∗ w)2

)
(t) = 2〈(ρδ ∗ ν)(t), (ρδ ∗ w)(t)〉W−1,2,W 1,2

with ν ∈ HT,−(µ) as defined above. Integrating between δ0 and t, and then
letting δ go to 0, we arrive at

µ
((

w(t)
)2) = µ

((
w(δ0)

)2)− 2
∫ t

δ0

µ
(
|∇w(s)|2

)
ds

+ 2λ

∫ t

δ0

µ
(
Pεw(s)

[
V(u(ε)(s))− V(v(ε)(s))

])
ds.

One then use linear interpolation vα = αu(ε) + (1 − α)v(ε) to obtain the
bound ∣∣∣V(u(ε)(s))− V(v(ε)(s))

∣∣∣ ≤ ∫ 1

0
dα

∣∣∣∣ d

dα

(
vα(s)G

(
σ2(vα(s))

))∣∣∣∣ .
This derivative was computed in (12), and by similar arguments as in the
proof of proposition 7, one obtains the following inequality

µ
((

w(t)
)2)+ 2(1− λcF )

∫ t

δ0

µ
(
|∇w(s)|2

)
ds

≤ µ
((

w(δ0)
)2)+ 2λa

∫ t

δ0

µ
((

w(s)
)2)

ds
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with a =
(
‖J ‖∞ + B + 4B̃

)
. After letting δ0 → 0, Gronwall lemma leads

to µ
((

w(t)
)2) = 0, for any t ∈ (0, T ). This contradicts our assumption that

two distinct weak solutions exist. 2

Theorem 9. Solution of the Mollified Problem.
Suppose µ ∈ FS(cF ), with a constant cF ∈ (0,∞), and let λ ∈ [0, c−1

F
). For

T ∈ (0,∞), let

η∗(T ) ≡
[
λaT +

λcF

2− λcF

]
eλaT ,

where a =
(
‖J ‖∞ + B + 4B̃

)
and choose T0 ∈ (0,∞) such that η∗(T0) < 1.

Then

1. The function u(ε) ≡ limn→∞ ū
(ε)
n , with the limit in space HT0,+(µ) ∩

C
(
[0, T0], L2(µ)

)
, is a unique weak solution on [0, T0] of the Mollified

Cauchy problem 
∂tu

(ε) = Lu(ε) + λV(ε)(u(ε))

u(ε)
|t=0 = f

(Cε)

2. The later solution can be extended to a unique global weak solution of
problem (Cε).

3. Moreover if J ≡ 0, then the following contractivity property is true
for any t ≥ 0

µ
(
u(ε)(t)

)2
≤ µf2.

Remark 10. A posteriori, by lemma 4, it follows that

u(ε) = Ptf + λ

∫ t

0
dsPt−sV(ε)(u(ε))(s)

and so u(ε) is a strong solution, as the left hand side belongs to the domain
of L and is differentiable with respect to t.
As follows from proposition 5 (uniform bound), ||u(ε)||HT,+

is uniformly
bounded in ε > 0.

Proof of theorem 9. By definition of u(ε) and completness of C
(
[0, T ], L2(µ)

)
,

we have u(ε) ∈ C
(
[0, T ], L2(µ)

)
. Fix a test function v ∈ C∞([0, T ],W 1,2(E)

)
⊂

HT,+(E). First, for any t ∈ (0, T ],∫ t

0
dsµ

(
v(s)V(ε)(ū(ε)

n )(s)
)
−→

∫ t

0
dsµ

(
v(s)V(ε)(u(ε))(s)

)
(16)
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as n goes to∞. Namely, from Lemma 4, it follows that V(ε) : HT,+ → HT,+ is

Lipschitz continuous. In particular, V(ε)
(
u(ε)
)

= HT,+− limn→∞ V(ε)
(
ū

(ε)
n

)
(with short hand notation for limit in space HT,+(E)). And so V(ε)

(
u(ε)
)

=

HT,−− limn→∞ V(ε)
(
ū

(ε)
n

)
when acting on HT,+(E) with L2(µ)-type pairing.

Thus (16) follows.
Recall that by classical arguments L : HT,+(E) → HT,−(µ) acting by

〈Lu, v〉HT,−,HT,+
≡ −

∫ T
0 µ (∇u(s) · ∇v(s)) ds is continuous so that∫ t

0
µ
(
∇ū(ε)

n (s) · ∇v(s)
)

ds −→
∫ t

0
µ
(
∇u(ε)(s) · ∇v(s)

)
ds.

Convergence of ū
(ε)
n to u(ε) in L2

(
[0, T ], L2(µ)

)
leads to∫ t

0
µ
(
ū(ε)

n (s) ∂sv(s)
)

ds −→
∫ t

0
µ
(
u(ε)(s) ∂sv(s)

)
ds

whereas convergence in C
(
[0, T ], L2(µ)

)
ensures that µ

(
ū

(ε)
n (t) v(t)

)
goes to

µ
(
u(ε)(t) v(t)

)
and u(ε)(0) = f . This completes the proof that u(ε) is a weak

solution of (Cε). Uniqueness of the solution was proved in proposition 8.
As for existence of a global weak solution, it follows from the fact that

the time T0 in the foregoing does not depend on initial condition f . Hence
one can glue at T0 the solution uf with initial value f and the solution
starting from uf (T0) ∈ L2(µ) to get a solution on [0, 2T0], and so on...

By our construction u(ε) is in fact a strong solution (cf. Remark 10).
Using this a simple calculation shows that we have

d

dt
µ

([
u(ε)(t)

]2)
= −2 µ

(∣∣∣∇u(ε)(t)
∣∣∣2)+ 2 λµ

([
u(ε)(t)

]2
G
(
σ2(u(ε)(t))

))
If (FS) holds and λ ∈ [0, 1

c
F

) this leads to the following differential inequality

d

dt
µ

([
u(ε)(t)

]2)
≤ 2 λ||J ||∞ µ

([
u(ε)(t)

]2)
whence one obtains

µ

([
u(ε)(t)

]2)
≤ eλ||J ||∞tµ

(
f2
)
.

In particular, if J ≡ 0, we arrive at the following contractivity property

µ
(
u(ε)(t)

)2
≤ µf2.

2
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Φ-bounds. In this section, we investigate regularity for mollified solutions
in the Orlicz space LΦq(µ) provided the initial value also belongs to this
space.

Theorem 11. Suppose conditions (C1−C3) are satisfied. Let Φq(x) ≡
x2eqF (x2) for some fixed q ∈ (0,∞). Suppose that µΦq(f) < ∞ and λ ∈
(0, (1+qB̄)−2 c−1

F ). Fix ε > 0. Then the weak solution u(ε)(t) of the mollified
Cauchy problem{

∂u(ε)(t)
∂t = Lu(ε)(t) + λPε

[
u(ε)(t)G(σ2(u(ε)(t)))

]
u(ε)(0) = f

,

satisfies the following bound

µ
(
Φq(u(ε)(t))

)
+ 2 C(q, λ, cF )

∫ t

0
dsµ|∇

√
Φq(u(ε)(s))|2 ≤ eãλtµ (Φq(f))

with some constants C(q, λ, cF ) = (1 − λcF (1 + qB̄)2)/(1 + qB̄) > 0 and
ã = 2(1 + qB̄) (B + ‖J ‖∞) .

Remark 12. In the proof, we make computation on µ
(
Φq(u(ε)(t))

)
without

knowing a priori that it is finite. In fact, we can truncate u(ε) to a bounded
function u(ε,N) ≡ (u(ε)∧N)∨(−N) still in the domain, then perform the same
computations with u(ε,N) and at last remove the truncation thanks to Fatou
lemma (or limit results for Dirichlet forms and truncation). Which provides

a proof that
√

Φq(u(ε)) belongs to HT,+(E) provided f ∈ LΦq(µ). Note
also that when E is a local regular Dirichlet form, property E(Φ′

q(u), u) ≥
kE
(√

Φq(u)
)
, for u ∈ W 1,2(E) bounded and k = 2/(1 + qB̄), still holds true

thanks to Lejan chain rule formula for energy measures (see [FOT]).

Proof of theorem 11. Let uδ(t) ≡ 1
δ

∫ δ
0 u(ε)(t + s)ds. Then we have

∂

∂t
µ
(
Φq(uδ(t))

)
= µ

(
Φ′

q(u
δ(t))

1
δ

∫ δ

0
(Lu(ε)(t + s) + λPεu

(ε)(t + s)G(σ2(u(ε)(t + s))))ds

)
Integrating with respect to t and passing to the limit with δ → 0, after
simple rearrangements one arrives at the following inequality

µ
(
Φq(u(ε)(t))

)
≤ µ (Φq(f)) +

∫ t

0
dsµ

(
−Φ′′

q (u
(ε)(s))|∇u(ε)(s)|2

)
+ λ

∫ t

0
dsµ

(∣∣∣Pε(Φ′
q(u

(ε)(s)))u(ε)(s)
∣∣∣F (σ2(u(ε)(s))))

)
+ λ ‖J ‖∞

∫ t

0
dsµ

(∣∣∣Pε(Φ′
q(u

(ε)(s)))u(ε)(s)
∣∣∣) .
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First note that, with k = 2/
(
1 + q B̄

)
≤ 2, one has

Φ′′
q (x) ≥ k

(
Φ′

q(x)
)2

4Φq(x)
= k

(
d

dx

(√
Φq(x)

))2

.

To show this, we recall that Φq(x) = Ψq(x2), with Ψq convex, and so

Φ′′
q (x) = 2Ψ′

q(x
2) + 4x2Ψ′′

q (x
2) ≥ 2 Ψ′

q(x
2) = Φ′

q(x)/x.

Thus the relation

xΦ′
q(x) = 2Φq(x)

(
1 + qx2F ′(x2)

)
≤ 2

(
1 + q B̄

)
Φq(x) (17)

leads to the announced differential inequality on Φq. And consequently,

µ
(
−Φ′′

q (u
(ε)(s))|∇u(ε)(s)|2

)
≤ −k µ|∇

√
Φq(u(ε)(s))|2.

Next, we note that by Young inequality and Jensen inequality for the
semigroup, we have

|Pε(Φ′
q(u

(ε)(s))) · u(ε)(s)| ≤ Φ∗
q(Pε(Φ′

q(u
(ε)(s)))) + Φq(u(ε)(s))

≤ PεΦ∗
q(Φ

′
q(u

(ε)(s))) + Φq(u(ε)(s))

with Φ∗
q(y) = supx∈R |xy| − Φq(x), the conjugate of Φq. Since Φ∗

q(Φ
′
q(x)) =

xΦ′
q(x)−Φq(x), thanks to (17), we have Φ∗

q(Φ
′
q(x)) ≤ (1+2qB̄)Φq(x). Hence,

|Pε(Φ′
q(u

(ε)(s))) · u(ε)(s)| ≤ (1 + 2qB̄)PεΦq(u(ε)(s)) + Φq(u(ε)(s)).

Using this, the definition of the constant k, (GREI) twice and then invariance
property for Pε w.r.t. µ, we have on the one hand,

µ
(∣∣∣Pε

(
Φ′

q(u
(ε)(s))

)
u(ε)(s)

∣∣∣) ≤ 2
(
1 + qB̄

)
µ
(
Φq(u(ε)(s)

)
and

µ
(∣∣∣Pε

(
Φ′

q(u
(ε)(s))

)
u(ε)(s)

∣∣∣F (σ2(u(ε)(s)))
)

≤ µ
(
Φq(u(ε)(s))F (σ2(u(ε)(s)))

)
+ (1 + 2qB̄)µ

(
Pε

(
Φq(u(ε)(s))

)
F (σ2(u(ε)(s)))

)
≤ µ

(
Φq(u(ε)(s))F (σ2(

√
Φq(u(ε)(s))))

)
+ 2B

(
1 + qB̄

)
µ
(
Φq(u(ε)(s))

)
+ (1 + 2qB̄)µ

(
Pε

(
Φq(u(ε)(s))

)
F (σ2(

√
Pε

(
Φq(u(ε)(s))

)
))
)
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on the other hand. Since xF (x) is convex by condition (C3), one has

µ

(
Pε

(
Φq(u(ε)(s))

)
F (σ2(

√
Pε

(
Φq(u(ε)(s))

)
))
)

≤ µ

(
Φq(u(ε)(s))F

(
σ2

(√
Φq(u(ε)(s))

)))
.

Hence

µ
(
−Φ′′

q (u
(ε)(s))|∇u(ε)(s)|2

)
+ λ ‖J ‖∞ µ

(∣∣∣Φ′
q(u

(ε)(s))Pεu
(ε)(s)

∣∣∣)
+ λµ

(∣∣∣Φ′
q(u

(ε)(s))Pεu
(ε)(s)

∣∣∣F (σ2(u(ε)(s))))
)

≤ −k µ|∇
√

Φq(u(ε)(s))|2 +2λ(1+ qB̄)µ
(

Φq(u(ε)(s))F (σ2(
√

Φq(u(ε)(s))))
)

+ 2λ(1 + qB̄) (B + ‖J ‖∞) µ
(
Φq(u(ε)(s))

)
With the use of (FS) inequality, the last can be bounded by

−2(
k

2
− λ̃cF )µ|∇

√
Φq(u(ε)(s))|2 + 2λ̃ (B + ‖J ‖∞) µ

(
Φq(u(ε)(s))

)
where λ̃ ≡ λ(1 + qB̄). Combining all the above we arrive at the following
inequality

µΦq(u(ε)(t)) + 2(
k

2
− λ̃cF )

∫ t

0
dsµ|∇

√
Φq(u(ε)(s))|2

≤ µΦq(f) + 2λ̃ (B + ‖J ‖∞)
∫ t

0
dsµΦq(u(ε)(s))

Increasing the integrand on the right hand side so it resembles the expression
on the left hand side, we obtain a Gronwall type inequality which leads to
the following bound

µΦq(u(ε)(t)) + 2(
k

2
− λ̃cF )

∫ t

0
dsµ|∇

√
Φq(u(ε)(s))|2 ≤ e2λ̃(B+‖J ‖∞)tµΦq(f)

provided λ̃ cF < k
2 . 2

Removing the smoothing.

Theorem 13 (Convergence in HT,+ ∩ C([0, T ], L2(µ)) when ε → 0). Let
F (x) = gδ ∗ Fα be like in example 3, with δ > 0 and α ∈ (1, 2]. Recall
that function F satisfies Conditions (C1), (C3) and (C4). For a fixed
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λ ∈ [0, c−1
F ), let u(ε)(t) denote the solution on [0, T0] of the approximated

Cauchy problem {
∂
∂tu

(ε) = Lu(ε) + λV(ε)(u(ε))
u(ε)(0) = f

(Cε)

with ε > 0 and initial value f ∈ L2(µ). Here T0 > 0 is like chosen in
Theorem 9 or Proposition 7. Let q > 0 small enough such that one has
λ < (1 + qB̄)−2c−1

F and assume furthermore that µ (Φq(f)) < ∞. Then ,
when ε → 0, the solutions u(ε) converge in the Banach space HT0,+(µ) ∩
C([0, T0], L2(µ)).

Remark 14. Recall from Proposition 7 that T0 is independent of the initial
value f and ε > 0.

Proof. For ε > ε′ > 0 define w ≡ wε,ε′ ≡ u(ε) − u(ε′). Note that we have
w(0) = 0. Recall that u(ε) and u(ε′) is a strong solutions of (Cε) and (Cε′),
respectively. Computing the time derivative of 1

2µw2(t) and integrating
between time 0 and t, we arrive at

1
2
µw2(t) = −

∫ t

0
dsµ|∇w(s)|2

+ λ

∫ t

0
µ
[
Pεw(s) · V(u(ε)(s))− Pε′w(s) · V(u(ε′)(s))

]
ds. (18)

First we note that

µ
[
Pεw(s) · V(u(ε)(s))− Pε′w(s) · V(u(ε′)(s))

]
= µ

[
Pεw(s) ·

{
V(u(ε)(s))− V(u(ε′)(s))

}]
+µ
[
(Pε − Pε′) w(s) · V(u(ε′)(s))

]
.

Using interpolation u(α, s) ≡ αu(ε)(s) + (1− α)u(ε′)(s) and suitable bounds
already detailed, we have

µ
[
Pεw(s) ·

{
V(u(ε)(s))− V(u(ε′)(s))

}]
≤
∫ 1

0
dα
{

µ
(
Pεw(s) w(s)G(σ2(u(α, s)))

)
+ 2 µ

(
Pεw(s) w(s)

[
σ2(u(α, s))G′(σ2(u(α, s)))

])
−2 µ

(
Pεw(s) σ3(u(α, s))G′(σ2(u(α, s)))

)
µ
(
w(s) σ(u(α, s))

)}
≤ 1

2
[
µw2(s)F (σ2(w(s))) + µ(Pεw)2(s)F (σ2(Pεw(s)))

]
+ aµw2(s)

≤ cF µ|∇w|2 + aµw2(s)
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with a = ‖J‖∞ + B + 4B̃. Combining this with (18), we arrive at

1
2
µw2(t) + (1− λcF )

∫ t

0
dsµ|∇w(s)|2 ≤ λa

∫ t

0
dsµw2(s)

+
∫ t

0
dsµ

[
(Pε − Pε′) w(s) · V(u(ε′)(s))

]
Hence we have

1
2
µw2(t) + (1− λcF )

∫ t

0
dsµ|∇w(s)|2

≤ eλat

∫ t

0
dsµ

[
(Pε − Pε′) w(s) · V(u(ε′)(s))

]

≤ eλat

(∫ t

0
dsµ [(Pε − Pε′) w(s)]2

) 1
2
(∫ t

0
dsµV2(u(ε′)(s))

) 1
2

(19)

First we note that, since w(s) belongs to the domain of L,∫ t

0
dsµ [(Pε − Pε′) w(s)]2 =

∫ t

0
dsµ

[
(−L)

1
4 w(s) (Pε − Pε′)

2 (−L)−
1
4 w(s)

]

≤
(∫ t

0
dsµ

(
(−L)

1
4 w(s)

)2
) 1

2

·
(∫ t

0
dsµ

(
(Pε − Pε′)

2 (−L)−
1
4 w(s)

)2
) 1

2

Next we observe that, (using symmetry of L and Schwartz inequality ),(∫ t

0
dsµ

(
(−L)

1
4 w(s)

)2
) 1

2

≤
(∫ t

0
ds
[
µ(w2(s)) + µ|∇w(s)|2

]) 1
2

≤ ‖w‖HT0,+

But uniform L2 bound ensures that ‖w‖HT0,+
≤ 2C(T0)

1
2 (µf2)

1
2 with some

constant C(T0) ∈ (0,∞) specified in Proposition 5. Moreover by spectral
theory we have

µ
(
(Pε − Pε′)

2 (−L)−
1
4 w(s)

)2
=
∫ ∞

0
e−4ε′η(e−(ε−ε′)η − 1)4η−

1
2 dEw(s)(η)

which we bound by

sup
η>0

(
e−4ε′η(e−(ε−ε′)η − 1)4 · η−1

)∫ ∞

0
η

1
2 dEw(s)(η) ≤ (ε− ε′)

∫ ∞

0
η

1
2 dEw(s)(η)

≤ (ε− ε′)
(
µw2(s) + µ|∇w(s)|2

)
To bound the supremum we notice that in the case when (ε− ε′)η ≤ 1, we
have |e−(ε−ε′)η − 1|4 · η−1 ≤ |(ε− ε′)η|4/η ≤ (ε− ε′), while for (ε− ε′)η ≥ 1,
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we have
(
e−4ε′η(e−(ε−ε′)η − 1)4 · η−1

)
≤ η−1 ≤ (ε − ε′). Hence we obtain

the following bound(∫ t

0
dsµ

(
(Pε − Pε′)

2 (−L)−
1
4 w(s)

)2
) 1

2

≤ 2C(T0)
1
2 (µf2)

1
2 (ε− ε′)

1
2

Combining the above estimates we arrive at the following bound(∫ t

0
dsµ [(Pε − Pε′) w(s)]2

) 1
2

≤ 2 C(T0)
1
2 (µf2)

1
2 (ε− ε′)

1
4 . (20)

Now, provided the initial value f satisfies µ(Φq(f)) < +∞ for some q > 0
such that λ < (1 + qB̄)−2c−1

F , the function V(u(ε′)) is more regular than
in HT0,−(µ). It belongs to L2

(
[0, T0], L2(µ)

)
with the corresponding norm

uniformly bounded in ε′ > 0 in terms of µ(Φq(f)). This is the aim of lemma
15 below which provides an estimate of the term(∫ t

0
ds µ

(
V2(u(ε′)(s))

)) 1
2

in (19). Together with the bound (20), it proves that (u(ε))ε>0 is Cauchy in
the space HT0,+(µ) ∩ C([0, T0], L2(µ)) as ε goes to 0. 2

Lemma 15. Let F (x) = gδ ∗ Fα be like in example 3, with δ > 0 and
α ∈ (1, 2]. Let u(ε) be as in theorem 13 for an initial condition f ∈ LΦq(µ)
for some q > 0 such that λ < (1 + qB̄)−2c−1

F . Then, for any ε > 0,(∫ t

0
dsµV2(u(ε)(s))

) 1
2

≤ Ae(1+qB̄)λBt (µΦq(f) + 1)
1
2

with some constant A = A(q) ∈ (1,∞) which is independent of ε.

Proof. Using Young’s inequality we have

µ
(
V2(u(ε)(s))

)
= µ

[
(u(ε)(s))2 F 2(σ2(u(ε)(s)))

]
≤ µΨq((u(ε)(s))2) + µΨ∗

q(F
2(σ2(u(ε)(s)))). (21)

So, let’s now bound Ψ∗
q(F

2(z)) for z ≥ 0. Let y ≥ 0. One has

Ψ∗
q(y) = sup

x∈R
[yx−Ψ(x)] = yx∗ −Ψq(x∗)

for some point x∗ ≥ 0 satisfying either x∗ = 0 or Ψ′
q(x∗) = y. So assume

y satisfies Ψ∗
q(y) > 0 (in particular, y > 1). Computing Ψ′

q(x∗) = (1 +
qx∗F

′(x∗))eqF (x∗), one gets

eqF (x∗) ≤ y ≤ (1 + qB̄)eqF (x∗).
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Thus
x∗ ≤ F−1

|θ̄
(
1
q

log y)) (22)

where we denote by F|θ̄ the restriction of F to [θ̄,∞). Recall that F

is invertible from [θ̄,∞) to [0,∞) (with θ̄ = θ − δ) whereas Fα(x) =(
(log x)β − (log θ)β

)
1Ix≥θ is invertible from [θ,∞) to [0,∞). From (22) fol-

lows the bound
Ψ∗

q(y) ≤ |y|F−1
|θ̄

(
1
q

log(1 + |y|)) (23)

for any y ∈ R. Recall approximation estimate

Fα(x) ≤ F (x) ≤ Fα(x) + κ

from example 3 (for some constant κ = κθ,δ) from which it follows that, for
any ξ ≥ 0, F−1

|θ̄
(ξ) ≤ (Fα)−1

|θ (ξ). From this and (23) we get the following
bound

Ψ∗(F 2(z)) ≤ (Fα(z) + κ)2 · (Fα)−1
|θ

(
1
q

log(1 + (Fα(z) + κ)2)
)

.

Next we observe that, for any z ≥ 0

(Fα)−1
|θ

(
1
q

log(1 + (Fα(z) + κ)2)
)
≤ C(z

1
2 + 1)

with some constant C ≡ Cq,β,δ ∈ (1,∞) as well as (Fα(z)+K)2 ≤ C̃(z
1
2 +1),

with some constant C̃ ≡ C̃β,δ ∈ (1,∞). Coming back to (21) we conclude
that

µ
(
V2(u(ε)(s))

)
≤ µΦq(u(ε)(s)) + CC̃µ

(
(σ(u(ε)(s)) + 1)2

)
≤ µΦq(u(ε)(s)) + 4CC̃

Hence, using the Φ-bound from theorem 11 we arrive at(∫ t

0
dsµV2(u(ε)(s))

) 1
2

≤
(∫ t

0
ds
[
e2(1+qB̄)λBsµΦq(f) + 4CC̃

]) 1
2

≤ Ae(1+q B̄)Bλt (µΦq(f) + 1)
1
2

with some constant A ∈ (1,∞) which is independent of ε. 2

Global existence and uniqueness for (MCP).

Theorem 16 (Existence completed). Let F = gδ ∗Fα be like in example 3,
with δ > 0 and α ∈ (1, 2]. Assume that L satisfies F -Sobolev inequality with
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constant cF , that is µ ∈ FS(cF ). Let λ ∈ [0, c−1
F ). Then, for any T ∈ (0,∞),

the Cauchy problem {
∂
∂tu = Lu + λ u F

(
u2

µ(u2)

)
u(0) = f

admits a unique weak solution on [0, T ], and this for any f ∈ L2(µ).

Proof. First, we mimic arguments given in the proof of Proposition 8 to get
uniqueness for weak solutions on any interval [0, T ].

Let us turn to the proof of the local existence. Choose q > 0 small enough
so that λcF < (1 + qB̄)−2. Then, provided the initial value f ∈ LΦq(µ), we
can use theorem 13 to exhibit a function u ∈ HT0,+(µ) ∩ C([0, T0], L2(µ))
such that

‖u(ε) − u‖HT0,+(µ) + sup
t∈[0,T0]

‖u(ε)(t)− u(t)‖L2(µ) −→ 0

when ε goes to 0. Thus, by lemma 15, one has

‖V(u(ε))− V(u)‖HT0,−(µ) −→ 0.

Hence, for any v ∈ HT0,+(µ) and t ∈ [0, T0],∫ t

0
ds
〈
V(ε)(u(ε))(s), v(s)

〉
W−1,2,W1,2

=
∫ t

0
ds
〈
V(u(ε))(s), Pεv(s)

〉
W−1,2,W1,2

−→
∫ t

0
ds 〈V(u)(s), v(s)〉

W−1,2,W1,2

as additionally Pεv goes to v in HT0,+(µ). This together with other argu-
ments developed in the proof of theorem 9 shows that u is a weak solution
on [0, T0] of problem (MCP). Hence, we are done provided the initial value
f ∈ LΦq(µ).

Let’s now consider a general initial value f ∈ L2(µ). By density of
LΦq(µ), there exists (fn)n∈N ⊂ LΦq(µ) with (fn)n → f in L2(µ). Let’s
denote by un the unique weak solution (on [0, T0]) of (MCP) with initial
value fn. Define w ≡ wn,m ≡ un − um. One has w(0) = fn − fm. Let
wδ(t) ≡ 1

δ

∫ δ
0 w(t + s)ds, for δ > 0. Then we have

d

dt

1
2
µ
(
wδ(t)

)2
=

1
δ

∫ δ

0
dsµ

(
wδ(t)Lw(t + s)

)
+ λ

1
δ

∫ δ

0
dsµ

[
wδ(t) ·

(
V(un(t + s))− V(um)(t + s))

)]
= −1

δ

∫ δ

0
dsµ

(
∇wδ(t) · ∇w(t + s)

)
+ λ

1
δ

∫ δ

0
dsµ

[
wδ(t) ·

(
V(un(t + s))− V(um(t + s))

)]
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Integrating with respect to time and passing to zero with δ, we arrive at

µ
(
w2(t)

)
= µ

(
(fn − fm)2

)
− 2

∫ t

0
dsµ|∇w(s)|2

+ 2λ

∫ t

0
µ (w(s) · [V(un(s))− V(um(s))]) ds.

Using linear interpolation between un(s) and um(s), and now routine bounds
(see proof of theorem 13 for instance), this leads to

µ
(
w2(t)

)
+2(1−λcF )

∫ t

0
dsµ|∇w(s)|2 ≤ µ

(
(fn − fm)2

)
+2λa

∫ t

0
dsµ

(
w2(s)

)
with a = ‖J‖∞ + B + 4B̃. So that, for any t ∈ [0, T0],

µ
(
w2(t)

)
+ 2(1− λcF )

∫ t

0
dsµ|∇w(s)|2 ≤ e2λat µ

(
(fn − fm)2

)
.

Then (un)n is Cauchy in HT0,+(µ) ∩ C([0, T0], L2(µ)). Let u be the corre-
sponding limit. As in the beginning of this proof, one can easily check that u
is a weak solution on [0, T0] of (MCP) with u(0) = f . Arguments to extend
u to any interval [0, T ] have been given in the proof of theorem 9. The proof
is complete. 2

4 Properties of Solutions of (MCP)

4.1 Markovian behaviour

Proposition 17 (Positivity). Assume that µ ∈ FS(cF ) with a constant
cF ∈ (0,∞). Then, for any λ ∈ [0, c−1

F
), any solution u(t) of (MCP) with

initial value f ≥ 0 satisfies u(t) ≥ 0 for any t ≥ 0.

Proof. Let u(t) be a weak solution of (MCP) with initial value f ≥ 0. We
will prove that, µ-a.s., u−(t) = min(0, u(t)) = 0. Then wh ≡ 1

h

∫ t+h
t u(τ)dτ ,

for h > 0, is differentiable with respect to t; thus it is a test function and
so is w−

h ≡ min(0, wh). Hence, using the definition of the weak solution, we
get

1
2
µ
(
w−

h (t)
)2 =

1
2
µ
(
w−

h (0)
)2 +

1
2

∫ t

0
ds∂sµ

(
w−

h (s)
)2

=
1
2
µ
(
w−

h (0)
)2 +

∫ t

0
dsµ

(
w−

h (s)
1
h

(u(s + h)− u(s))
)

=
1
2
µ
(
w−

h (0)
)2 +

∫ t

0
ds

1
h

∫ s+h

s
dτ
[
−µ
(
∇w−

h (s)∇u(τ)
)]

+ λ

∫ t

0
ds

1
h

∫ s+h

s
dτµ

(
w−

h (s)u(τ)G
(
σ2(u(τ))

))
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In the final integral we can pass to the limit with h → 0 which yields (as
µ
(
(f−)2

)
= 0)

1
2
µ
(
u−(t)

)2 = −
∫ t

0
dsµ

∣∣∇u−(s)
∣∣2 + λ

∫ t

0
dsµ

(
(u−(s))2G

(
(u−(s))2

||u(s)||22

))
≤ −

∫ t

0
dsµ

∣∣∇u−(s)
∣∣2 + λ

∫ t

0
dsµ

(
(u−(s))2F

(
(u−(s))2

||u−(s)||22

))
≤ 0

provided λ ≤ c−1
F

thanks to the F -Sobolev inequality. Hence,

0 ≤ µ
(
(u−(t))2

)
≤ 0.

The proof is complete. 2

Proposition 18 (Boundedness). Assume that µ satisfies the F -Sobolev in-
equality (1) with constant cF . Then, for any λ ∈ [0, c−1

F
), any solution u(t)

of (MCP) satisfies for any t ≥ 0,

‖u(t)‖∞ ≤ ‖f‖∞ .

Proof. Let f ∈ L∞ (µ). We write χ+ for the indicatrice function χu(t)≥‖f‖∞
of the set {u(t) ≥ ‖f‖∞}. As in the proof of proposition 17, we start from
analysing the properties of mollification of the function (u(t)− ‖f‖∞)+ ≡
(u(t)− ‖f‖∞) · χ+ using the definition of the weak solution and locality of
the generator L. This procedure leads to the following integral relation

1
2
µ
(
(u(t)− ‖f‖∞)2+

)
= −

∫ t

0
dsµ

∣∣∇ (u(s)− ‖f‖∞)+
∣∣2

+ λ

∫ t

0
ds

∫
(u(s)− ‖f‖∞) u(s)χ+G

(
u(s)2

‖u(s)‖2
2

)
dµ.

Next we note that µ
(∣∣∇ (u(s)− ‖f‖∞)+

∣∣2) = µ
(
|∇ (u(s)χ+)|2

)
and that,

thanks to (u(s)− ‖f‖∞) u(s)χ+ ≥ 0, we can use G ≤ F to get

1
2
µ
(
(u(t)− ‖f‖∞)2+

)
≤ −

∫ t

0
dsµ

(
|∇ (u(s)χ+)|2

)
+λ

∫ t

0
ds

∫
(u(s)χ+)2 F

(
(u(s)χ+)2

‖u(s)‖2
2

)
dµ

−λ‖f‖∞
∫ t

0
ds

∫
u(s)χ+F

(
u(s)2

‖u(s)‖2
2

)
dµ.
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Since u(s)χ+ ≥ 0 and F ≥ 0, the last term is non positive. Hence, using
µ((u(t)χ+)2) ≤ ‖u(t)χ+‖2

2 ≤ ‖u(t)‖2
2, and the F -Sobolev inequality, one gets

1
2
µ
(
(u(t)− ‖f‖∞)2+

)
≤

≤
∫ t

0
ds
{
−µ |∇ (u(s)χ+)|2 + λµ

(
(u(s)χ+)2 F

(
σ2(u(s)χ+)

))}
≤ 0.

And so µ
(
(u(t)− ‖f‖∞)2+

)
≤ 0. Therefore u(t) ≤ ‖f‖∞, µ-a.s.. By homo-

geneity of the equation, −u(t) is a solution with initial value −f . And the
above argument also leads to u(t) ≥ −‖f‖∞. This ends the proof. 2

4.2 Further properties

For simplicity we set û2(t) ≡ σ2(u(t)) ≡ u2(t)/µ(u2(t)).

Theorem 19 (Exponential decay in L2). Assume that µ ∈ FS(cF ). Suppose
also that µ satisfies the following spectral gap inequality

mµ (g − µg)2 ≤ µ|∇g|2

with m ∈ (0,∞) independent of g ∈ W 1,2(E). Choose λ ∈ (0, (cF + (a/m))−1)
where a ≡

(
‖J ‖∞ + 4B̃ + B

)
with B > 0 as in the generalized relative en-

tropy inequality, and B̃ and J as in condition (C2). Then, any solution u(t)
of the problem (MCP) with initial data f ∈ L2(µ) satisfies for any t ≥ 0,

µ
(
(u(t)− µ(u(t)))2

)
≤ e−2Mtµ

(
(f − µ(f))2

)
(24)

with M ≡ m(1− λcF )− λa.

Proof. Set w(t) = u(t)−µ(u(t)) and recall wh(t) ≡ 1
h

∫ t+h
t w(τ)dτ (and sim-

ilarly for u(t)) so that wh(t) = uh(t)−µ(uh(t)). Since wh(t) is differentiable
and µ(wh(t)) = 0 for any t, we have

1
2

d

dt

(
e2Mtµ

(
(wh(t))2

))
−Me2Mtµ

(
(wh(t))2

)
= e2Mtµ(wh(t)

1
h

(u(t + h)− u(t)))

= e2Mt 1
h

∫ t+h

t
dτ

{
−µ (∇wh(t)∇u(τ)) + λ

∫
wh(t)u(τ)G(û2(τ))dµ

}
Integrating from 0 to t, and passing to the limit with h → 0, we arrive at

e2Mt

2
µ(w(t))2 =

1
2
µ(f − µf)2

+
∫ t

0
dse2Ms

{
−µ|∇u(s)|2 + λµ

[
w(s)u(s)G(û2(s))

]
+ Mµ(w2(s))

}
(25)
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Now, as G vanishes at one, we have u(s)G(û2(s)) =
∫ 1
0 dα d

dα

[
u[α](s)G(û2

[α](s))
]

with u[α](s) ≡ αu(s) + (1 − α)µ(u(s)) and û2
[α](s) ≡ (u[α](s))2/µ(u[α](s))2.

Evaluating this derivative as in (12), one gets

µ
[
w(s)u(s)G(û2(s))

]
=
∫ 1

0
dα µ

(
w2(s)

[
G(û2

[α](s)) + 2û2
[α](s)G

′(û2
[α](s))

])
− 2

∫ 1

0
dα µ

[
û3

[α](s)G
′(û2

[α](s))w(s)
]

µ (û[α](s)w(s))

≤
∫ 1

0
dα µ

(
w2(s)F (û2

[α](s))
)
+
(
‖J ‖∞ + 2B̃

)
µ(w2(s))+2B̃ [µ (û[α](s)w(s))]2

≤ µ
(
w2(s)F (w2(s))

)
+ aµ(w2(s)),

where we used (GREI) and Cauchy-Schwarz inequality in the last bound,
and we set a ≡

(
‖J ‖∞ + 4B̃ + B

)
. Coming back to (25) and applying

F-Sobolev inequality, we obtain (using the fact that ∇w(s) = ∇u(s))

µ(w(t))2 = e−2Mtµ(f − µf)2

+ 2
∫ t

0
dse−2M(t−s)

{
−(1− λcF )µ|∇u(s)|2 + (λa + M) µ(w2(s))

}
If m ∈ (0,∞) is the best constant in the following Poincaré inequality

m · µ(g − µg)2 ≤ µ|∇g|2,

for any g in the domain of the form, then we get

µ(w(t))2 ≤ e−2Mtµ(f − µf)2

− 2
∫ t

0
dse−2M(t−s)

{
[m(1− λcF )−M − λa))]µw2(s)

}
Thus, if λ ∈ [0, {cF + (a/m)}−1), then M = m(1 − λcF ) − λa > 0 and we
obtain

µ(w(t))2 ≤ e−2Mtµ(f − µf)2

2

We define nonlinear parabolic transfer operator by

S∞(f) ≡ lim
T→∞

1
T

∫ T

0
µ(u(s))ds.

Proposition 20.
Under the assumptions of the previous theorem, there exists a constant K ′ ∈
(0,∞) such that for any t ≥ 0,

|µ(u(t))− S∞(f)| ≤ K ′e−Mt‖f − µ(f)‖2.
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Consequently, there exists a constant K ′′ ∈ (0,∞) such that

‖u(t)− S∞(f)‖2 ≤ K ′′e−Mt‖f − µ(f)‖2

Proof. We first prove the convergence of µ(u(t)). As in the previous proof,
let u[α](t) = αu(t) + (1 − α)µ(u(t)), w(t) = u(t) − µ(u(t)) and uh(t) =
1
h

∫ t+h
t u(τ)dτ . We have

∂tµ(uh(t)) =
1
h

µ (u(t + h)− u(t)) = λ
1
h

∫ t+h

t
dsµ

(
u(s)G

(
û(s)2

))
=

1
h

∫ t+h

t
dsµ

(
λ

∫ 1

0

d

dα

(
u[α](s)G

(
û2

[α](s)
))

dα

)
.

with

µ

(
d

dα

(
u[α](s)G

(
û2

[α](s)
)))

=
∫

w(s)G
(
û2

[α](s)
)
dµ + 2

∫
w(s)û2

[α](s)G
′ (û2

[α](s)
)
dµ

− 2
∫

û2
[α](s)G

′ (û2
[α](s)

) u[α](s)µ(u[α](s)w(s))
µ(u2

[α](s))
dµ.

It follows from condition (C2) that B̃ ≡ sup |xG′(x)| < ∞ and that |G(x)| ≤
C + |x|

1
2 with some constant C ∈ (0,∞). Hence, using Hölder inequality,

we get ∣∣∣∣∫ d

dα

(
u[α](s)G

(
û2

[α](s)
))

dµ

∣∣∣∣ ≤ (C + 1 + 4B̃)
(
µw2(s)

) 1
2 .

Combining our considerations, we obtain

|∂tµ(uh(t))| ≤ λ(C + 1 + 4B̃)
1
h

∫ t+h

t
ds
(
µw(s)2

) 1
2 .

Now using the bound of Theorem 19 gives (uniformly in h > 0)

|∂tµ(uh(t))| ≤ λ(C + 1 + 4B̃)e−Mt(µ(f − µf)2)
1
2 .

Thus, if T ≥ t, one gets

|µ(uh(T ))− µ(uh(t))| ≤ λ(C + 1 + 4B̃)‖f − µ(f)‖2

∫ ∞

t
e−Msds

so that, after passing to the limit h → 0,

|µ(u(T ))− µ(u(t))| ≤ e−Mt

M
λ(C + 1 + 4B̃)‖f − µ(f)‖2.
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Hence, (µ(u(t)))t≥0 is Cauchy. Set K ′ = λ
M (C + 1 + 4B̃). For a fix T > t,

we have∣∣∣∣µ(u(t))− 1
T

∫ T

0
µ(u(s))ds

∣∣∣∣
≤ 1

T

∫ t

0
|µ(u(t))− µ(u(s))|ds +

1
T

∫ T

t
|µ(u(t))− µ(u(s))|ds

≤ 1
T

(∫ t

0
K ′e−Msds +

∫ T

t
K ′e−Mtds

)
‖f − µ(f)‖2

≤ K ′
(

T − t

T
e−Mt +

1− e−Mt

TM

)
‖f − µ(f)‖2.

Letting T go to infinity proves the first part of the proposition.
The second part follows from the following inequality

µ
(
(u(t)− S∞(f))2

)
≤ 2µ

(
(u(t)− µ(u(t)))2

)
+ 2|µ(u(t))− S∞(f)|2,

the previous bound and Theorem 19. 2
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5 Uniform Hypercontractivity

In the linear case the hypercontractivity in the norm sense is equivalent to
the one with respect to the metric. For nonlinear semigroups this may be no
longer true. The following result below shows that under certain conditions
this stronger property holds.
Define for any r ≥ 0, τr(x) := x2erF (x2) and assume that there exists a
constant k > 0 such that for all r ≥ 0: τ ′′r τr ≥ k

4τ ′r
2.

In particular if we consider the function F defined in Example 3, thanks
to Lemma 37 of [BCR04], we have for any r ≥ 0,

(τ (α)
r )′′τ (α)

r ≥ 3− 2(2− α)/(α log(θ))
4

(τ (α)
r )′

2
. (26)

Suppose λ ∈ [0,min(c−1
F

, k(2cF )−1)). Let q : R+ → R+ be a C1 non-
decreasing function satisfying−k+cF

[
λ2(1 + q(t)B̄) + q′(t)

]
≤ 0 and q(0) =

0. In particular, one may choose q(t) ≡ η

2λ(B̄)(1 − e−2λB̄t) with 0 ≤ η ≤
k
cF
− 2λ. We set Φt := τq(t), t ≥ 0. We have x2 ≡ Φ0(x) ≤ Φt(x2) and

consequently ||f ||2 ≤ ||f ||Φt .

Theorem 21. Assume the hypothesis described in section 2 are satisfied.
Assume that µ satisfies the F -Sobolev inequality (1) with constant cF . Sup-
pose λ ∈ [0,min(c−1

F
, k(2cF )−1)) Then, any solutions u(t) and v(t) of the

(MCP) with initial data f ∈ L2(µ) and g ∈ L2(µ), respectively, satisfy, for
all t ≥ 0,

‖u(t)‖Φt
≤ exp

{
λ(B + ‖J ‖∞)

∫ t

0
ds (1 + q(s)B̄)

}
‖f‖2 (27)

and
‖u(t)− v(t)‖Φt

≤ Cu,v(t)‖f − g‖2

where Cu,v(t) is given by

Cu,v(t) =

= exp
(

λ

∫ t

0

[
2B̃
(
1 + 2

∫ 1

0

‖u[α](s)‖Φs

‖u[α](s)‖2
dα
)

+ B + ‖J ‖∞)
]
(1 + q(s)B̄) ds

)
with u[α](s) ≡ αu(s) + (1− α)v(s).

Proof. Let u(t) and v(t) be a solution of the Cauchy problem with smooth
initial data f and g, respectively. The desired hypercontractivity once
proven for the case of bounded smooth initial data, can later be extended to
the general case. Let w(t) ≡ u(t)− v(t). Let q : R+ → R+ be a general non-
decreasing function with q(0) = 0 and consider first Nh(t) = ‖wh(t)‖τq(t)

,
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where wh(t) ≡ 1
h

∫ t+h
t dsw(s). For simplicity, we set T (x, q) = τq(x). Then

by definition of the Luxemburg norm, we have∫
T (σt(wh(t)), q(t)) dµ = 1, ∀t ≥ 0,

where σt(wh(t)) ≡ wh(t)
Nh(t) . Thus, by differentiation, we get

N ′
h(t)

N2
h(t)

∫
wh(t)∂1T (σt(wh(t)), q(t)) dµ

=
∫

∂twh(t)
Nh(t)

∂1T (σt(wh(t)), q(t)) dµ

+ q′(t)
∫

∂2T (σt(wh(t)), q(t)) dµ, (28)

where ∂1 and ∂2 are short hand notations for the partial derivative with
respect to the first and second variable, respectively.

If N ′
h(t) ≤ 0, there is nothing to prove. On the other hand in case when

N ′
h(t) ≥ 0, using convexity of T , we get

N ′
h

Nh

∫
wh(t)
Nh

∂1T (σt(wh(t)), q) dµ ≥
2N ′

h

Nh

∫
T (σt(wh(t)), q) dµ =

2N ′
h

Nh
.

(29)
Next, because ∂twh(t) = 1

h(w(t+h)−w(t)), using the definition of the weak
solution, we obtain∫

∂twh(t)
Nh

∂1T (σt(wh(t)), q(t)) dµ =

=
1
h

∫ t+h

t
ds

{
−
∫
∇w(s) · ∇wh(t)

N2
h

∂11T (σt(wh(t)), q(t)) dµ

+ λ

∫
1

Nh

[
u(s)G

(
σ2

0(u(s))
)
− v(s)G

(
σ2

0(v(s))
)]

∂1T (σt(wh(t)), q(t)) dµ

}
(30)

where σ2
0(u(s)) ≡ u(s)2/||u(s)||22 and similarly for σ2

0(v(s)). Combining (28)-
(30), after passing to the limit h → 0, we arrive at the following inequality
with N ≡ N(t) ≡ NΦt(w(t))

2N ′

N
≤ −

∫
|∇w(t)|2

N2
∂11T (σt(w(t)), q(t)) dµ (31)

+ λ

∫
1
N

[
u(t)G

(
σ2

0(u(t))
)
− v(t)G

(
σ2

0(v(t))
)]

∂1T (σt(w(t)), q(t)) dµ

+ q′(t)
∫

∂2T (σt(w(t)), q(t)) dµ
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For α ∈ [0, 1], set u[α] ≡ u[α](t) ≡ αu(t)+(1−α)v(t). Using this interpolation
we can estimate the second term as follows∫

1
N

[
u(t)G

(
σ2

0(u(t))
)
− v(t)G

(
σ2

0(v(t))
)]

∂1Tdµ

≤
∫ 1

0
dα

∫
dµ
{[

F
(
σ2

0(u[α](t))
)

+ ‖J ‖∞
]
|σt(w(t))| ∂1T

+ 2
N

[
σ2

0(u[α](t))G′(σ2
0(u[α](t))

)(
w(t)− u[α](t)

||u[α](t)||2
d

dα ||u[α](t)||2
)
∂1T

]}
≤ (I) + (II) (32)

where we wrote ∂1T for ∂1T (σt(w(t)), q(t)). Because by our assumption
sup |xG′(x)| ≡ B̃ < ∞ and one has

∣∣ d
dα ||u[α](t)||2

∣∣ ≤ ||w(t)||2 (by Minkowski
inequality), the second term (II) on the right hand side of (32) can be
bounded as follows

(II) ≤
∫ 1

0
dα

∫
dµ

2
N

[
B̃ (|w(t)|+ |σ0(u[α](t))| ||w(t)||2) ∂1T (σt(w(t)), q(t))

]
≤ 2B̃

∫ 1

0
dα

∫
dµ (|σt(w(t))|+ |σ0(u[α](t))|) |∂1T (σt(w(t)), q(t))|

Since |∂1T (x, q)| = 2|x|(1+qx2F ′(x2))eqF (x2) ≤ 2(1+qB̄)|x|eqF (x2), one has

(II) ≤ 4B̃(1+ q(t)B̄)+4B̃(1+ q(t)B̄)
∫ 1

0
dα

∫
dµ
|σ0(u[α](t))|
|σt(w(t))|

T (σt(w(t)), q(t))

But∫
dµ
|σ0(u[α](t))|
|σt(w(t))|

T (σt(w(t)), q(t))

=
‖u[α](t)‖Φt

‖u[α](t)‖2

∫
dµ
|σt(u[α](t))|
|σt(w(t))|

T (σt(w(t)), q(t)) ≤ 2
‖u[α](t)‖Φt

‖u[α](t)‖2

where to get the last bound we split the integral with respect to µ into two
parts {|σt(u[α](t))| ≤ |σt(w(t))|} and the complement of this set, applying
the fact that the function y 7→ yeq(t)F (y2) is monotone, and finally applying
the identity µT (σt(z), q(t)) = 1. Consequently, we conclude that

(II) ≤ 4B̃(1 + q(t)B̄)
(
1 + 2

∫ 1

0

‖u[α](t)‖Φt

‖u[α](t)‖2
dα
)
. (33)

We’ll write ζu,v(t) = 1 + 2
∫ 1
0

‖u[α](t)‖Φt

‖u[α](t)‖2
dα.

The first term (I) on the right hand side of (32) can be represented as
(I) =

∫ 1
0 dα(Iα) with

(Iα) ≡
∫

dµ
{[

F
(
σ2

0(u[α](t))
)

+ ‖J ‖∞
]
σt(w(t))∂1T (σt(w(t)), q(t))

}
.



Sub-gaussian measures and associated semilinear problems 39

Using x∂1T (x, q) = 2T (x, q) + 2qx2F ′(x2)T (x, q) ≤ 2(1 + qB̄)T (x, q), the
quantity (Iα) may be bounded as follows

(Iα) ≤
∫

dµ
{[

F
(
σ2

0(u[α](t))
)

+ ‖J ‖∞
]
2(1 + q(t)B̄)T (σt(w(t)), q(t))

}
≤ 2(1 + q(t)B̄)

∫
dµ
[
T (σt(w(t)), q(t))F

(
σ2

0

(
T

1
2 (σt(w(t)), q(t))

) )]
+ 2(B + ‖J ‖∞)(1 + q(t)B̄)

∫
T (σt(w(t)), q(t)) dµ

where in the last line we have applied the generalized entropy inequality. If
µ ∈ FS(cF ), we conclude that

(I) ≤ 2(1 + q(t)B̄)cF

∫
dµ
∣∣∣∇√T (σt(w(t)), q(t))

∣∣∣2
+ 2(B + ‖J ‖∞)(1 + q(t)B̄) (34)

Winding up (31-34), we get

2N ′

N
≤ −

∫
|∇w(t)|2

N2
∂11T (σt(w(t)), q(t)) dµ

+ λ2(1 + q(t)B̄)cF

∫
dµ
∣∣∣∇√T (σt(w(t)), q(t))

∣∣∣2
+ 2λ(2B̃ζu,v(t) + B + ‖J ‖∞)(1 + q(t)B̄) + q′(t)

∫
∂2T (σt(w(t)), q(t)) dµ.

(35)

Next, it follows from our assumption on τq that

−
∫
|∇g|2∂11T (g, q)dµ ≤ −k

∫
|∇g|2 ∂1T (g, q)2

4T (g, q)
dµ

= −k

∫
|∇
√

T (g, q)|2dµ. (36)

On the other hand ∂2T (x, q) = T (x, q)F (x2) ≤ T (x, q)F (T (x, q)) since F is
non-decreasing and x2 ≤ T (x, q). Hence, using (FS), we have∫

∂2T (g, q(t))dµ ≤
∫

T (g, q(t))F (T (g, q(t)))dµ ≤ cF

∫
|∇
√

T (g, q(t))|2dµ.

(37)
Thus (35-37) lead to

2N ′

N
≤
(
−k + cF

[
λ2(1 + q(t)B̄) + q′(t)

]) ∫
|∇
√

T (σt(w(t)), q(t))|2dµ

+ 2λ(2B̃ζu,v(t) + B + ‖J ‖∞)(1 + q(t)B̄) (38)
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Now, we choose q(t) such that −k + cF

[
λ2(1 + q(t)B̄) + q′(t)

]
≤ 0.

Hence

2N ′

N
≤ 2λã(t)(1 + q(t)B̄)

with ã(t) ≡ (2B̃ζu,v(t)+B+‖J ‖∞). And this for any t such that N ′(t) ≥ 0.
Thus by integration we arrive at the following bound

‖u(t)− v(t)‖Φt
≤ exp

{
λ

∫ t

0
dsã(s) (1 + q(s)B̄)

}
‖f − g‖2

which ends the proof of the metric type hypercontractivity. As for the hyper-
contractivity for the norm (27), the proof is simpler and may be developed
by similar arguments from (31) by taking w = u and v = 0. Interpolation
is no longer necessary. 2
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6 Local problems

In [FZ04] (and references therein), abstract semilinear problems of the fol-
lowing type are considered{

∂tu = L(u) + V(u)
u(0) = f

(39)

where u is a continuous curve t ∈ [0, T ] 7→ u(t) ∈ X in some Banach space
X. The operators L and V satisfy dual properties which may be sketch
out by saying that, the strongest L is, the worse V can be. Let us now
summarize the setting and results from [FZ04].

We assume that there exists another Banach space Y ⊃ X of ”worse
regularity” such that

(SH) Smoothing properties: the operator L generates a C0 semigroup
on X which extends to the C0 semigroup (Pt)t≥0 on Y . The semigroup maps
continuously Y to X for any t > 0 (gain of regularity). Moreover, for any
T ∈ (0,∞), there is a positive function hT ∈ L1+ε[0, T ] such that

∀t ∈ [0, T ] , ‖Pt‖Y→X ≤ hT (t).

(BLH) Lipschitz continuity on bounded sets: the operator V : X →
Y is locally Lipschitz on bounded sets that is, for any M ∈ (0,∞), there
exists a constant κM ∈ (0,∞) such that, for any u, v ∈ BX(0,M),

‖Vu−Vv‖Y ≤ κM ‖u− v‖X .

Here, BX(0,M) = {u ∈ X : ‖u‖X ≤ M}.
Hypothesis (SH) specifies how strong L has to be to allow the loss of

regularity due to V described in (BLH). These two hypothesis are already
sufficient to imply existence and uniqueness of the solution in a ”mild” or
”integral” sense on a maximal interval [0, T (f)). And this, for any initial
condition f ∈ X. As we are interested in nonlinear semigroups associated
to this problem we need to assume a further entanglement between L and V
to ensure non explosion for any initial value. This is given by the following
additional hypothesis:

(DH) Duality between loss of regularity and smoothing: There ex-
ists a non decreasing positive continuous function W on [0,∞) such that

1. for any u ∈ X,
‖V(u)‖Y ≤ W (‖u‖X) (40)

2. one may find a pair (p0, q0) ∈ (1,∞)2, 1/p0 + 1/q0 = 1, satisfying
jointly
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(a)
∫∞ (s/W (s))p0 ds

s = ∞.
(b) For any T ∈ (0,∞), hT ∈ Lq0 [0, T ].

Theorem 22 (Global existence). Assume L and V satisfy hypothesis (SH),
(BLH) and (DH). Then, for any f ∈ X, the Cauchy problem (39) admits a
unique integral solution u(t) on [0,∞). Consequently, there exists a nonlin-
ear C0 semigroup (St)t≥0 on X such that for any f ∈ X, u(t) = Stf .

When X, Y ⊂ L0(M,BM, µ), the space of measurable functions on a
measurable space M and the action of V is a composition with a (nice)
Young function V : R → [0,∞) satisfying the ∆2 condition, then hypothesis
(BLH) is actually a consequence of (40), see [FZ04, Lemma 4.2].

Consider that L is a self-adjoint (non positive) Markovian generator on
L2(µ) for a probability measure µ. It is shown in [FZ04] that, provided L
satisfies a logarithmic Sobolev inequality, for any f smooth enough,∫

f2 log
(

f2

µ(f2)

)
dµ ≤ CLS

∫
f · (−L)fdµ,

hypothesis (SH) is satisfied with hT (t) = cT t−1/21I[0,T ](t) when Y = L2(µ)
and X is an Orlicz space X = LN2(µ) for some Young function N2.

Finally we may exhibit new Young functions V for which Theorem 22
applies.

We start with hypothesis (SH). Here the role played by the logarithmic
Sobolev inequality is fulfilled by an Orlicz-Sobolev inequality. It means
demanding a bit more regularity on the initial value by replacing LN2 by a
more restrictive Orlicz space.

Theorem 23 (Smoothing via Orlicz-Sobolev). Let Φ be a Young function.
Assume that for any f smooth enough,∥∥(f − µ(f))2

∥∥
Φ
≤ CΦ

∫
|∇f |2dµ,

for some constant CΦ independent on f . Set Φ2(x) := Φ(x2). Then, for any
t > 0, Pt maps L2(µ) to LΦ2(µ) and, for any T ∈ (0,∞), any t ∈ (0, T ),

‖Ptf‖Φ2
≤ CT√

t
‖f‖2

with C2
T = CΦ

e + 2T‖1I‖Φ.

Proof. We follow [FZ04, Theorem 4.3]. Using the Orlicz-Sobolev inequality,
we have (recall that ‖g‖2

Φ2
=
∥∥g2
∥∥

Φ
)

‖Ptf‖2
Φ2

≤ 2‖Pt(f − µ(f))‖2
Φ2

+ 2‖µ(f)‖2
Φ2

= 2
∥∥(Ptf − µ(f))2

∥∥
Φ

+ 2µ(f)2‖1I‖Φ

≤ 2CΦ

∫
|∇Ptf |2dµ + 2µ(f)2‖1I‖Φ.
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By spectral theory we have∫
|∇Ptf |2dµ =

∫ ∞

0
λe−2λtdEλ(f) ≤ sup

λ≥0
λe−2λt

∫
f2dµ ≤ 1

2et

∫
f2dµ.

Hence, by Cauchy-Schwarz inequality, we get

‖Ptf‖2
Φ2
≤
(

CΦ

et
+ 2‖1I‖Φ

)
µ(f2).

The result follows. 2

As said before, hypothesis (BLH) is a consequence of (40). We now
prove this inequality on a class of Young functions.

Proposition 24. Let Φβ = |x| log(1 + |x|)β, β ∈ (0, 1) and Φβ,2 = Φβ(x2).
Set Vβ =

√
Φβ,2. Then, for any f ∈ LΦβ,2

, any β ∈ (0, 1),

‖Vβ(f)‖2 ≤ Wβ

(
‖f‖Φβ,2

)
for Wβ(x) = x + Vβ(x) = x + x log(1 + x2)

β
2 .

Proof. Fix β ∈ (0, 1). Let f ∈ LΦβ,2
and define f̃ = f/‖f‖Φβ,2

. Then, by

definition,
∫

Φβ,2(f̃)dµ = 1. Note that (1 + (ab)2) ≤ (1 + a2)(1 + b2). Thus,
Φβ,2(ab) ≤ a2Φβ,2(b) + b2Φβ,2(a). It follows that

‖Vβ(f)‖2 =
(∫

Φβ,2(f)dµ

) 1
2

=
(∫

Φβ,2(‖f‖Φβ,2
f̃)dµ

) 1
2

≤
(

Φβ,2(‖f‖Φβ,2
)
∫

f̃2dµ + ‖f‖2
Φβ,2

∫
Φβ,2(f̃)dµ

) 1
2

≤ [Φβ,2(‖f‖Φβ,2
)]

1
2 + ‖f‖Φβ,2

.

the result follows. 2

We are now in position to apply Theorem 22.

Theorem 25. Let Φβ = |x| log(1+ |x|)β, β ∈ (0, 1) and Φβ,2 = Φβ(x2). Set
Vβ =

√
Φβ,2. Let µα be the Gibbs measure defined in Theorem 28 on RZd

.
Then, for any β ∈ (0, 1), for any f ∈ LΦβ,2

(µα), the Cauchy problem (39),
with V(u) = Vβ ◦ u acting by composition with Vβ, admits a unique integral
solution u(t) on [0,∞). Consequently, there exists a nonlinear C0 semigroup
(St)t≥0 on LΦβ,2

(µα) such that for any f ∈ LΦβ,2
(µα), u(t) = Stf .



44 P. Fougères and C. Roberto and B. Zegarliński

Proof. We will apply Theorem 22 with X = LΦβ,2
(µα) and Y = L2(µα).

Thus we have to verify that assumptions (SH), (BLH) and (DH) are satisfy.
Since by Theorem 29 µα satisfies an Orlicz-Sobolev inequality, Theorem

23 applies and assumption (SH) is satisfied with hT (t) = CT /
√

t.
From Proposition 24, inequality (40) is satisfied, and thus (BLH), with

Wβ(x) = x + x log(1 + x2)
β
2 .

Let p0 = 2/β. Note that p0 > 2 and thus that q0 < 2, where 1/p0+1/q0 =
1. It follows that for any T ∈ (0,∞), hT ∈ Lq0([0, T ]). On the other hand,∫∞(s/Wβ(s))p0 ds

s has the same behaviour as∫ ∞ ds

s log(1 + s)
.

Consequently it diverges. This ends the proof. 2
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7 Functional inequalities for Gibbs measures

In this section we describe briefly the functional inequalities like F -Sobolev
inequality and Orlicz-Sobolev inequality for a class of non-product Gibbs
measures in infinite dimensions; for more details we refer to [BCR04, RZ05].

We start by recalling some useful results on these functional inequalities
in Rn [BCR04, RZ05].

The strategy to prove such inequalities relies on the notion of capacity
of a set introduced in [BR03]. Let µ and ν be two absolutely continuous
measures on Rn. Then, for any Borel set A ⊂ Ω, we set

Capν(A, Ω) := inf
{∫

|∇f |2dν; f ≥ 1IA and f|Ωc = 0
}

.

If µ is a probability measure on Rn, then, for A ⊂ Rn such that µ(A) < 1
2 ,

the capacity of A with respect to µ and ν is

Capν(A,µ) := inf
{∫

|∇f |2dν; 1I ≥ f ≥ 1IA and µ(f = 0) ≥ 1
2

}
= inf

{
Capν(A,Ω); Ω ⊂ Rn s.t. Ω ⊃ A and µ(Ω) =

1
2

}
.

We will write Capµ(A) for Capµ(A,µ). We refer the redear to [BCR04, sec-
tion 5.2] for a general introduction and discussion on the notion of capacity.
The second equality in the definition comes from the fact that Capν(A, Ω)
is non-increasing in Ω and an easy truncation argument (see [BCR04]).

Then we have the following two theorems. The first is of Orlicz-Sobolev
type (used in local problems) while the second give us FS inequality.

Theorem 26. Let µ an absolutely continuous probability measures on Rn.
Let T : [0, 1] → R+ be non-decreasing and such that x 7→ T (x)/x is non-
increasing. Denote by CT the optimal constant such that for every smooth
f : Rn → R one has

sup
p∈(1,2)

∫
f2dµ− (

∫
|f |pdµ)

2
p

T (2− p)
≤ CT

∫
|∇f |2dµ.

Finally, assume that there exists a positive constant c1 such that

c1xT
( 1
log(1 + x)

)
≤ Φ−1(x), ∀x > 2.

Let Φ be a Young function and fix a constant k ∈ (0,+∞) such that for any
function f with f2 ∈ LΦ(µ),

∥∥µ(f)2
∥∥

Φ
≤ k

∥∥f2
∥∥

Φ
.

Then, every smooth f : Rn → R satisfies∥∥(f − µ(f))2
∥∥

Φ
≤ 48(1 + k)CT

c1

∫
|∇f |2dµ.
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The proof can be found in [RZ05].

Theorem 27. Let T : [0, 1] → R+ be non-decreasing and such that x 7→
T (x)/x is non-increasing. Let µ and ν be two absolutely continuous measures
on Rn with µ(Rn) = 1. Let CT be the optimal constant such that for every
smooth f : Rn → R one has

sup
p∈(1,2)

∫
f2dµ− (

∫
|f |pdµ)

2
p

T (2− p)
≤ CT

∫
|∇f |2dν. (41)

Let F : [0,+∞) → [0,+∞) be a non-decreasing function. Assume that
F (x) = 0 if x ≤ θ for some θ > 2 and that there exists a constant c such
that F (θy/2) ≤ c/T (1/ log(1 + y)) for any y ≥ θ.

Then, for every smooth f : Rn → R one has∫
f2F

(
f2

µ(f2)

)
dµ ≤ 3cCT

(
θ√

θ −
√

2

)2 ∫
|∇f |2dν.

Proof. Combining Theorem 9 and Lemma 8 of [BCR04] we get that any
Borel set A ⊂ Rn with µ(A) < 1

2 satisfies

µ(A)
T
(
1/ log(1 + 1

µ(A))
) ≤ 6CT Capν(A,µ).

This leads to

µ(A)F
(

θ

2µ(A)

)
≤ 6cCT Capν(A,µ)

for any A with µ(A) < 1
θ . The result follows by Theorem 20 of [BCR04]. 2

In the rest of this section we consider the following infinite dimensional
models on a space Ω ≡ RZd ≡ {ω = (ωi ∈ R)i∈Zd}.

Let Ui ≡ Ui(ωi), i ∈ Z, be smooth convex functions such that

0 < inf
i∈Zd

∫
e−Ui(x)dx ≤ sup

i∈Zd

∫
e−Ui(x)dx < ∞.

Let I ≡ {IX}, X b Zd, |X| ≥ 1, be a collection of smooth bounded cylinder
functions, (dependent only on ωX ≡ (ωi : i ∈ X), respectively), and such
that

‖I‖u,2 ≡ sup
i∈Zd

 ∑
XbZd

X3i

‖IX‖u +
∑
j∈Zd

[
‖∇jIX‖u + ‖∇j∇iΦX‖u

]
 < ∞

(42)
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where ‖·‖u denotes the uniform norm. For Λ b Zd, setting

UΛ ≡
∑
i∈Λ

Ui(ωi) +
∑

X∩Λ6=∅

IX(ωX)

we define

Eω
Λ(f) ≡

∫
e−UΛ(eω◦Λω)f(ω̃ ◦Λ ω)dω̃Λ∫

e−UΛ(eω◦Λω)dω̃Λ

where

(ω̃ ◦Λ ω)i ≡
{

ω̃i if i ∈ Λ
ωi if i ∈ Λc

A measure µ is called a Gibbs measure on Ω for local specification {EΛ}ΛbZd

iff for any integrable function f one has

µ(E·
Λf) = µ(f)

for all Λ b Zd. For any Λ ⊂ Zd and i ∈ Λ we have

EΛ(fLig) ≡ −EΛ∇if · ∇ig

for any functions f and g for which both sides make sense. Thus we have

Lif = eUidivi

(
e−Ui∇if

)
= ∆if −∇iUi · ∇if

where divi and ∇i are with respect to ωi and Ui ≡ U{i}.
We introduce the following Markov generator

L ≡
∑
i∈Zd

Li

which is well defined on a domain including all smooth cylinder functions.
Consequently we have

−µ(fLg) =
∑
i∈Zd

µ(∇if · ∇ig)

and if Ptf ≡ etLf ≡ ft is the corresponding Markov semigroup, we also have

µ(fPtg) = µ(gPtf).

For a construction of the semigroup (Pt)t≥0 in the space of bounded continu-
ous functions we refer to [GZ03], (see also [Zeg96], [Yos01], [Hel02], [DPZ96],
and references therein).

We note that in the present setup one has

|∇z|22 ≡
1
2
(Lz2 − 2zLz) =

∑
i

|∇iz|2
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and the generator L has the following diffusion property (or chain rule): for
any (localized) smooth vector functions f = (f1, . . . , fν) on Ω (ν ∈ N) and
any smooth function Ψ on Rν ,

LΨ(f1, . . . , fν) =
ν∑

k=1

∂kΨ(f)Lfk +
ν∑

k,l=1

∂2
k,lΨ(f)L∇fk · ∇fl.

In the above described setup we have the following results.

Theorem 28 ([RZ05],[GZ03]). Fix α ∈ (1, 2). Assume that for all i ∈ N,
Ui(x) = Uα(x) where Uα is the following C2 function

Uα(x) =
{
|x|α for |x| > 1
α(α−2)

8 x4 + α(4−α)
4 x2 + (1− 3

4α + 1
8α2) for |x| ≤ 1.

Define the Gibbs measure µα in this case. Then, there exists a constant Cα

such that for any function f in the domain of the Dirichlet form

sup
p∈(1,2)

∫
f2dµα − (

∫
|f |pdµα)

2
p

(2− p)2(1−
1
α

)
≤ Cα

∫
|∇f |2dµα.

Moreover if ||I||u,2 is sufficiently small, then the same results (with appro-
priate constants) remain true for the corresponding Gibbs measures.

We are now in position to give example of Gibbs measures satisfying a
F -Sobolev inequality and an Orlicz-Sobolev inequality.

Theorem 29 ([RZ05]). Fix α ∈ (1, 2) and set β = 2(1 − 1
α). Consider

the function F defined in Example 3 and Φβ(x) = |x| log(1 + |x|)β. Under
the assumption and notations of Theorem 28, there exists a constant Dα =
Dα(Cα, β, θ̄, θ, ε0) such that any function f in the domain of the Dirichlet
form satisfies ∥∥(f − µα(f))2

∥∥
Φβ

≤ 179Cα

∫
|∇f |2dµα

and ∫
f2F

(
f2

µα(f2)

)
dµα ≤ Dα

∫
|∇f |2dµα.

Moreover if ||I||u,2 is sufficiently small, then the same results (with appro-
priate) constants remain true for the corresponding Gibbs measures.

Proof. Set T (x) = |x|β . It is not difficult (see [RZ05]) to show that for any
x > 2,

xT

(
1

log(1 + x)

)
≤ Φ−1

β (x).
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On the other hand, thanks to Remark 32,
∥∥µα(f)2

∥∥
Φβ

≤ e
∥∥f2

∥∥
Φβ

. Consider
a smoothed cylinder function f . We can apply Theorems 26 and 28 to get
the result for the Orlicz-Sobolev inequality (note that 48(1 + e) ≤ 179). A
density argument ends the proof.

Note that θ̄ > 2, thus θ̄y/2 ≤ (1 + y)θ̄/2. It follows that

log
(

θ̄y

2

)β

≤
(

θ̄

2

)β

log(1 + y)β.

Set c = 2 max
((

θ̄
2

)β
;
[
− (log θ)β + log

(
max(θ,e)+ε0

θ

)]
/ log(1 + θ̄)β

)
. It

follows from (2) that for any y ≥ θ̄,

F (y) ≤ Fα(x) + log
(

max(θ, e) + ε0

θ

)
≤ c log(1 + y)β =

c

T
(

1
log(1+y)

) .

Hence we can apply Theorem 27 for smooth cylinder functions. The result
follows by density. 2
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8 Appendix: Young functions and Orlicz spaces

In this section we collect some results on Orlicz spaces. We refer the reader
to [RR91] for demonstrations and complements.

Definition 30 (Young function). A function Φ : R → [0,∞] is a Young
function if it is convex, even, such that Φ(0) = 0, and limx→+∞ Φ(x) = +∞.

The Legendre transform Φ∗ of Φ defined by

Φ∗(y) = sup
x≥0

{x|y| − Φ(x)}

is a lower semicontinuous Young function. It is called the complementary
function or conjugate of Φ.

Among the Young functions, we will consider those continuous with fi-
nite values such that Φ(x)/x → ∞ as x → ∞ (for stability reasons w.r.t.
duality). When additionally Φ(x) = 0 ⇔ x = 0 and Φ′(0+) = 0, Φ is called
a N -function.

For any lower semicontinuous Young function Φ (in particular if Φ has
finite values), the conjugate of Φ∗ is Φ. The pair (Φ,Ψ) is said to be a
complementary pair if Ψ = Φ∗ (or equivalently Φ = Ψ∗). When Φ(1) +
Φ∗(1) = 1, the pair (Φ,Φ∗) is said to be normalized. The conjugate of an
N -function is an N -function.

Let Φ be an N -function. Then, for any a > 0,

a < Φ−1(a)(Φ∗)−1(a) ≤ 2a.

The simplest example of N-function is Φ(x) = |x|p
p , p > 1, in which case,

Φ∗(x) = |x|q
q , with 1/p + 1/q = 1. The function Φ(x) = |x|α ln(1 + |x|)β is

also a Young function for α ≥ 1 and β ≥ 0 and an N-function when α > 1
or β > 0.

Now let (X , µ) be a measurable space, and Φ a Young function. The
space

LΦ(µ) = {f : X → R measurable;∃α > 0,

∫
X

Φ(αf) < +∞}

is called the Orlicz space associated to Φ. When Φ(x) = |x|p, then LΦ(µ) is
the standard Lebesgue space Lp(µ).

There exist two equivalent norms which give to LΦ(µ) a structure of
Banach space. Namely

‖f‖Φ = inf{λ > 0;
∫
X

Φ
(

f

λ

)
dµ ≤ 1}

and
NΦ(f) = sup{

∫
X
|fg|dµ;

∫
X

Φ∗(g)dµ ≤ 1} .
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Note that we invert the notation with respect to [RR91]. We will use the
notation GΦ, or more simply G when no confusion, the set GΦ = {|g| :∫
X Φ∗(g)dµ ≤ 1}. Note in particular that GΦ is a space of non negative

functions. Moreover
‖f‖Φ ≤ NΦ(f) ≤ 2‖f‖Φ . (43)

By definition of the norm and the previous result, it is easy to see that for
any measurable subset A of X ,

‖1IA‖Φ =
1

Φ−1
(

1
µ(A)

) . (44)

Then, the following result generalizes Hölder inequality. Let Φ1, Φ2

and Φ3 be three Young functions satisfying for all x ≥ 0, Φ−1
1 (x)Φ−1

2 (x) ≤
Φ−1

3 (x). Then, for any (f, g) ∈ LΦ1(µ)× LΦ2(µ),

‖fg‖Φ3
≤ 2‖f‖Φ1

‖g‖Φ2
. (45)

In particular, when Φ3(x) = |x|, we get
∫
X |fg|dµ ≤ 2‖f‖Φ1

‖g‖Φ2
. In the

case of complementary pairs of Young functions, we have the following more
precise result, see [RR91, Proposition 1 in section 3]:∫

X
|fg|dµ ≤ 2‖f‖Φ‖g‖Φ∗ . (46)

Finally, for any constant c > 0, it is easy to see that for any function f ,

c‖f‖Φ(·/c) = ‖f‖Φ. (47)

Comparison of norms

In what follows, we will often have to compare Orlicz norms associated to
different Young functions. Let us notice that any Young function Φ satisfies
|x| = O (Φ(x)) as x goes to ∞. It leads to the following lemma.

Lemma 31. Any Orlicz space may be continuously embedded in L1. More
precisely, let M and τ in (0,∞) such that |x| ≤ τ Φ(x) for any |x| ≥ M .
Then, for any f ∈ LΦ,

‖f‖1 ≤ (M + τ) ‖f‖Φ. (48)

Consequently, if Φ and Ψ are two Young functions satisfying, for some con-
stants A,B ≥ 0, Φ(x) ≤ A|x|+ BΨ(x), then

‖f‖Φ ≤ max
(
1, A‖Id‖LΨ→L1

+ B
)
‖f‖Ψ. (49)
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Remark 32. When Φ(x)/x → ∞ as x → ∞, we may choose τ = 1 or any
other positive constant. We get in particular the estimate∥∥µ(f)2

∥∥
Φ
≤ (M + 1) ‖1I‖Φ

∥∥f2
∥∥

Φ
, (50)

where M is such that |x| ≤ Φ(x) for any |x| ≥ M .

Proof of lemma 31. Let f ∈ LΦ(µ). We may assume by homogeneity that
‖f‖Φ = 1. Then

∫
Φ(f) dµ = 1 and so∫

|f | dµ =
∫
{|f |≤M}

|f | dµ +
∫
{|f |≥M}

|f | dµ

≤ Mµ (|f | ≤ M) + τ

∫
{|f |≥M}

Φ(f) dµ ≤ M + τ.

As for bound (48), assume now that ‖f‖Ψ = 1 and hence
∫

Ψ(f) dµ = 1 as
well. For any λ ≥ 1,∫

Φ (f/λ) dµ ≤ A

λ
‖f‖1 + B

∫
Ψ(f/λ) dµ

≤ A

λ
‖Id‖LΨ→L1

‖f‖Ψ +
B

λ

∫
Ψ(f)dµ ≤ 1

provided λ ≥ A ‖Id‖LΨ→L1
+B. Note that for the second inequality we used

convexity of Ψ. 2
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Department of Mathematics,
Imperial College London,
180 Queen’s Gate, LONDON SW7 2AZ,
UNITED KINGDOM
b.zegarlinski@imperial.ac.uk


