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Abstract

We provide a simple proof, as well as several generalizations, of a recent result by Davis and Suh,

characterizing a class of continuous submartingales and supermartingales that can be expressed in

terms of a squared Brownian motion and of some appropriate powers of its maximum. Our tech-

niques involve elementary stochastic calculus, as well as the Doob-Meyer decomposition of continuous

submartingales. These results can be used to obtain an explicit expression of the constants appear-

ing in the Burkholder-Davis-Gundy inequalities. A connection with some balayage formulae is also

established.

Key Words: Balayage; Burkholder-Davis-Gundy inequalities; Continuous Submartingales; Doob-
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1 Introduction

Let W = {Wt : t ≥ 0} be a standard Brownian motion initialized at zero, set W ∗
t = maxs≤t |Ws| and

write FW
t = σ {Wu : u ≤ t}, t ≥ 0. In [3], Davis and Suh proved the following result.

Theorem 1 ([3, Th. 1.1]) For every p > 0 and every c ∈ R, set

Yt = Yt (c, p) = (W ∗
t )p−2 [

W 2
t − t

]
+ c (W ∗

t )p , t > 0, (1)

Y0 (c, p) = Y0 = 0.

1. For every p ∈ (0, 2], the process Yt is a FW
t -submartingale if, and only if, c ≥ 2−p

p .

2. For every p ∈ [2,+∞), the process Yt is a FW
t -supermartingale if, and only if, c ≤ 2−p

p .

As pointed out in [3, p. 314] and in Section 4 below, part 1 of Theorem 1 can be used to derive
explicit expressions of the constants appearing in the Burkholder-Davis-Gundy (BDG) inequalities (see
[1], or [5, Ch. IV, §4]). The proof of Theorem 1 given in [3] uses several delicate estimates related to
a class of Brownian hitting times: such an approach can be seen as a ramification of the discrete-time
techniques developed in [2]. In particular, in [3] it is observed that the submartingale (or supermartingale)
characterization of Yt (c, p) basically relies on the properties of the random subset of [0,+∞) composed
of the instants t where |Wt| = W ∗

t . The aim of this note is to bring this last connection into further light,
by providing an elementary proof of Theorem 1, based on a direct application of Itô formula and on an
appropriate version of the Doob-Meyer decomposition of submartingales. We will see that our techniques
lead naturally to some substantial generalizations (see Theorem 4 below).
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The rest of the paper is organized as follows. In Section 2 we state and prove a general result
involving a class of stochastic processes that are functions of a positive submartingale and of a monotone
transformation of its maximum. In Section 3 we focus once again on the Brownian setting, and establish
a generalization of Theorem 1. Section 4 deals with an application of the previous results to (strong)
BDG inequalities. Finally, in Section 5 we provide an explicit connection with some classic balayage

formulae for continuous-time semimartingales (see e.g. [6]).
All the objects appearing in the subsequent sections are defined on a common probability space

(Ω,A,P).

2 A general result

Throughout this section, F = {Ft : t ≥ 0} stands for a filtration satisfying the usual conditions. We
will write X = {Xt : t ≥ 0} to indicate a continuous Ft-submartingale issued from zero and such that
P {Xt ≥ 0, ∀t} = 1. We will suppose that the Doob-Meyer decomposition of X (see for instance [4, Th.
1.4.14]) is of the type Xt = Mt + At, t ≥ 0, where M is a square-integrable continuous Ft-martingale
issued from zero, and A is an increasing (integrable) natural process. We assume that A0 = M0 = 0; the
symbol 〈M〉 = {〈M〉t : t ≥ 0} stands for the quadratic variation of M . We note X∗

t = maxs≤t Xs, and
we also suppose that P {X∗

t > 0} = 1 for every t > 0. The following result is a an extension of Theorem
1.

Theorem 2 Fix ε > 0.

1. Suppose that the function φ : (0,+∞) 7→ R is of class C1, non-increasing, and such that

E[

∫ T

ε

φ (X∗
s )

2
d 〈M〉s] < +∞, (2)

for every T > ε. For every x ≥ z > 0, we set

Φ (x, z) = −
∫ x

z

yφ′ (y) dy; (3)

then, for every α ≥ 1 the process

Zε (φ, α; t) = φ (X∗
t ) (Xt −At) + αΦ (X∗

t , X
∗
ε ) , t ≥ ε, (4)

is a Ft-submartingale on [ε,+∞).

2. Suppose that the function φ : (0,+∞) 7→ R is of class C1, non-decreasing and such that (2) holds
for every T > ε. Define Φ (·, ·) according to (3), and Zε (φ, α; t) according to (4). Then, for every
α ≥ 1 the process Zε (φ, α; t) is a Ft-supermartingale on [ε,+∞).

Remarks. (i) Note that the function φ (y) (and φ′ (y)) need not be defined at y = 0.
(ii) In Section 3, where we will focus on the Brownian setting, we will exhibit specific examples where

the condition α ≥ 1 is necessary and sufficient to have that the process Zε (α, φ; t) is a submartingale
(when φ is non-increasing) or a supermartingale (when φ is non-decreasing).

Proof of Theorem 2. (Proof of Point 1.) Observe first that, since Mt = Xt − At is a continuous
martingale, X∗ is non-decreasing and φ is differentiable, then a standard application of Itô formula gives
that

φ (X∗
t ) (Xt −At) − φ (X∗

ε ) (Xε −Aε) = φ (X∗
t )Mt − φ (X∗

ε )Mε

=

∫ t

ε

φ(X∗
s )dMs +

∫ t

ε

(Xs −As)φ
′ (X∗

s ) dX∗
s . (5)
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The assumptions in the statement imply that the application M̃ε,t :=
∫ t

ε
φ(X∗

s )dMs is a continuous
square integrable Ft-martingale on [ε,+∞). Moreover, the continuity of X implies that the support of
the random measure dX∗

t (on [0,+∞)) is contained in the (random) set {t ≥ 0 : Xt = X∗
t }, thus yielding

that

∫ t

ε

(Xs −As)φ
′ (X∗

s ) dX∗
s =

∫ t

ε

(X∗
s −As)φ

′ (X∗
s ) dX∗

s

= −
∫ t

ε

Asφ
′ (X∗

s ) dX∗
s − Φ (X∗

t , X
∗
ε ) ,

where Φ is defined in (3). As a consequence,

Zε (φ, α; t) = M̃ε,t +

∫ t

ε

(−Asφ
′ (X∗

s ))dX∗
s + (α− 1)Φ (X∗

t , X
∗
ε ) . (6)

Now observe that the application t 7→ Φ (X∗
t , X

∗
ε ) is non-decreasing (a.s.-P), and also that, by assumption,

−Asφ
′ (X∗

s ) ≥ 0 for every s > 0. This entails immediately that Zε (φ, α; t) is a Ft-submartingale for every
α ≥ 1.

(Proof of Point 2.) By using exactly the same line of reasoning as in the proof of Point 1., we obtain
that

Zε (φ, α; t) =

∫ t

ε

φ(X∗
s )dMs +

∫ t

ε

(−Asφ
′ (X∗

s ))dX∗
s + (α− 1)Φ (X∗

t , X
∗
ε ) . (7)

Since (2) is in order, we deduce that t 7→
∫ t

ε φ(X∗
s )dMs is a continuous (square-integrable) Ft-martingale

on [ε,+∞). Moreover, −Asφ
′ (X∗

s ) ≤ 0 for every s > 0, and we also have that t 7→ Φ (X∗
t , X

∗
ε ) is a.s.

decreasing. This implies that Zε (φ, α; t) is a Ft-supermartingale for every α ≥ 1. �

The next result allows to characterize the nature of the process Z appearing in (4) on the whole
positive axis. Its proof can be immediately deduced from formulae (6) (for Part 1) and (7) (for Part 2).

Proposition 3 Let the assumptions and notation of this section prevail.

1. Consider a decreasing function φ : (0,+∞) 7→ R verifying the assumptions of Part 1 of Theorem 2
and such that

Φ (x, 0) := −
∫ x

0

yφ′ (y) dy is finite ∀x > 0. (8)

Assume moreover that

E[

∫ T

0

φ (X∗
s )2 d 〈M〉s] < +∞, (9)

and also

φ (X∗
ε )Mε = φ (X∗

ε ) (Xε −Aε) converges to zero in L1 (P) , as ε ↓ 0, (10)

Φ (X∗
t , 0) ∈ L1 (P) . (11)

Then, for every α ≥ 1 the process

Z (φ, α; t) =

{
0 for t = 0
φ (X∗

t ) (Xt −At) + αΦ (X∗
t , 0) for t > 0

, (12)

is a Ft-submartingale.

2. Consider an increasing function φ : (0,+∞) 7→ R as in Part 2 of Theorem 2 and such that assump-
tions (8)–(11) are satisfied. Then, for every α ≥ 1 the process Z (φ, α; t) appearing in (12) is a
Ft-supermartingale.
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Remarks. (i) A direct application of the Cauchy-Schwarz inequality shows that a sufficient condition
to have (10) is the following:

lim
ε↓0

E

[
φ (X∗

ε )2
]
× E

[
M2

ε

]
= lim

ε↓0
E

[
φ (X∗

ε )2
]
× E [〈M〉ε] = 0 (13)

(observe that limε↓0 E
[
M2

ε

]
= 0, since M0 = 0 by assumption). In other words, when (13) is verified the

quantity E
[
M2

ε

]
‘takes care’ of the possible explosion of ε 7→ E

[
φ (X∗

ε )
2
]

near zero.

(ii) Let φ be non-increasing or non-decreasing on (0,+∞), and suppose that φ satisfies the assumptions

of Theorem 2 and Proposition 3. Then, the process t 7→
∫ t

0 φ(X∗
s )dMs is a continuous square-integrable

FW
t -martingale. Moreover, for any choice of α ∈ R, the process Z (φ, α; t), t ≥ 0, defined in (12) is a

semimartingale, with canonical decomposition given by

Z (φ, α; t) =

∫ t

0

φ(X∗
s )dMs +

∫ t

0

((α− 1)X∗
s −As)φ

′ (X∗
s ) dX∗

s .

3 A generalization of Theorem 1

The forthcoming Theorem 4 is a generalization of Theorem 1. Recall the notation: W is a standard
Brownian motion issued from zero, W ∗

t = maxs≤t |Ws| and FW
t = σ {Wu : u ≤ t}. We also set for every

m ≥ 1, every p > 0 and every c ∈ R:

Jt = Jt (m, c, p) = (W ∗
t )p−m [|Wt|m −Am,t] + c (W ∗

t )p , t > 0, (14)

J0 (m, c, p) = J0 = 0,

where t 7→ Am,t is the increasing natural process in the Doob-Meyer decomposition of the FW
t -submartingale

t 7→ |Wt|m. Of course, Jt (2, c, p) = Yt (c, p), as defined in (1).

Theorem 4 Under the above notation:

1. For every p ∈ (0,m], the process Jt is a FW
t -submartingale if, and only if, c ≥ m−p

p .

2. For every p ∈ [m,+∞), the process Jt is a FW
t -supermartingale if, and only if, c ≤ m−p

p .

Proof. Recall first the following two facts: (i) W ∗
t

law
=

√
tW ∗

1 (by scaling), and (ii) there exists η > 0

such that E

[
exp(η (W ∗

1 )
−2

)
]
< +∞ (this can be deduced e.g. from [5, Ch. II, Exercice 3.10]), so that

the random variable (W ∗
1 )

−1
has finite moments of all orders. Note also that the conclusions of both

Point 1 and Point 2 are trivial in the case where p = m. In the rest of the proof we will therefore assume
that p 6= m.

To prove Point 1, we shall apply Theorem 2 and Proposition 3 in the following framework: Xt = |Wt|m

and φ (x) = x
p−m

m = x
p

m
−1. In this case, the martingale Mt = |Wt|m − Am,t is such that 〈M〉t =

m2
∫ t

0
W 2m−2

s ds, t ≥ 0, and Φ (x, z) = −
∫ x

z
yφ′ (y)dy = −

(
p
m − 1

) ∫ x

z
y

p

m
−1dy = m−p

p

(
x

p

m − z
p

m

)
. Also,

for every T > ε > 0

E[

∫ T

ε

φ (X∗
s )2 d 〈M〉s] = m2

E[

∫ T

ε

(W ∗
s )2p−2mW 2m−2

s ds]

≤ m2
E[

∫ T

ε

(W ∗
s )2p−2 ds] = m2

E[ (W ∗
1 )2p−2 ]

∫ T

ε

s
p

2
−1ds, (15)
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so that φ verifies (2) and (9). Relations (8) and (11) are trivially satisfied. To see that (10) holds, use
the relations

E {|φ (X∗
ε ) (Xε −Aε)|} = E{

∣∣∣(W ∗
ε )

p−m
[|Wε|m −Am,ε]

∣∣∣}

= E

{∣∣∣(W ∗
ε )

p−m
Mε

∣∣∣
}
≤ E

{
(W ∗

ε )
2p−2m

}1/2

E {〈M〉ε}
1/2

= mE
{
W 2m−2

1

}1/2
E

{
(W ∗

1 )2p−2m
}1/2

ε
p

2
−m

2

(∫ ε

0

sm−1ds

)1/2

→ 0, as ε ↓ 0.

From Point 1 of Proposition 3, we therefore deduce that the process Z (t) defined as Z (0) = 0 and, for
t > 0,

Z (t) = φ ((W ∗
t )

m
) [|Wt|m −Am,t] + αΦ ((W ∗

t )
m
, 0) (16)

= (W ∗
t )

p−m
[|Wt|m −Am,t] + α

m− p

p
(W ∗

t )
p
, (17)

is a FW
t -submartingale for every α ≥ 1. By writing c = αm−p

p in the previous expression, and by using

the fact that m−p
p ≥ 0 by assumption, we deduce immediately that Jt (m, c; p) is a submartingale for

every c ≥ m−p
p . Now suppose c < m−p

p . One can use formulae (6), (16) and (17) to prove that

Jt (m, c; p) =

∫ t

0

φ(X∗
s )dMs +

∫ t

0

[−Am,sφ
′ ((W ∗

s )m)]d(W ∗
s )m + (α− 1)Φ ((W ∗

t )
m
, 0)

=

∫ t

0

(W ∗
s )p−mdMs

+
( p

m
− 1

)∫ t

0

[(1 − α) (W ∗
s )m −Am,s](W

∗
s )p−2md(W ∗

s )m,

where 1 − α = 1 − pc/(m− p) > 0. Note that
∫ t

0 (W ∗
s )p−mdMs is a square-integrable martingale, due to

(15). To conclude that, in this case, Jt (m, c; p) cannot be a submartingale (nor a supermartingale), it is
sufficient to observe that (for every m ≥ 1 and every α < 1) the paths of the finite variation process

t 7→
∫ t

0

[(1 − α) (W ∗
s )

m −Am,s](W
∗
s )p−2md(W ∗

s )m

are neither non-decreasing nor non-increasing, with P-probability one.
To prove Point 2, one can argue in exactly the same way, and use Point 2 of Proposition 3 to obtain

that the process Z (t) defined as Z (0) = 0 and, for t > 0,

Z (t) = (W ∗
t )

p−m
[|Wt|m −Am,t] + α

m− p

p
(W ∗

t )
p

is a FW
t -supermartingale for every α ≥ 1. By writing once again c = αm−p

p in the previous expression,

and since m−p
p ≤ 0, we immediately deduce that Jt (m, c; p) is a supermartingale for every c ≤ m−p

p .

One can show that Jt (m, c; p) cannot be a supermartingale, whenever c > m−p
p , by using arguments

analogous to those displayed in the last part of the proof of Point 1.

The following result is obtained by specializing Theorem 4 to the case m = 1 (via Tanaka’s formula).

Corollary 5 Denote by {ℓt : t ≥ 0} the local time at zero of the Brownian motion W . Then, the process

Jt (p) = (W ∗
t )

p−1
[|Wt| − ℓt] + c (W ∗

t )
p
, t > 0,

J0 (p) = 0,

is such that: (i) for p ∈ (0, 1], Jt (p) is a FW
t -submartingale if, and only if, c ≥ 1/p − 1, and (ii) for

p ∈ [1,+∞), Jt (p) is a FW
t -supermartingale if, and only if, c ≤ 1/p− 1.
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4 Burkholder-Davis-Gundy (BDG) inequalities

We reproduce an argument taken from [3, p. 314], showing that the first part of Theorem 4 can be used
to obtain a strong version of the BDG inequalities (see e.g. [5, Ch. IV, §4]).

Fix p ∈ (0, 2) and define c = (2 − p)/p = 2/p − 1. Since, according to the first part of Theorem 4,
Yt = Yt(c, p) is a FW

t -submartingale starting from zero, we deduce that, for every bounded and strictly
positive FW

t -stopping time τ , one has E(Yτ ) ≥ 0. In particular, this yields

E

(
τ

(W ∗
τ )2−p

)
≤ 2

p
E ((W ∗

τ )p) . (18)

Formula (18), combined with an appropriate use of Hölder’s inequality, entails finally that, for 0 < p < 2,

E

(
τ

p

2

)
≤

[
2

p
E ((W ∗

τ )p)

] p

2

[E ((W ∗
τ )p)]

2−p

2 =

[
2

p

] p

2

E ((W ∗
τ )p) . (19)

Of course, relation (19) extends to general stopping times τ (not necessarily bounded) by monotone
convergence (via the increasing sequence {τ ∧ n : n ≥ 1}).

Remark. Let {An : n ≥ 0} be a discrete filtration of the reference σ-field A, and consider a An-
adapted sequence of measurable random elements {fn : n ≥ 0} with values in a Banach space B. We
assume that fn is a martingale, i.e. that, for every n, E [fn − fn−1 | An−1] = E [dn | An−1] = 0, where
dn := fn − fn−1. We note

Sn (f) =

√√√√
n∑

k=0

|dk|2 and f∗
n = sup

0≤m≤n
|fm| ,

and write S (f) and f∗, respectively, to indicate the pointwise limits of Sn (f) and f∗
n, as n → +∞. In

[2], D.L. Burkholder proved that

E (S (f)) ≤
√

3E (f∗) , (20)

where
√

3 is the best possible constant, in the sense that for every η ∈ (0,
√

3) there exists a Banach space-

valued martingale f(η) such that E
(
S

(
f(η)

))
> ηE

(
f∗
(η)

)
. As observed in [3], Burkholder’s inequality

(20) should be compared with (19) for p = 1, which yields the relation E
(
τ1/2

)
≤

√
2E(W ∗

τ ) for every
stopping time τ . This shows that in such a framework, involving uniquely continuous martingales, the
constant

√
3 is no longer optimal.

5 Balayage

Keep the assumptions and notation of Section 2 and Theorem 2, fix ε > 0 and consider a finite variation
function ψ : (0,+∞) 7→ R. In this section we focus on the formula

ψ (X∗
t ) (Xt −At) − ψ (X∗

ε ) (Xε −Aε) =

∫ t

ε

ψ(X∗
s )d (Xs −As) +

∫ t

ε

(X∗
s −As) dψ(X∗

s ), (21)

where ε > 0. Note that by choosing ψ = φ in (21), where φ ∈ C1 is monotone, one recovers formula (5),
which was crucial in the proof Theorem 2. We shall now show that (21) can be obtained by means of the
balayage formulae proved in [6].

To see this, let U = {Ut : t ≥ 0} be a continuous Ft-semimartingale issued from zero. For every t > 0
we define the random time

σ (t) = sup {s < t : Us = 0} . (22)

The following result is a particular case of [6, Th. 1].
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Proposition 6 (Balayage Formula) Consider a stochastic process {Kt : t > 0} such that the restric-
tion {Kt : t ≥ ε} is locally bounded and Ft-predictable on [ε,+∞) for every ε > 0. Then, for every fixed
ε > 0, the process Kσ(t), t ≥ ε, is locally bounded and Ft-predictable, and moreover

UtKσ(t) = UεKσ(ε) +

∫ t

ε

Kσ(s)dUs. (23)

To see how (21) can be recovered from (23), set Ut = Xt −X∗
t and Kt = ψ (X∗

t ). Then, Kt = Kσ(t) =
ψ(X∗

σ(t)) by construction, where σ (t) is defined as in (22). As a consequence, (23) gives

ψ (X∗
t ) (Xt −X∗

t ) = ψ (X∗
ε ) (Xε −X∗

ε ) +

∫ t

ε

ψ(X∗
s )d (Xs −X∗

s ) .

Finally, a standard integration by parts applied to ψ (X∗
t ) (X∗

t −At) yields

ψ (X∗
t ) (Xt −At) = ψ (X∗

t ) (Xt −X∗
t ) + ψ (X∗

t ) (X∗
t −At)

= ψ (X∗
ε ) (Xε −X∗

ε ) +

∫ t

ε

ψ(X∗
s )d (Xs −X∗

s )

+ψ (X∗
ε ) (X∗

ε −Aε) +

∫ t

ε

ψ(X∗
s )d (X∗

s −As)

+

∫ t

ε

(X∗
s −As) dψ (X∗

s ) ,

which is equivalent to (21).
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