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Introduction

The propagation of electromagnetic waves in periodic structures has received recently
an important interest [1]. Potential applications have been suggested in microwave
and antenna domains, such as suppressing surface waves [2], designing directive an-
tennas [3], or creating controllable microwave components [4].

The propagation of waves in periodic structures is described by means of a band
theory. Different methods have been proposed for computing the band structure of
periodic structures, e.g., the average field method [6], the order-N method [7], and
the hybrid plane-wave-integral-equation method [8]. A particular interest has been
given to the dispersion characteristics of periodic structure formed by infinitely long
metallic wires [1-10]. The band structure of periodic materials with loaded wires has
not been studied enough. These materials are interesting for designing reconfigurable
microwave components. The band structure of the discontinuous wire medium for
different wire diameters and lengths has been studied in [11] in order to design con-
trollable crystals. However, the effects of the active element have not been taken into
account. In [12], an analysis of the dispersion of crystals with loaded wires has been
presented. However, in open literature, there is no parametrical study for showing
the effect of the value of the active elements.

In this contribution, numerical results are presented for the pass-bands and stop-bands
of these 3-D periodic structures, at normal incidence. To compute the propagation
constant, a transmission line model is used, where a 2-D periodic structure (grid) of
discontinuous wires is modelled by a T-circuit. The T-circuit parameters are writ-
ten in terms of the S-parameters of the grid, computed rigourously using the FDTD
method.

Computation of the propagation constant

An infinite 3-D periodic structure of perfect metallic wires shown in Fig. 1 is consid-
ered. Its parameters are the periods P, Py and P, the wire diameter a and the width
w. The propagation of the transverse electric field in z-direction is considered. To
compute the propagation constant (3., the transmission line model is used, where a
2-D periodic structure in y-direction (see Fig. 1) is modelled by a T-circuit [11]. The
T-circuit parameters are written in terms of the S-parameters of the grid, computed
rigourously using the FDTD method, where Floquet boundaries conditions and a thin
mesh (A = Period/80) are used. Only the fundamental mode is considered, then the
limitations Py < P, P, < A and P, < X are used.

In a first approximation, an electronic switch can be simulated by an equivalent cir-
cuit including R-L-C elements. The inductive term L, which essentially represent the
connection wires to the device, can be considered included in the metallic wire, then
active device can be represented only by an R-C circuit [4].

For a parallel or a series combination of a capacitor, C, a resistor, R, and an induc-
tance, L, we integrated a model in our FDTD code, based on the scheme introduced
by Piket-May et al [13]. The R-C circuits are periodically distributed along the wires,



which form the 2-D photonic lattice.
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Figure 1: Infinite 3-D periodic structure of loaded metallic wires in air and equivalent
RLC circuits for numerical simulations.

Results and discussion

The dual behavior in the pass-band and stop-band of the on-state and off-state struc-
tures is nearly obtained in the two first bands [11]. The limits of the two first
bands of these structures are now studied for different wire diameters. We consider
P, = P, = P, = P. The R-C elements are chosen in agreement with characterization
results obtained on high-speed commercial devices [4]. Based on practical consider-
ations, we consider, for the on-state, R = 1082; for off-state, we consider R = 30k(2.
Three capacitance values are chosen: C'= 150 fF, 30 fF and 13 fF.

Fig. 2 presents the limits of the two first bands for the on-state case, and for the
continuous-wire structure, versus the fill factor a/P. From this figure, it can be seen
that the active element has less influence when the wire diameter is small. This is
due to the fact that, for large diameter wires, the contrast between the thickness of
the wire and the thickness of the active element is more important.

Fig. 3 presents the limits of the two first bands for the off-state case, for the
continuous-wire structure, and for the discontinuous-wire structure, versus the fill
factor a/P. According to this figure, compared to the discontinuous wire case, the
active element have effect on small diameter wires and has no influence on large di-
ameter wires. In addition, it can be also observed that for small diameter wires, the
increase of the capacitance has the same effect that the increase of the width between
wires for the discontinuous-wire case [11].

Conclusion

In this paper, the band structure for normal propagation of crystal formed by peri-
odically loaded metallic wires has been analyzed for different wire diameters and for
different values of the load, which are assimilated as diodes. The diodes have been
simulated by an equivalent R-C circuit, which has been chosen in agreement with
characterization results obtained with high-speed commercial devices. The influences
of the values of the R-C elements on on-state and off-state have been analyzed and
the results have been compared to the previous results presented for continuous and
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Figure 2: Two first bands limits for structures with continuous wires an for wires
periodically loaded with R = 109 wires versus fill factor a/P.
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Figure 3: Two first bands limits for structures with continuous, discontinuous, and
loaded wires versus fill factor a/P, with R = 30k, for different values of C'.

discontinuous-wire structures. A potential application of this work is the design of
controllable antennas.
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